
Phased Array System Toolbox™
User's Guide

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Phased Array System Toolbox™ User's Guide
© COPYRIGHT 2011–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
April 2011 Online only Revised for Version 1.0 (R2011a)
September 2011 Online only Revised for Version 1.1 (R2011b)
March 2012 Online only Revised for Version 1.2 (R2012a)
September 2012 Online only Revised for Version 1.3 (R2012b)
March 2013 Online only Revised for Version 2.0 (R2013a)
September 2013 Online only Revised for Version 2.1 (R2013b)
March 2014 Online only Revised for Version 2.2 (R2014a)
October 2014 Online only Revised for Version 2.3 (R2014b)
March 2015 Online only Revised for Version 3.0 (R2015a)
September 2015 Online only Revised for Version 3.1 (R2015b)
March 2016 Online only Revised for Version 3.2 (R2016a)
September 2016 Online only Revised for Version 3.3 (R2016b)
March 2017 Online only Revised for Version 3.4 (R2017a)
September 2017 Online only Revised for Version 3.5 (R2017b)
March 2018 Online only Revised for Version 3.6 (R2018a)
September 2018 Online only Revised for Version 4.0 (R2018b)
March 2019 Online only Revised for Version 4.1 (R2019a)
September 2019 Online only Revised for Version 4.2 (R2019b)
March 2020 Online only Revised for Version 4.3 (R2020a)
September 2020 Online only Revised for Version 4.4 (R2020b)
March 2021 Online only Revised for Version 4.5 (R2021a)
September 2021 Online only Revised for Version 4.6 (R2021b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Phased Arrays

Antenna and Microphone Elements
1

Isotropic Antenna Element . 1-2
Support for Isotropic Antenna Elements . 1-2
Backbaffled Isotropic Antenna . 1-2
Response of Backbaffled Isotropic Antenna Element 1-5

Cosine Antenna Element . 1-7
Support for Cosine Antenna Elements . 1-7
Concentrating Cosine Antenna Response . 1-7
Plot 3-D Response of Cosine Antenna Element 1-8

Custom Antenna Element . 1-10
Support for Custom Antenna Elements . 1-10
Antenna with Custom Radiation Pattern . 1-10

Omnidirectional Microphone . 1-12
Support for Omnidirectional Microphones 1-12
Backbaffled Omnidirectional Microphone . 1-12

Custom Microphone Element . 1-16
Support for Custom Microphone Elements 1-16
Custom Cardioid Microphone Pattern . 1-16

Short-dipole Antenna Element . 1-18
Short-Dipole Polarization Components . 1-19

Crossed-dipole Antenna Element . 1-21
LHCP and RHCP Polarization Components 1-22

Gaussian Antenna as Approximation for Spiral Antenna 1-24

Using Antenna Toolbox with Phased Array Systems 1-27

Sinc Antenna as Approximation for Array Response Pattern 1-33

iii

Contents

Array Geometries and Analysis
2

Uniform Linear Array . 2-2
Support for Uniform Linear Arrays . 2-2
Positions of ULA Array Elements . 2-2
ULA Array Elements . 2-3
Array Element Responses . 2-3
Signal Delay Between Array Elements . 2-4
Steering Vector . 2-5
Array Response . 2-6
Reception of Plane Wave Across Array . 2-8

Microphone ULA Array . 2-10

Uniform Rectangular Array . 2-12
Support for Uniform Rectangular Arrays . 2-12
Uniform Rectangular Array of Isotropic Antenna Elements 2-12

Conformal Array . 2-15
Support for Arrays with Custom Geometry 2-15
Create Default Conformal Array . 2-15
Uniform Circular Array Created from Conformal Array 2-15
Custom Antenna Array . 2-18

Subarrays Within Arrays . 2-22
Definition of Subarrays . 2-22
Benefits of Using Subarrays . 2-22
Support for Subarrays Within Arrays . 2-22
Rectangular Array Partitioned into Linear Subarrays 2-23
Linear Subarray Replicated to Form Rectangular Array 2-26
Linear Subarray Replicated in a Custom Grid 2-27

Plot Array Directivity Using Sensor Array Analyzer App 2-29

Signal Radiation and Collection
3

Signal Radiation . 3-2
Support for Modeling Signal Radiation . 3-2
Radiate Signal with Uniform Linear Array . 3-2

Signal Collection . 3-4
Support for Modeling Signal Collection . 3-4
Narrowband Collector for Uniform Linear Array 3-5
Narrowband Collector for a Single Antenna Element 3-6
Wideband Signal Collection . 3-7

iv Contents

Waveforms, Transmitter, and Receiver
4

Rectangular Pulse Waveforms . 4-2
Definition of Rectangular Pulse Waveform . 4-2
How to Create Rectangular Pulse Waveforms . 4-2
Rectangular Waveform Plot . 4-2
Pulses of Rectangular Waveform . 4-3

Linear Frequency Modulated Pulse Waveforms . 4-6
Benefits of Using Linear FM Pulse Waveform . 4-6
Definition of Linear FM Pulse Waveform . 4-6
How to Create Linear FM Pulse Waveforms . 4-6
Create Linear FM Pulse Waveform . 4-7
Linear FM Pulse Waveform Plot . 4-7
Ambiguity Function of Linear FM Waveform . 4-9
Compare Autocorrelation for Rectangular and Linear FM Waveforms . . . 4-10

Stepped FM Pulse Waveforms . 4-13
Create and Plot Stepped FM Pulse Waveform . 4-13

FMCW Waveforms . 4-16
Benefits of Using FMCW Waveform . 4-16
How to Create FMCW Waveforms . 4-16
Double Triangular Sweep . 4-16

Phase-Coded Waveforms . 4-18
When to Use Phase-Coded Waveforms . 4-18
How to Create Phase-Coded Waveforms . 4-18

Basic Radar Using Phase-Coded Waveform . 4-19

Waveforms with Staggered PRFs . 4-21
When to Use Staggered PRFs . 4-21
Linear FM Waveform with Staggered PRF . 4-21

Plot Spectrogram Using Pulse Waveform Analyzer App 4-23

Transmitter . 4-25
Transmitter Object . 4-25
Phase Noise . 4-27

Receiver Preamp . 4-30
Operation of Receiver Preamp . 4-30
Configuring Receiver Preamp . 4-30
Model Receiver Effects on Sinusoidal Input . 4-31

Model Coherent-on-Receive Behavior . 4-33
Coherent-on-Receive for Rectangular Pulse . 4-33

v

Beamforming
5

Beamforming Overview . 5-2
Conventional Beamforming . 5-2
Optimal and Adaptive Beamforming . 5-3

Conventional Beamforming . 5-6
Uses for Beamformers . 5-6
Support for Conventional Beamforming . 5-6
Narrowband Phase Shift Beamformer for a ULA . 5-6

Adaptive Beamforming . 5-11
Benefits of Adaptive Beamforming . 5-11
Support for Adaptive Beamforming . 5-11
Nulling with LCMV Beamformer . 5-11

Wideband Beamforming . 5-15
Support for Wideband Beamforming . 5-15
Time-Delay Beamforming of Microphone ULA Array 5-15
Visualization of Wideband Beamformer Performance 5-16

Time-Delay Beamforming of Microphone ULA Array 5-21

Visualization of Wideband Beamformer Performance 5-23

Fixed-Point HDL-Optimized Minimum-Variance Distortionless-Response
(MVDR) Beamformer . 5-27

Direction-of-Arrival Estimation
6

Beamscan Direction-of-Arrival Estimation . 6-2

Super-Resolution DOA Estimation . 6-4

MUSIC Super-Resolution DOA Estimation . 6-7
Signal Model . 6-7
Signal and Noise Subspaces . 6-8
Root-MUSIC . 6-9
Spatial Smoothing of Correlated Sources . 6-9

Target Tracking Using Sum-Difference Monopulse Radar 6-12

vi Contents

Space-Time Adaptive Processing (STAP)
7

Angle-Doppler Response . 7-2
Benefits of Visualizing Angle-Doppler Response . 7-2
Angle-Doppler Response of Stationary Array to Stationary Target 7-2
Angle-Doppler Response to Stationary Target at Moving Array 7-4

Displaced Phase Center Antenna Pulse Canceller 7-7
When to Use the DPCA Pulse Canceller . 7-7
DPCA Pulse Canceller to Reject Clutter . 7-7

Adaptive Displaced Phase Center Antenna Pulse Canceller 7-11
When to Use the Adaptive DPCA Pulse Canceller 7-11
Adaptive DPCA Pulse Canceller To Reject Clutter and Interference 7-11

Sample Matrix Inversion Beamformer . 7-17
When to Use the SMI Beamformer . 7-17
Sample Matrix Inversion Beamformer . 7-17

Detection
8

Neyman-Pearson Hypothesis Testing . 8-2
Purpose of Hypothesis Testing . 8-2
Support for Neyman-Pearson Hypothesis Testing 8-2
Threshold for Real-Valued Signal in White Gaussian Noise 8-2
Threshold for Two Pulses of Real-Valued Signal in White Gaussian Noise

. 8-4
Threshold for Complex-Valued Signals in Complex White Gaussian Noise

. 8-4

Receiver Operating Characteristics . 8-6

Monte-Carlo ROC Simulation . 8-11

Matched Filtering . 8-19
Reasons for Using Matched Filtering . 8-19
Support for Matched Filtering . 8-19
Matched Filtering of Linear FM Waveform . 8-19
Matched Filtering to Improve SNR for Target Detection 8-21

Stretch Processing . 8-25
Reasons for Using Stretch Processing . 8-25
Support for Stretch Processing . 8-25
Stretch Processing Procedure . 8-25

FMCW Range Estimation . 8-27

Range-Doppler Response . 8-29
Benefits of Producing Range-Doppler Response 8-29

vii

Support for Range-Doppler Processing . 8-29
Range-Speed Response Pattern of Target . 8-30

Constant False-Alarm Rate (CFAR) Detectors . 8-34
False Alarm Rate for CFAR Detectors . 8-34
Cell-Averaging CFAR Detector . 8-36
CFAR Detector Adaptation to Noisy Input Data . 8-37
Extensions of Cell-Averaging CFAR Detector . 8-38
Detection Probability for CFAR Detector . 8-38

Measure Intensity Levels Using the Intensity Scope 8-41
RTI and DTI Displays in Full Radar Simulation . 8-42

Environment and Target Models
9

Free Space Path Loss . 9-2
Support for Modeling Propagation in Free Space 9-2
Free Space Path Loss in dB . 9-2
Propagate Linear FM Pulse Waveform to Target and Back 9-3
One-Way and Two-Way Propagation . 9-4
Propagate Signal from Stationary Radar to Moving Target 9-5

Two-Ray Multipath Propagation . 9-10

Free-Space Propagation of Wideband Signals . 9-12

Radar Target . 9-14
Radar Target Properties . 9-14
Gain for Nonfluctuating RCS Target . 9-14
Fluctuating RCS Targets . 9-15
Model Pulse Reflection from Nonfluctuating Target 9-16

Swerling 1 Target Models . 9-17

Swerling Target Models . 9-21

Swerling 3 Target Models . 9-26

Swerling 4 Target Models . 9-30

Coordinate Systems and Motion Modeling
10

Rectangular Coordinates . 10-2
Definitions of Coordinates . 10-2
Notation for Vectors and Points . 10-3
Orthogonal Basis and Euclidean Norm . 10-3
Orientation of Coordinate Axes . 10-3

viii Contents

Rotations and Rotation Matrices . 10-4

Spherical Coordinates . 10-10
Support for Spherical Coordinates . 10-10
Azimuth and Elevation Angles . 10-10
Phi and Theta Angles . 10-11
U and V Coordinates . 10-12
Conversion between Rectangular and Spherical Coordinates 10-13
Broadside Angles . 10-14
Convert Between Broadside Angles and Azimuth and Elevation 10-16

Global and Local Coordinate Systems . 10-17
Global Coordinate System . 10-17
Local Coordinate Systems . 10-17
Converting Between Global and Local Coordinate Systems 10-29
Convert Local Spherical Coordinates to Global Rectangular Coordinates

. 10-29
Convert Global Rectangular Coordinates to Local Spherical Coordinates

. 10-30

Global and Local Coordinate Systems Radar Example 10-31

Motion Modeling in Phased Array Systems . 10-39
Support for Motion Modeling . 10-39
Platform Motion with Constant Velocity . 10-40
Platform Motion with Changing Velocity . 10-40
Track Range and Angle Changes Between Platforms 10-41

Model Motion of Circling Airplane . 10-43

Visualize Multiplatform Scenario . 10-45

Doppler Shift and Pulse-Doppler Processing . 10-48
Support for Pulse-Doppler Processing . 10-48
Convert Speed to Doppler Shift . 10-48
Convert Doppler Shift to Speed . 10-48
Pulse-Doppler Processing of Slow-Time Data . 10-49
Range and Speed Using Pulse-Doppler Processing 10-49

Using Polarization
11

Polarized Fields . 11-2
Introduction to Polarization . 11-2
Linear and Circular Polarization . 11-3
Elliptic Polarization . 11-6
Linear and Circular Polarization Bases . 11-9
Sources of Polarized Fields . 11-12
Scattering Cross-Section Matrix . 11-18
Polarization Loss Due to Field and Receiver Mismatch 11-21
Model Radar Transmitting Polarized Radiation 11-23

ix

Antenna and Array Definitions
12

Element and Array Radiation and Response Patterns 12-2
Element Response and Radiation Patterns . 12-2
Array Response and Radiation Patterns . 12-5

Grating Lobe Diagram for Microphone URA . 12-8

Sonar System Models
13

Sonar Equation . 13-2
Passive Sonar Equation . 13-2
Active Sonar Equation . 13-4

Doppler Effect for Sound . 13-6

Code Generation
14

Code Generation . 14-2
Code Generation Use and Benefits . 14-2
Limitations Specific to Phased Array System Toolbox 14-3
General Limitations . 14-5
Limitations for System Objects that Require Dynamic Memory Allocation

. 14-9

Generate MEX Function to Estimate Directions of Arrival 14-10

Generate MEX Function Containing Persistent System Objects 14-12

Simulink Examples
15

Convert Azimuth and Elevation to Broadside Angle 15-2

Phase-Shift Beamforming of Plane Wave Signal . 15-3

x Contents

RF Propagation
16

Access TIREM Software . 16-2

Featured Examples
17

Antenna Array Analysis with Custom Radiation Pattern 17-2

Array Pattern Synthesis Part I: Nulling, Windowing, and Thinning . . . 17-10

Array Pattern Synthesis Part II: Optimization . 17-24

Modeling and Analyzing Polarization . 17-35

Modeling Mutual Coupling in Large Arrays Using Embedded Element
Pattern . 17-48

Modeling Mutual Coupling in Large Arrays Using Infinite Array Analysis
. 17-59

Modeling Perturbations and Element Failures in a Sensor Array 17-70

Patch Antenna Array for FMCW Radar . 17-78

Phased Array Gallery . 17-89

Using Pilot Calibration to Compensate For Array Uncertainties 17-109

Using Self Calibration to Accommodate Array Uncertainties 17-115

Subarrays in Phased Array Antennas . 17-120

Tapering, Thinning and Arrays with Different Sensor Patterns 17-129

Simultaneous Range and Speed Estimation Using MFSK Waveform . 17-145

Waveform Analysis Using the Ambiguity Function 17-151

Waveform Design to Improve Range Performance of an Existing System
. 17-167

Acoustic Beamforming Using a Microphone Array 17-174

Beamforming for MIMO-OFDM Systems . 17-183

Conventional and Adaptive Beamformers . 17-190

Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC 17-205

xi

High Resolution Direction of Arrival Estimation 17-216

Increasing Angular Resolution with Virtual Arrays 17-224

Introduction to Space-Time Adaptive Processing 17-233

Source Localization Using Generalized Cross Correlation 17-249

Acoustic Beamforming Using Microphone Arrays 17-254

Conventional and Adaptive Beamformers . 17-258

Direction of Arrival with Beamscan and MVDR 17-267

Constant False Alarm Rate (CFAR) Detection . 17-276

Detector Performance Analysis Using ROC Curves 17-285

Doppler Estimation . 17-292

Range Estimation Using Stretch Processing . 17-298

Signal Detection in White Gaussian Noise . 17-304

Signal Detection Using Multiple Samples . 17-311

Antenna Array Beam Scanning Visualization on a Map 17-317

SINR Map for a 5G Urban Macro-Cell Test Environment 17-327

Improve SNR and Capacity of Wireless Communication Using Antenna
Arrays . 17-339

Introduction to Hybrid Beamforming . 17-356

MIMO-OFDM Precoding with Phased Arrays . 17-363

Simulating Test Signals for a Radar Receiver . 17-378

Electronic Scanning Using a Uniform Rectangular Array 17-390

Simulating a Bistatic Polarimetric Radar . 17-398

Stream and Accelerate System Simulation . 17-404

Scene Visualization for Phased Array System Simulation 17-410

Simulating Test Signals for a Radar Receiver in Simulink 17-419

Modeling RF Front End in Radar System Simulation 17-425

Simulating a Bistatic Radar with Two Targets 17-431

Waveform Scheduling Based on Target Detection 17-435

xii Contents

Underwater Target Detection with an Active Sonar System 17-440

Locating an Acoustic Beacon with a Passive Sonar System 17-451

Waveform Parameter Extraction from Received Pulse 17-456

Massive MIMO Hybrid Beamforming . 17-469

Multicore Simulation of Test Signals for a Radar Receiver 17-481

Multicore Simulation of Audio Beamforming System 17-486

802.11ad Single Carrier Link with RF Beamforming in Simulink 17-490

802.11ad Waveform Generation with Beamforming 17-500

Radar and Communications Waveform Classification Using Deep Learning
. 17-505

Hybrid MIMO Beamforming with QSHB and HBPS Algorithms 17-518

Array Synthesis for Lidar Systems . 17-525

FPGA Based Beamforming in Simulink: Part 2 - Code Generation . . . 17-534

FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design . . 17-541

Estimate Range and Doppler Using Pulse Compression 17-549

Compare Ambiguity Functions for Different Wave Modulation Schemes
. 17-554

NR Downlink Transmit-End Beam Refinement Using CSI-RS 17-564

CDL Channel Model Customization with Ray Tracing 17-578

NR SSB Beam Sweeping . 17-588

FPGA Based Cell-Averaging Constant False Alarm Rate (CA-CFAR)
Detector - Algorithm Design and HDL Code Generation 17-603

FPGA Based Monopulse Technique Workflow: Part 1 - Algorithm Design
. 17-617

FPGA Based Monopulse Technique Workflow: Part 2 - Code Generation
. 17-628

Introduction to Differential Beamforming . 17-637

Examine the Response of a Focused Phased Array 17-654

FPGA Based Range-Doppler Processing - Algorithm Design and HDL Code
Generation . 17-671

xiii

Phased Arrays

15

Antenna and Microphone Elements

• “Isotropic Antenna Element” on page 1-2
• “Cosine Antenna Element” on page 1-7
• “Custom Antenna Element” on page 1-10
• “Omnidirectional Microphone” on page 1-12
• “Custom Microphone Element” on page 1-16
• “Short-dipole Antenna Element” on page 1-18
• “Crossed-dipole Antenna Element” on page 1-21
• “Gaussian Antenna as Approximation for Spiral Antenna” on page 1-24
• “Using Antenna Toolbox with Phased Array Systems” on page 1-27
• “Sinc Antenna as Approximation for Array Response Pattern” on page 1-33

1

Isotropic Antenna Element
In this section...
“Support for Isotropic Antenna Elements” on page 1-2
“Backbaffled Isotropic Antenna” on page 1-2
“Response of Backbaffled Isotropic Antenna Element” on page 1-5

Support for Isotropic Antenna Elements
An isotropic antenna element radiates equal power in all directions. If the antenna element is
backbaffled, the antenna radiates equal power in all directions for which the azimuth angle satisfies –
90 ≤ φ ≤ 90 and zero power in all other directions. To construct an isotropic antenna, use the
phased.IsotropicAntennaElement System object™. When you use this object, you must specify
these antenna properties:

• The operating frequency range of the antenna using the FrequencyRange property.
• Whether or not the response of the antenna is backbaffled at azimuth angles outside the interval

[–90,90] using the BackBaffled property.

You can determine the voltage response of the isotropic antenna element at specified frequencies and
angles by executing the System object.

Backbaffled Isotropic Antenna
This example shows how to construct a backbaffled isotropic antenna element with a uniform
frequency response over a range of azimuth angles from [-180,180] degrees and elevation angles
from [-90,90] degrees. The antenna operates between 300 MHz and 1 GHz. Show the antenna pattern
at 1 GHz.

fc = 1e9;
antenna = phased.IsotropicAntennaElement(...
 'FrequencyRange',[300e6 1e9],'BackBaffled',false);
pattern(antenna,fc,[-180:180],[-90:90],'CoordinateSystem','polar',...
 'Type','power')

1 Antenna and Microphone Elements

1-2

Using the antenna pattern method, plot the antenna response at zero degrees elevation for all
azimuth angles at 1 GHz.

pattern(antenna,1e9,[-180:180],0,'CoordinateSystem','rectangular',...
 'Type','powerdb')

 Isotropic Antenna Element

1-3

Setting the BackBaffled property to true restricts the antenna response to azimuth angles in the
interval [-90,90] degrees. In this case, plot the antenna response in three dimensions.

antenna.BackBaffled = true;
pattern(antenna,fc,[-180:180],[-90:90],'CoordinateSystem','polar',...
 'Type','power')

1 Antenna and Microphone Elements

1-4

Response of Backbaffled Isotropic Antenna Element
This example shows how to design a backbaffled isotropic antenna element and obtain its response.
First, construct an X-band isotropic antenna element that operates from 8 to 12 GHz setting the
Backbaffle property to true. Obtain the antenna element response at 4, 10, and 14 GHz at azimuth
angles between -100 and 100 degrees in 50 degree increments. All elevation angles are by default
equal to zero.

antenna = phased.IsotropicAntennaElement(...
 'FrequencyRange',[8e9 12e9],'BackBaffled',true);
respfreqs = [6:4:14]*1e9;
respazangles = -100:50:100;
anresp = antenna(respfreqs,respazangles)

anresp = 5×3

 0 0 0
 0 1 0
 0 1 0
 0 1 0
 0 0 0

The antenna response in anresp is a matrix having row dimension equal to the number of azimuth
angles in respazangles and column dimension equal to the number of frequencies in respfreqs.

 Isotropic Antenna Element

1-5

The response voltage in the first and last columns of anresp are zero because those columns contain
the antenna response at 6 and 14 GHz, respectively. These frequencies lie outside the antenna
operating frequency range. Similarly, the first and last rows of anresp contain all zeros because
BackBaffled property is set to true. The first and last row contain the antenna response at azimuth
angles outside of [-90,90].

To obtain the antenna response at nonzero elevation angles, input the angles to the object as a 2-by-
M matrix where each column is an angle in the form [azimuth;elevation].

release(antenna)
respelangles = -90:45:90;
respangles = [respazangles; respelangles];
anresp = antenna(respfreqs,respangles)

anresp = 5×3

 0 1 0
 0 1 0
 0 1 0
 0 1 0
 0 1 0

Notice that anresp(1,2) and anresp(5,2) represent the antenna voltage response at the azimuth-
elevation angle pairs (-100,-90) and (100,90) degrees. Although the azimuth angles lie in the baffled
region, because the elevation angles are equal to +/- 90 degrees, the responses are unity. In this case,
the resulting elevation cut degenerates to a point.

1 Antenna and Microphone Elements

1-6

Cosine Antenna Element
In this section...
“Support for Cosine Antenna Elements” on page 1-7
“Concentrating Cosine Antenna Response” on page 1-7
“Plot 3-D Response of Cosine Antenna Element” on page 1-8

Support for Cosine Antenna Elements
The phased.CosineAntennaElement object models an antenna element whose response follows a
cosine function raised to a specified power in both the azimuth and elevation directions.

The object returns the field response (also called field pattern)

f (az, el) = cosm(az)cosn(el)

of the cosine antenna element.

In this expression

• az is the azimuth angle.
• el is the elevation angle.
• The exponents m and n are real numbers greater than or equal to zero.

The response is defined for azimuth and elevation angles between –90° and 90°, inclusive, and is
always positive. There is no response at the backside of a cosine antenna. The cosine response
pattern achieves a maximum value of 1 at 0° azimuth and 0° elevation. Larger exponent values
narrow the response pattern of the element and increase the directivity.

The power response (or power pattern) is the squared value of the field response.

P(az, el) = cos2m(az)cos2n(el)

When you use the cosine antenna element, you specify the exponents of the cosine pattern using the
CosinePower property and the operating frequency range of the antenna using the
FrequencyRange property.

Concentrating Cosine Antenna Response
This example shows the effect of concentrating the cosine antenna response by increasing the
exponent of the cosine factor. The example computes and plots the cosine response for exponents
equal to 1 and 2 for a single angle between -90 and 90 degrees. The angle can represent azimuth or
elevation.

theta = -90:.01:90;
costh1 = cosd(theta);
costh2 = costh1.^2;
plot(theta,costh1)
hold on
plot(theta,costh2,'r')
hold off

 Cosine Antenna Element

1-7

legend('Exponent = 1','Exponent = 2','location','northeast');
xlabel('Angle (degrees')
ylabel('Response')

Plot 3-D Response of Cosine Antenna Element
This example shows how to construct an antenna with a cosine-squared response in both azimuth and
elevation. The operating frequency range of the antenna is 1 to 10 GHz. Plot the 3-D antenna
response at 5 GHz.

sCos = phased.CosineAntennaElement(...
 'FrequencyRange',[1 10]*1e9,'CosinePower',[2 2]);
pattern(sCos,5e9,[-180:180],[-90:90],'CoordinateSystem',...
 'Polar','Type','powerdb')

1 Antenna and Microphone Elements

1-8

 Cosine Antenna Element

1-9

Custom Antenna Element
In this section...
“Support for Custom Antenna Elements” on page 1-10
“Antenna with Custom Radiation Pattern” on page 1-10

Support for Custom Antenna Elements
The phased.CustomAntennaElement object enables you to model a custom antenna element.
When you use phased.CustomAntennaElement, you must specify these aspects of the antenna:

• Operating frequency vector for the antenna element
• Frequency response of the element at the frequencies in the operating frequency vector
• Azimuth angles and elevation angles where the custom response is evaluated
• Magnitude radiation pattern. This pattern shows the spatial response of the antenna at the

azimuth and elevation angles you specify.

Tip You can import a radiation pattern that uses u/v coordinates or φ/θ angles, instead of azimuth/
elevation angles. To use such a pattern with phased.CustomAntennaElement, first convert your
pattern to azimuth/elevation form. Use uv2azelpat or phitheta2azelpat to do the conversion.
For an example, see Antenna Array Analysis with Custom Radiation Pattern.

For your custom antenna element, the antenna response depends on the frequency response and
radiation pattern. Specifically, the frequency and spatial responses are interpolated separately using
nearest-neighbor interpolation and then multiplied together to produce the total response. To avoid
interpolation errors, the range of azimuth angles should include +/– 180 degrees and the range of
elevation angles should include +/– 90 degrees.

Antenna with Custom Radiation Pattern
Create a custom antenna element object. The radiation pattern has a cosine dependence on elevation
angle but is independent of azimuth angle.

az = -180:90:180;
el = -90:45:90;
elresp = cosd(el);
magpattern = mag2db(repmat(elresp',1,numel(az)));
phasepattern = zeros(size(magpattern));
antenna = phased.CustomAntennaElement('AzimuthAngles',az,...
 'ElevationAngles',el,'MagnitudePattern',magpattern, ...
 'PhasePattern',phasepattern);

Display the radiation pattern.

disp(antenna.MagnitudePattern)

 -Inf -Inf -Inf -Inf -Inf
 -3.0103 -3.0103 -3.0103 -3.0103 -3.0103
 0 0 0 0 0
 -3.0103 -3.0103 -3.0103 -3.0103 -3.0103
 -Inf -Inf -Inf -Inf -Inf

1 Antenna and Microphone Elements

1-10

Calculate the antenna response at the azimuth-elevation pairs (-30,0) and (-45,0) at 500 MHz.

ang = [-30 0; -45 0];
resp = antenna(500.0e6,ang);
disp(resp)

 0.7071
 1.0000

The following code illustrates how nearest-neighbor interpolation is used to find the antenna voltage
response in the two directions. The total response is the product of the angular response and the
frequency response.

g = interp2(deg2rad(antenna.AzimuthAngles),...
 deg2rad(antenna.ElevationAngles),...
 db2mag(antenna.MagnitudePattern),...
 deg2rad(ang(1,:))', deg2rad(ang(2,:))','nearest',0);
h = interp1(antenna.FrequencyVector,...
 db2mag(antenna.FrequencyResponse),500e6,'nearest',0);
antresp = h.*g;

Compare the value of antresp to the response of the antenna.

disp(mag2db(antresp))

 -3.0103
 0

 Custom Antenna Element

1-11

Omnidirectional Microphone
In this section...
“Support for Omnidirectional Microphones” on page 1-12
“Backbaffled Omnidirectional Microphone” on page 1-12

Support for Omnidirectional Microphones
An omnidirectional microphone has a response which is equal to one in all nonbaffled directions. The
phased.OmnidirectionalMicrophoneElement object enables you to model an omnidirectional
microphone. When you use this object, you must specify these aspects of the microphone:

• The operating frequency range of the microphone using the FrequencyRange property.
• Whether the response of the microphone is baffled at azimuth angles outside the interval [–90,90]

degrees using the BackBaffled property.

Backbaffled Omnidirectional Microphone
Construct an omnidirectional microphone element having a response within the human audible
frequency range of 20 to 20,000 Hz. Baffle the microphone response for azimuth angles outside of +/-
90 degrees. Plot in polar form the microphone power response at 1 kHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

freq = 1e3;
microphone = phased.OmnidirectionalMicrophoneElement(...
 'BackBaffled',true,'FrequencyRange',[20 20e3]);
pattern(microphone,freq,[-180:180],[-90:90],'CoordinateSystem','polar','Type','power');

1 Antenna and Microphone Elements

1-12

In many applications, you sometimes need to examine the microphone directionality, or polar pattern.
To obtain an azimuth cut, set the elevation argument of the pattern method to a single angle such
as zero.

pattern(microphone,freq,[-180:180],0,'CoordinateSystem','polar','Type','power');

 Omnidirectional Microphone

1-13

To obtain an elevation cut, set the azimuth argument of the pattern method to a single angle such
as zero.

pattern(microphone,freq,0,[-90:90],'CoordinateSystem','polar','Type','power');

1 Antenna and Microphone Elements

1-14

Obtain the microphone magnitude response at the specified azimuth angles and frequencies. By
default, when the ang argument is a single row, the elevation angles are 0 degrees. Note the
response is unity at all azimuth angles and frequencies, as expected.

freqs = [100:250:1e3];
ang = [-90:30:90];
response = microphone(freqs,ang)

response = 7×4

 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1

 Omnidirectional Microphone

1-15

Custom Microphone Element
In this section...
“Support for Custom Microphone Elements” on page 1-16
“Custom Cardioid Microphone Pattern” on page 1-16

Support for Custom Microphone Elements
You can model a microphone with a custom response pattern using
phased.CustomMicrophoneElement System object. The total response of a custom microphone
element is a combination of its frequency response and spatial response.
phased.CustomMicrophoneElement calculates both responses using nearest neighbor
interpolation and then multiplies them to form the total response. When the
PolarPatternFrequencies property value is nonscalar, the object specifies multiple polar
patterns. In this case, the interpolation uses the polar pattern that is measured closest to the
specified frequency. When you use phased.CustomMicrophoneElement, you must specify these
microphone attributes.:

• Frequencies where you specify your response using the FrequencyVector property.
• Response corresponding to the specified frequencies using the FrequencyResponse property.
• Frequencies and angles at which the microphone’s polar pattern is measured.
• Magnitude response of the microphone.

Custom Cardioid Microphone Pattern
Create a custom cardioid microphone, and plot the power response pattern at 500 and 800 Hz.

sCustMic = phased.CustomMicrophoneElement;
sCustMic.PolarPatternFrequencies = [500 1000];
sCustMic.PolarPattern = mag2db([...
 0.5+0.5*cosd(sCustMic.PolarPatternAngles);...
 0.6+0.4*cosd(sCustMic.PolarPatternAngles)]);

pattern(sCustMic,[500,800],[-180:180],0,'Type','powerdb')

1 Antenna and Microphone Elements

1-16

See Also

Related Examples
• “Microphone ULA Array” on page 2-10

 Custom Microphone Element

1-17

Short-dipole Antenna Element
When you want to explicitly study the effects of polarization in a radar or communication system, you
need to specify an antenna that can generate polarized radiation. One such antenna is the short-
dipole antenna, created by using the phased.ShortDipoleAntennaElement.

The simplest polarized antenna is the dipole antenna which consist of a split length of wire coupled at
the middle to a coaxial cable. The simplest dipole, from a mathematical perspective, is the Hertzian
dipole, in which the length of wire is much shorter than a wavelength. A diagram of the short dipole
antenna of length L appears in the next figure. This antenna is fed by a coaxial feed which splits into
two equal length wires of length L/2. The current, I, moves along the z-axis and is assumed to be the
same at all points in the wire.

The electric field in the far field has the form

Er = 0
EH = 0

EV = −
iZ0IL

2λ cosel e−ikr

r

The next example computes the vertical and horizontal polarization components of the field. The
vertical component is a function of elevation angle and is axially symmetric. The horizontal
component vanishes everywhere.

1 Antenna and Microphone Elements

1-18

Short-Dipole Polarization Components
Compute the vertical and horizontal polarization components of the field created by a short-dipole
antenna pointed along the z-direction. Plot the components as a function of elevation angle from 0° to
360°.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create the phased.ShortDipoleAntennaElement System object™.

antenna = phased.ShortDipoleAntennaElement(...
 'FrequencyRange',[1,2]*1e9,'AxisDirection','Z');

Compute the antenna response. Because the elevation angle argument to antenna is restricted to
±90°, compute the responses for 0° azimuth and then for 180° azimuth. Combine the two responses
in the plot. The operating frequency of the antenna is 1.5 GHz.

el = [-90:90];
az = zeros(size(el));
fc = 1.5e9;
resp = antenna(fc,[az;el]);
az = 180.0*ones(size(el));
resp1 = antenna(fc,[az;el]);

Overlay the responses in the same figure.

figure(1)
subplot(121)
polar(el*pi/180.0,abs(resp.V.'),'b')
hold on
polar((el+180)*pi/180.0,abs(resp1.V.'),'b')
str = sprintf('%s\n%s','Vertical Polarization','vs Elevation Angle');
title(str)
hold off
subplot(122)
polar(el*pi/180.0,abs(resp.H.'),'b')
hold on
polar((el+180)*pi/180.0,abs(resp1.H.'),'b')
str = sprintf('%s\n%s','Horizontal Polarization','vs Elevation Angle');
title(str)
hold off

 Short-dipole Antenna Element

1-19

The plot shows that the horizontal component vanishes, as expected.

1 Antenna and Microphone Elements

1-20

Crossed-dipole Antenna Element
Another antenna that produces polarized radiation is the crossed-dipole antenna, created by using
the phased.CrossedDipoleAntennaElement System object.

You can use a cross-dipole antenna to generate circularly-polarized radiation. The crossed-dipole
antenna consists of two identical but orthogonal short-dipole antennas that are phased 90° apart. A
diagram of the crossed dipole antenna appears in the following figure. The electric field created by a
crossed-dipole antenna constructed from a y-directed short dipole and a z-directed short dipole has
the form

Er = 0

EH = −
iZ0IL

2λ cosaz e−ikr

r

EV =
iZ0IL

2λ (sinelsinaz + icosel)e−ikr

r

The polarization ratio EV/EH, when evaluated along the x-axis, is just –i which means that the
polarization is exactly RHCP along the x-axis. It is predominantly RHCP when the observation point is
close to the x-axis. Moving away from the x-axis, the field becomes a mixture of LHCP and RHCP
polarizations. Along the –x-axis, the field is LHCP polarized. The figure illustrates, for a point near the
x, that the field is primarily RHCP.

 Crossed-dipole Antenna Element

1-21

LHCP and RHCP Polarization Components
This example plots the right-hand and left-hand circular polarization components of fields generated
by a crossed-dipole antenna at 1.5 GHz. You can see how the circular polarization changes from pure
RHCP at 0 degrees azimuth angle to pure LHCP at 180 degrees azimuth angle, both at 0 degrees
elevation angle.

Create the phased.CrossedDipoleAntennaElement object.

fc = 1.5e9;
antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[1,2]*1e9);

Compute the left-handed and right-handed circular polarization components from the antenna
response.

az = [-180:180];
el = zeros(size(az));
resp = antenna(fc,[az;el]);
cfv = pol2circpol([resp.H.';resp.V.']);
clhp = cfv(1,:);
crhp = cfv(2,:);

Plot both circular polarization components at 0 degrees elevation.

polar(az*pi/180.0,abs(clhp))
hold on
polar(az*pi/180.0,abs(crhp))
title('LHCP and RHCP vs Azimuth Angle')
legend('LHCP','RHCP')
hold off

1 Antenna and Microphone Elements

1-22

 Crossed-dipole Antenna Element

1-23

Gaussian Antenna as Approximation for Spiral Antenna
This example shows how a Gaussian antenna can approximate the radiation pattern of a spiral
antenna. Spiral antennas are known for their wideband behavior and are often used in wideband
communications. The Gaussian antenna approximation is widely used in the literature.

Create a spiral antenna using Antenna Toolbox™. The antenna is in the y-z plane and has inner and
outer radii of 0.65 mm and 40 mm, respectively.

se = spiralArchimedean(...
 InnerRadius=0.65e-3,OuterRadius=40e-3, ...
 Tilt=90,TiltAxis="y");
show(se)

Compute the radiation pattern for the spiral antenna at an operating frequency of 4 GHz. Specify a
range of azimuth angles from –90° to 90° and zero elevation. Normalize the pattern so that its
maximum value is 0 dB.

fc = 4e9;
az = -90:0.5:90;

sePattern = pattern(se,fc,az,0, ...
 CoordinateSystem="rectangular",Type="powerdb");

sePatternNorm = sePattern - max(sePattern);

1 Antenna and Microphone Elements

1-24

Use Phased Array System Toolbox™ to create a Gaussian element with the same beamwidth as the
spiral antenna. Compute its radiation pattern, which is normalized by construction.

seBw = beamwidth(se,fc,az,0);
ge = phased.GaussianAntennaElement(Beamwidth=seBw);

gePattern = pattern(ge,fc,az,0, ...
 CoordinateSystem="rectangular",Type="powerdb");

Find the smallest positive azimuth angle at which the patterns differ by about 3 dB.

idx = find((abs(sePatternNorm.' - gePattern) >= 3) & (az' >= 0),1);
az3dB = az(idx);

Plot the patterns for the spiral and Gaussian antennas. Overlay the 3-dB points. The Gaussian
antenna pattern matches the spiral antenna pattern well out to about 75 degrees and thus can be
used as an excellent approximation of a spiral antenna.

plot(az,sePatternNorm,az,gePattern)

xline([-az3dB az3dB],'--')
xlabel("Azimuth Angle, az (degrees)")
ylabel("Power (dB)")
legend("Spiral","Gaussian","3-dB Point")

 Gaussian Antenna as Approximation for Spiral Antenna

1-25

See Also
phased.GaussianAntennaElement | spiralArchimedean

1 Antenna and Microphone Elements

1-26

Using Antenna Toolbox with Phased Array Systems
When you create antenna arrays such as a uniform linear array (ULA), you can use antennas that are
built into Phased Array System Toolbox™. Alternatively, you can use Antenna Toolbox™ antennas.
Antenna Toolbox antennas provide realistic models of physical antennas. They are designed using
method of moments. Phased array antennas represent more idealized antennas that are useful for
radar performance analysis and higher level modelling. Some phased array antennas cannot be
physically realized, such as the isotropic antenna but are still conceptually useful. You can build and
analyze systems using both types of antennas in an identical manner. This example shows how to
construct a phased array with either Phased Array System Toolbox or Antenna Toolbox™ antennas.

When you use an Antenna Toolbox™ antenna in a Phased Array System Toolbox™ System Object™,
the antenna response will be normalized by the maximum value of the antenna output over all
directions. The maximum value is obtained by finding the maximum of the antenna pattern sampled
every five degrees in azimuth and elevation.

Construct ULA of Crossed-Dipole Antennas from Phased Array System Toolbox

Start by creating a uniform linear array (ULA) of crossed-dipole antennas from Phased Array System
Toolbox. Crossed-dipole antennas are used to produce circularly-polarized signals. In this case, set
the operating frequency to 2 GHZ and draw the power pattern. Use the pattern method of the
phased.CrossedDipoleAntennaElement System object™.

fc = 2.0e9;
crosseddipoleantenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[500,2500]*1e6);
pattern(crosseddipoleantenna,fc,[-180:180],0,...
 'Type','powerdb')

 Using Antenna Toolbox with Phased Array Systems

1-27

The main axis of this antenna points along the x-axis.

Then, create an 11-element ULA array of crossed-dipole antennas. Specify the element spacing to be
0.4 wavelengths. Taper the array using a Taylor window. Then, draw the array pattern as a function of
azimuth at 0 degrees elevation. Use the pattern method of the phased.ULA System object.

c = physconst('LightSpeed');
elemspacing = 0.4*c/fc;
nElements = 11;
array1 = phased.ULA('Element',crosseddipoleantenna,'NumElements',nElements,...
 'ElementSpacing',elemspacing,'Taper',taylorwin(nElements)');
pattern(array1,fc,[-180:180],0,'PropagationSpeed',c,...
 'Type','powerdb')

1 Antenna and Microphone Elements

1-28

Construct ULA of Helix Antennas from Antenna Toolbox

Next, create a uniform linear array (ULA) using the helix antenna from Antenna Toolbox. Helix
antennas also produce circularly polarized radiation. Helix antennas are created using the helix
function.

First, specify a 4-turn helix antenna having a 28.0 mm radius and 1.2 mm width. The TiltAxis and
Tilt properties let you orient the antenna with respect to the local coordinate system. In this
example, orient the main response axis (MRA) along the x -axis to coincide with the MRA of the cross-
dipole main axis. By default, the MRA of the antenna points in the z -direction. Rotate the MRA
around the y -axis by 90 degrees.

radius = 0.028;
width = 1.2e-3;
nturns = 4;
helixantenna = helix('Radius',radius,'Width',width,'Turns',nturns,...
 'TiltAxis',[0,1,0],'Tilt',90);

You can view the shape of the helix antenna use the show function from Antenna Toolbox.

show(helixantenna)

 Using Antenna Toolbox with Phased Array Systems

1-29

Then, draw the azimuth antenna pattern at 0 degrees elevation at the operating frequency of 2 GHz.
Use the pattern function from Antenna Toolbox.

pattern(helixantenna,fc,[-180:180],0,...
 'Type','powerdb')

1 Antenna and Microphone Elements

1-30

Next, construct an 11-element tapered uniform linear array of helix antennas with elements spaced at
0.4 wavelengths. Taper the array with a Taylor window. You can use the same phased.ULA System
object from Phased Array System Toolbox to create this array.

array2 = phased.ULA('Element',helixantenna,'NumElements',nElements,...
 'ElementSpacing',elemspacing,'Taper',taylorwin(nElements)');

Plot the array pattern as a function of azimuth using the ULA pattern method which has the same
syntax as the Antenna Toolbox pattern function.

pattern(array2,fc,[-180:180],0,'PropagationSpeed',c,...
 'Type','powerdb')

 Using Antenna Toolbox with Phased Array Systems

1-31

Compare Patterns

Comparing the two array patterns shows that they are similar along the mainlobe. The backlobe of
the helix antenna array pattern is almost 15 dB smaller than that of the crossed-dipole array. This is
due to the presence of the ground plane of the helix antenna which reduces backlobe transmission.

1 Antenna and Microphone Elements

1-32

Sinc Antenna as Approximation for Array Response Pattern
This example shows how a sinc antenna element can approximate the radiation pattern of an array.

Create a 5-by-2 rectangular array of isotropic elements designed to work at an operating frequency of
3 GHz. Specify an element spacing equal to half the wavelength.

fc = 3e9;
lambda = freq2wavelen(fc);
array = phased.URA('ElementSpacing',lambda/2,'Size',[5 2]);

Compute the radiation pattern of the array. Specify a range of azimuth angles from –90° to 90° and
zero elevation. Plot the unnormalized azimuth pattern in polar coordinates.

az = -90:0.5:90;

recopts = {'CoordinateSystem','rectangular','Type','powerdb'};
polopts = {'CoordinateSystem','polar','Type','powerdb'};

arrayPatternAz = pattern(array,fc,az,0,recopts{:});

pattern(array,fc,az,0,polopts{:})

Normalize the pattern so that its maximum value is 0 dB. Compute the azimuth beamwidth.

arrayPatternAzNorm = arrayPatternAz - max(arrayPatternAz);
arrayAzBw = beamwidth(array,fc);

 Sinc Antenna as Approximation for Array Response Pattern

1-33

Compute the radiation for a range of elevation angles from –90° to 90° and zero azimuth. Normalize
the pattern and compute the beamwidth. Plot the unnormalized elevation pattern in polar
coordinates.

el = -90:0.5:90;

arrayPatternEl = pattern(array,fc,0,el,recopts{:});

arrayPatternElNorm = arrayPatternEl - max(arrayPatternEl);
arrayElBw = beamwidth(array,fc,'Cut','Elevation');

pattern(array,fc,0,el,polopts{:})

Create a sinc antenna element with the same beamwidth as the array. Compute the azimuth and
elevation patterns. The patterns are normalized by construction.

se = phased.SincAntennaElement('Beamwidth',[arrayAzBw arrayElBw]);

sePatternAz = pattern(se,fc,az,0,recopts{:});
sePatternEl = pattern(se,fc,0,el,recopts{:});

Find the smallest positive azimuth angle at which the patterns differ by about 3 dB. Plot the azimuth
patterns in rectangular coordinates. Overlay the 3-dB points. The sinc azimuth pattern matches the
array azimuth pattern well out to about 60 degrees.

idxAz = find((abs(arrayPatternAzNorm - sePatternAz) >= 3) & (az' >= 0),1);
az3dB = az(idxAz);

1 Antenna and Microphone Elements

1-34

figure
plot(az,arrayPatternAzNorm,az,sePatternAz)
xline([-az3dB az3dB],'--')

title("Az Cut: Normalized Array and Sinc Antenna Patterns")
xlabel("Azimuth Angle, az (degrees)")
ylabel("Power (dB)")
legend("Array","Sinc","3-dB Point",Location="south")
ylim([-50 0])

Repeat the process for the elevation patterns. The sinc pattern is a good approximation out to about
20 degrees.

idxEl = find((abs(arrayPatternElNorm - sePatternEl) >= 3) & (el' >= 0),1);
el3dB = el(idxEl);

plot(el,arrayPatternElNorm,az,sePatternEl)
xline([-el3dB el3dB],'--')

title("El Cut: Normalized Array and Sinc Antenna Patterns")
xlabel("Elevation Angle, el (degrees)")
ylabel("Power (dB)")
legend("Array","Sinc","3-dB Point")
ylim([-50 0])

 Sinc Antenna as Approximation for Array Response Pattern

1-35

See Also
phased.SincAntennaElement | phased.URA

1 Antenna and Microphone Elements

1-36

Array Geometries and Analysis

• “Uniform Linear Array” on page 2-2
• “Microphone ULA Array” on page 2-10
• “Uniform Rectangular Array” on page 2-12
• “Conformal Array” on page 2-15
• “Subarrays Within Arrays” on page 2-22
• “Plot Array Directivity Using Sensor Array Analyzer App” on page 2-29

2

Uniform Linear Array
In this section...
“Support for Uniform Linear Arrays” on page 2-2
“Positions of ULA Array Elements” on page 2-2
“ULA Array Elements” on page 2-3
“Array Element Responses” on page 2-3
“Signal Delay Between Array Elements” on page 2-4
“Steering Vector” on page 2-5
“Array Response” on page 2-6
“Reception of Plane Wave Across Array” on page 2-8

Support for Uniform Linear Arrays
The uniform linear array (ULA) arranges identical sensor elements along a line in space with uniform
spacing. You can design a ULA with phased.ULA. When you use this object, you must specify these
aspects of the array:

• Sensor elements of the array
• Spacing between array elements
• Number of elements in the array

Positions of ULA Array Elements
Create and view a ULA having four isotropic antenna elements separated by 0.5 meters

array = phased.ULA('NumElements',4,'ElementSpacing',0.5);
viewArray(array);

2 Array Geometries and Analysis

2-2

You can return the coordinates of the array sensor elements in the form [x;y;z] by using the
getElementPosition method. See “Rectangular Coordinates” on page 10-2 for toolbox
conventions.

sensorpos = getElementPosition(array);

sensorpos is a 3-by-4 matrix with each column representing the position of a sensor element. Note
that the y-axis is the array axis. The positive x-axis is the array look direction (0 degrees broadside).
The elements are symmetric with the respect to the phase center of the array.

ULA Array Elements
The default element for a ULA is the phased.IsotropicAntennaElement object. You can specify a
different element using the Element property.

Array Element Responses
Obtain the responses of the elements of a 4-element ULA array at 1 GHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

 Uniform Linear Array

2-3

Specify isotopic antennas for the array elements. Then, specify a 4-element ULA. Obtain the response
by executing the System object™.

antenna = phased.IsotropicAntennaElement(...
 'FrequencyRange',[3e8 1e9]);
array = phased.ULA('NumElements',4,'ElementSpacing',0.5,...
 'Element',antenna);
freq = 1e9;
azangles = -180:180;
response = array(freq,azangles);

response is a 4-by-361 matrix where each column contains the responses at each azimuth angle.
Matrix rows correspond to the four elements. Because the elements of the ULA are isotropic
antennas, response is a matrix of ones.

Signal Delay Between Array Elements
This example computes the delay between elements of a 4-element ULA using the
phased.ElementDelay System object™. Assume that the incident waveform satisfies the far-field
condition. The delays are computed with respect to the phase center of the array. By default,
phased.ElementDelay assumes that the incident waveform is an electromagnetic wave
propagating at the speed of light.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Construct 4-element ULA using value-only syntax and compute the delay for a signal incident on the
array from -90° azimuth and 0° elevation. Delay units are in seconds.

array = phased.ULA(4);
delay = phased.ElementDelay('SensorArray',array);
tau = delay([-90;0])

tau = 4×1
10-8 ×

 -0.2502
 -0.0834
 0.0834
 0.2502

tau is a 4-by-1 vector of delays with respect to the phase center of the array, which is the origin of
the local coordinate system (0;0;0). See “Global and Local Coordinate Systems” on page 10-17 for a
description of global and local coordinate systems. Negative delays indicate that the signal arrives at
an element before reaching the phase center of the array. Because the waveform arrives from an
azimuth angle of -90°, the signal arrives at the first and second elements of the ULA before it reaches
the phase center resulting in negative delays for these elements.

If the signal is incident on the array at 0° broadside from a far-field source, the signal illuminates all
elements of the array simultaneously resulting in zero delay.

tau = delay([0;0])

2 Array Geometries and Analysis

2-4

tau = 4×1

 0
 0
 0
 0

If the incident signal is an acoustic pressure waveform propagating at the speed of sound, you can
calculate the element delays by setting the PropagationSpeed property to 340 m/s. This value is a
typical speed of sound at sea level.

delay = phased.ElementDelay('SensorArray',array,...
 'PropagationSpeed',340);
tau = delay([90;0])

tau = 4×1

 0.0022
 0.0007
 -0.0007
 -0.0022

Steering Vector
The steering vector represents the relative phase shifts for the incident far-field waveform across the
array elements. You can determine these phase shifts with the phased.SteeringVector object.

For a single carrier frequency, the steering vector for a ULA consisting of N elements is:

e− j2πfτ1

e− j2πfτ2

e− j2πfτ3

.

.

.

e− j2πfτN

where τn denotes the time delay relative to the array phase center at the n-th array element.

Compute ULA Steering Vector

Compute the steering vector for a 4-element ULA at an operating frequency of 1 GHz. Assume that
the waveform is incident on the array from 45° azimuth and 10° elevation.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

fc = 1e9;
array = phased.ULA(4);

 Uniform Linear Array

2-5

steervec = phased.SteeringVector('SensorArray',array);
sv = steervec(fc,[45;10])

sv = 4×1 complex

 -0.0495 + 0.9988i
 -0.8742 + 0.4856i
 -0.8742 - 0.4856i
 -0.0495 - 0.9988i

You can also compute the steering vector with the following equivalent code.

delay = phased.ElementDelay('SensorArray',array);
tau = delay([45;10]);
exp(-1i*2*pi*fc*tau)

ans = 4×1 complex

 -0.0495 + 0.9988i
 -0.8742 + 0.4856i
 -0.8742 - 0.4856i
 -0.0495 - 0.9988i

Array Response
To obtain the array response, which is a weighted-combination of the steering vector elements for
each incident angle, use the phased.ArrayResponse System object.

ULA Array Response

Construct a four-element ULA with elements spaced at 0.25 m. Obtain the array magnitude response
(absolute value of the complex-valued array response) for azimuth angles (-180:180) at 1 GHz. Then,
plot the normalized magnitude response in dB.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

fc = 1e9;
array = phased.ULA('NumElements',4,'ElementSpacing',0.25);
azangles = -180:180;
response = phased.ArrayResponse('SensorArray',array);
resp = abs(response(fc,azangles));
plot(azangles,mag2db((resp/max(resp))))
grid on
title('Azimuth Cut at Zero Degrees Elevation')
xlabel('Azimuth Angle (degrees)')

2 Array Geometries and Analysis

2-6

Visualize the array response using the pattern method. Create a 3-D plot of the response in UV
space; other plotting options are available.

pattern(array,fc,[-1:.01:1],[-1:.01:1],'CoordinateSystem','uv',...
 'PropagationSpeed',physconst('Lightspeed'))

 Uniform Linear Array

2-7

Reception of Plane Wave Across Array
You can simulate the effects of phase shifts across your array using the collectPlaneWave method
of any array System object.

The collectPlaneWave method modulates input signals by the element of the steering vector
corresponding to an array element. Stated differently, collectPlaneWave accounts for phase shifts
across elements in the array based on the angle of arrival. However, collectPlaneWave does not
account for the response of individual elements in the array.

Plane-Wave Reception Across ULA

Simulate the reception of a 100-Hz sine wave modulated by a carrier frequency of 1 GHz at a 4-
element ULA. Assume the angle of arrival of the signal is (-90;0).

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

array = phased.ULA(4);
t = unigrid(0,0.001,0.01,'[)');
x = cos(2*pi*100*t)';
y = collectPlaneWave(array,x,[-90;0],1e9,physconst('LightSpeed'));

The preceding code is equivalent to the following.

2 Array Geometries and Analysis

2-8

steervec = phased.SteeringVector('SensorArray',array);
sv = steervec(1e9,[-90;0]);
y1 = x*sv.';

See Also

Related Examples
• “Microphone ULA Array” on page 2-10

 Uniform Linear Array

2-9

Microphone ULA Array
This example shows how to construct and visualize a four-element ULA with custom cardioid
microphone elements. Specify the polar pattern frequencies as 500 and 1000 Hz.

Create a microphone element with a cardioid response pattern. Use the default values of the
FrequencyVector property.

freq = [500 1000];
microphone = phased.CustomMicrophoneElement(...
 'PolarPatternFrequencies',freq);
microphone.PolarPattern= mag2db([...
 0.5+0.5*cosd(microphone.PolarPatternAngles);...
 0.6+0.4*cosd(microphone.PolarPatternAngles)]);

Plot the polar pattern of the microphone at 0.5 kHz and 1 kHz.

pattern(microphone,freq,[-180:180],0,'CoordinateSystem','polar','Type','powerdb',...
 'Normalize',true);

Construct a ULA of custom microphone elements.

array = phased.ULA('NumElements',4,'ElementSpacing',0.5,...
 'Element',microphone);

Plot the response of the array at 0.5 kHz and 1 kHz.

2 Array Geometries and Analysis

2-10

pattern(array,freq,[-180:180],0,'CoordinateSystem','polar','Type','powerdb',...
 'Normalize',true,'PropagationSpeed',340.0);

 Microphone ULA Array

2-11

Uniform Rectangular Array
In this section...
“Support for Uniform Rectangular Arrays” on page 2-12
“Uniform Rectangular Array of Isotropic Antenna Elements” on page 2-12

Support for Uniform Rectangular Arrays
You can implement a uniform rectangular array (URA) with phased.URA. Array elements are
distributed in the yz-plane with the array look direction along the positive x-axis. When you use
phased.URA, you must specify these aspects of the array:

• Sensor elements of the array
• Number of rows and the spacing between them
• Number of columns and the spacing between them
• Geometry of the planar lattice, which can be rectangular or triangular

Uniform Rectangular Array of Isotropic Antenna Elements
This example shows you how to create a uniform rectangular array (URA) and obtain information
about the element positions, the array response, and inter-element time delays. Then, simulate the
reception of two sine waves coming from different directions. Both signals have a 1GHz carrier
frequency.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create the URA and obtain the element positions

Create and view a six-element URA with two elements along the y-axis and three elements along the
z-axis. Use a rectangular lattice, with the default spacing of 0.5 meters along both the row and
column dimensions of the array. Each element is an isotropic antenna element, which is the default
element type for a URA.

fc = 1e9;
array = phased.URA([3,2]);
viewArray(array)

2 Array Geometries and Analysis

2-12

pos = getElementPosition(array);

The x-coordinate is zero for all elements of the array.

Compute the element delays

Calculate the element delays for signals arriving from +45° and -45° azimuth and 0° elevation.

delay = phased.ElementDelay('SensorArray',array);
ang = [45,-45];
tau = delay(ang);

The first column of tau contains the element delays for the signal incident on the array from +45°
azimuth. The second column contains the delays for the signal arriving from -45°. The delays are
equal in magnitude but opposite in sign, as expected.

Compute the received signals

The following code simulates the reception of two sinusoidal waves arriving from far field sources.
One signal is a 100-Hz sine wave arriving from 20° azimuth and 10° elevation. The second signal is a
300-Hz sine wave arriving from -30° azimuth and 5° elevation.

t = linspace(0,1,1000);
x1 = cos(2*pi*100*t)';
x2 = cos(2*pi*300*t)';
ang1 = [20;10];
ang2 = [-30;5];
recsig = collectPlaneWave(array,[x1 x2],[ang1 ang2],fc);

 Uniform Rectangular Array

2-13

Each column of recsig represents the received signals at the corresponding element of the URA.

Plot the array response in 3D

You can plot the array response using the pattern method.

pattern(array,fc,[-180:180],[-90:90],'PropagationSpeed',physconst('LightSpeed'),...
 'CoordinateSystem','rectangular','Type','powerdb')

2 Array Geometries and Analysis

2-14

Conformal Array
In this section...
“Support for Arrays with Custom Geometry” on page 2-15
“Create Default Conformal Array” on page 2-15
“Uniform Circular Array Created from Conformal Array” on page 2-15
“Custom Antenna Array” on page 2-18

Support for Arrays with Custom Geometry
The phased.ConformalArray object lets you model a phased array with arbitrary geometry. For
example, you can use phased.ConformalArray to design:

• A planar array with a nonrectangular geometry, such as a circular array
• An array with nonuniform geometry, such as a linear array with variable spacing
• A nonplanar array

When you use phased.ConformalArray, you must specify these aspects of the array:

• Sensor element of the array
• Element positions
• Direction normal to each array element

Create Default Conformal Array
To create a conformal array with default properties, use this command:

array = phased.ConformalArray

array =
 phased.ConformalArray with properties:

 Element: [1x1 phased.IsotropicAntennaElement]
 ElementPosition: [3x1 double]
 ElementNormal: [2x1 double]
 Taper: 1

This default conformal array consists of a single phased.IsotropicAntennaElement antenna
located at the origin of the local coordinate system. The direction normal to the sensor element is 0°
azimuth and 0° elevation.

Uniform Circular Array Created from Conformal Array
This example shows how to construct a 60-element uniform circular array. In constructing a uniform
circular array, you can use either the phased.UCA or the phased.ConformalArray System objects.
The conformal array approach is more general because it allows you to point the array elements in
arbitrary directions. A UCA restricts the array element directions to lie in the plane of the array. This
example illustrates how you can use the phased.ConformalArray System object to create any

 Conformal Array

2-15

other array shape. Assume an operating frequency of 400 MHz. Tune the array by specifying the
arclength between the elements to be 0.5λ where λ is the wavelength corresponding to the operating
frequency. Array elements lie in the x-y-plane. Element normal directions are set to (ϕn, 0) where ϕn is
the azimuth angle of the nth array element.

Set the number of elements and the operating frequency of the array.

N = 60;
fc = 400e6;

Compute the element spacing in radians.

theta = 360/N;
thetarad = deg2rad(theta);

Choose the radius so that the inter-element arclength is one-half wavelength.

arclength = 0.5*(physconst('LightSpeed')/fc);
radius = arclength/thetarad;

Compute the element azimuth angles. Azimuth angles must lie in the range (− 180∘, 180∘).

ang = (0:N-1)*theta;
ang(ang >= 180.0) = ang(ang >= 180.0) - 360.0;
array = phased.ConformalArray;
array.ElementPosition = [radius*cosd(ang);...
 radius*sind(ang);...
 zeros(1,N)];
array.ElementNormal = [ang;zeros(1,N)];

Show the UCA array geometry.

viewArray(array)

2 Array Geometries and Analysis

2-16

Plot the array response pattern at 1 GHz.

pattern(array,1e9,[-180:180],0,'PropagationSpeed',physconst('LightSpeed'),...
 'CoordinateSystem','polar','Type','powerdb','Normalize',true)

 Conformal Array

2-17

Custom Antenna Array
This example shows how to construct and visualize a custom-geometry array containing antenna
elements with a custom radiation pattern. The radiation pattern of each element is constant over
each azimuth angle and has a cosine pattern for the elevation angles.

Define the custom antenna element and plot its radiation pattern.

az = -180:180;
el = -90:90;
fc = 3e8;
elresp = cosd(el);
antenna = phased.CustomAntennaElement('AzimuthAngles',az,...
 'ElevationAngles',el,...
 'MagnitudePattern',repmat(elresp',1,numel(az)));
pattern(antenna,3e8,0,el,'CoordinateSystem','polar','Type','powerdb',...
 'Normalize',true);

2 Array Geometries and Analysis

2-18

Define the locations and normal directions of the elements. All elements lie in the z-plane. The
elements are located at (1;0;0) , (0;1;0), and (0;-1;0) meters. The element normal azimuth angles are
0°, 120°, and -120°, respectively. All normal elevation angles are 0°.

xpos = [1 0 0];
ypos = [0 1 -1];
zpos = [0 0 0];
normal_az = [0 120 -120];
normal_el = [0 0 0];

Define a conformal array with those elements.

array = phased.ConformalArray('Element',antenna,...
 'ElementPosition',[xpos; ypos; zpos],...
 'ElementNormal',[normal_az; normal_el]);

Plot the positions and normal directions of the elements.

viewArray(array,'ShowNormals',true)
view(0,90)

 Conformal Array

2-19

pattern(array,fc,az,el,'CoordinateSystem','polar','Type','powerdb',...
 'Normalize',true,'PropagationSpeed',physconst('LightSpeed'))

2 Array Geometries and Analysis

2-20

 Conformal Array

2-21

Subarrays Within Arrays
In this section...
“Definition of Subarrays” on page 2-22
“Benefits of Using Subarrays” on page 2-22
“Support for Subarrays Within Arrays” on page 2-22
“Rectangular Array Partitioned into Linear Subarrays” on page 2-23
“Linear Subarray Replicated to Form Rectangular Array” on page 2-26
“Linear Subarray Replicated in a Custom Grid” on page 2-27

Definition of Subarrays
In Phased Array System Toolbox software, a subarray is an accessible subset of array elements. When
you use an array that contains subarrays, you can access measurements from the subarrays but not
from the individual elements. Similarly, you can perform processing at the subarray level but not at
the level of the individual elements. As a result, the system has fewer degrees of freedom than if you
controlled the system at the level of the individual elements.

Benefits of Using Subarrays
Radar applications often use subarrays because operations, such as phase shifting and analog-to-
digital conversion, are too expensive to implement for each element. It is less expensive to group the
elements of an array through hardware, thus creating subarrays within the array. Grouping elements
through hardware limits access to measurements and processing to the subarray level.

Support for Subarrays Within Arrays
To work with subarrays, you must define the array and the subarrays within it. You can either define
the array first or begin with the subarray. Choose one of these approaches:

• Define one subarray, and then build a larger array by arranging copies of the subarray. The
subarray can be a ULA, URA, or conformal array. The copies are identical, except for their location
and orientation. You can arrange the copies spatially in a grid or a custom layout.

When you use this approach, you build the large array by creating a
phased.ReplicatedSubarray System object. This object stores information about the subarray
and how the copies of it are arranged to form the larger array.

• Define an array, and then partition it into subarrays. The array can be a ULA, URA, or conformal
array. The subarrays do not need to be identical. A given array element can be in more than one
subarray, leading to overlapped subarrays.

When you use this approach, you partition your array by creating a phased.PartitionedArray
System object. This object stores information about the array and its subarray structure.

After you create a phased.ReplicatedSubarray or phased.PartitionedArray object, you can
use it to perform beamforming, steering, or other operations. To do so, specify your object as the
value of the SensorArray or Sensor property in objects that have such a property and that support
subarrays. Objects that support subarrays in their SensorArray or Sensor property include:

2 Array Geometries and Analysis

2-22

• phased.AngleDopplerResponse
• phased.ArrayGain
• phased.ArrayResponse
• phased.Collector
• phased.ConstantGammaClutter
• phased.MVDRBeamformer
• phased.PhaseShiftBeamformer
• phased.Radiator
• phased.STAPSMIBeamformer
• phased.SteeringVector
• phased.SubbandPhaseShiftBeamformer
• phased.WidebandCollector

Rectangular Array Partitioned into Linear Subarrays
This example shows how to set up a rectangular array containing linear subarrays. The example also
finds the phase centers of the subarrays.

Create a 2-by-3 rectangular array.

array = phased.URA('Size',[2 3]);

Plot the positions of the array elements in the yz-plane (all x-coordinates are zero.) Include labels that
indicate the numbering of the elements. The numbering is important for selecting which elements are
included in each subarray.

viewArray(array,'ShowIndex','All')

 Subarrays Within Arrays

2-23

Create and view an array consisting of three 2-element linear subarrays each parallel to the z-axis.
Use the indices from the plot to form the matrix for the SubarraySelection property. The
getSubarrayPosition method returns the phase centers of the three subarrays.

subarray1 = [1 1 0 0 0 0; 0 0 1 1 0 0; 0 0 0 0 1 1];
partitionedarray1 = phased.PartitionedArray('Array',array,...
 'SubarraySelection',subarray1);
viewArray(partitionedarray1)

2 Array Geometries and Analysis

2-24

subarray1pos = getSubarrayPosition(partitionedarray1)

subarray1pos = 3×3

 0 0 0
 -0.5000 0 0.5000
 0 0 0

Create and view another array consisting of two 3-element linear subarrays parallel to the y-axis.
Using the getSubarrayPosition method, find the phase centers of the two subarrays.

subarray2 = [0 1 0 1 0 1; 1 0 1 0 1 0];
partitionedarray2 = phased.PartitionedArray('Array',array,...
 'SubarraySelection',subarray2);
viewArray(partitionedarray2)

 Subarrays Within Arrays

2-25

subarraypos2 = getSubarrayPosition(partitionedarray2)

subarraypos2 = 3×2

 0 0
 0 0
 -0.2500 0.2500

Linear Subarray Replicated to Form Rectangular Array
This example shows how to arrange copies of a linear subarray to form a rectangular array.

Create a 4-element linear array parallel to the y-axis.

array = phased.ULA('NumElements',4);

Create a rectangular array by arranging two copies of the linear array.

replsubarray = phased.ReplicatedSubarray('Subarray',array,'GridSize',[2 1]);

Plot the positions of the array elements (filled circles) and the phase centers of the subarrays (unfilled
circles). The elements lie in the yz-plane because all the x-coordinates are zero.

viewArray(replsubarray);
hold on;

2 Array Geometries and Analysis

2-26

subarraypos = getSubarrayPosition(replsubarray);
sx = subarraypos(1,:);
sy = subarraypos(2,:);
sz = subarraypos(3,:);
scatter3(sx,sy,sz,'ro')
hold off

Linear Subarray Replicated in a Custom Grid
This example shows how to arrange copies of a linear subarray in a triangular layout.

Create a 4-element linear array.

antenna = phased.CosineAntennaElement('CosinePower',1);
array = phased.ULA('NumElements',4,'Element',antenna);

Create a larger array by arranging three copies of the linear array. Define the phase centers and
normal directions of the three copies explicitly.

vertex_ang = [60 180 -60];
vertex = 2*[cosd(vertex_ang); sind(vertex_ang); zeros(1,3)];
subarray_pos = 1/2*[...
 (vertex(:,1)+vertex(:,2)) ...
 (vertex(:,2)+vertex(:,3)) ...
 (vertex(:,3)+vertex(:,1))];
replsubarray = phased.ReplicatedSubarray('Subarray',array,...

 Subarrays Within Arrays

2-27

 'Layout','Custom',...
 'SubarrayPosition',subarray_pos,...
 'SubarrayNormal',[120 0;-120 0;0 0].');

Plot the positions of the array elements (blue) and the phase centers (red) of the subarrays. The plot
is in the xy-plane because all the z-coordinates are zero.

viewArray(replsubarray,'ShowSubarray',[])
hold on
scatter3(subarray_pos(1,:),subarray_pos(2,:),...
 subarray_pos(3,:),'ro')
hold off

See Also

Related Examples
• “Subarrays in Phased Array Antennas” on page 17-120

2 Array Geometries and Analysis

2-28

Plot Array Directivity Using Sensor Array Analyzer App
The sensorArrayAnalyzer app lets you examine important properties of a phased array such as its
shape and directivity.

Open sensorArrayAnalyzer App

When you type sensorArrayAnalyzer from the command line or select the app from the App
Toolstrip, an interactive window opens. The default window shows the geometry of a 4-element
uniform linear array. You can then select various options to analyze different arrays, other element
types, geometry, and directivity.

Create 3D Directivity Plot of 4-by-4 URA

As an example, use the app to create a 4-by-4 uniform rectangular array of cosine antenna elements
and then show the array directivity. Space the elements 0.4 wavelengths apart.

1 Set the Array to URA.
2 Set the Element to Cosine.
3 Set Cosine Power to [2 2].

 Plot Array Directivity Using Sensor Array Analyzer App

2-29

4 Set the Size of the array to [4 4].
5 Set the Element Spacing to [0.4 0.4]. Set the element spacing units to wavelength.
6 Set Propagation Speed to physconst('Lightspeed').
7 From the Steering pull down menu, set the Steer Angle to [-30,0] to steer the array -30

degrees in azimuth.
8 In the Plot menu, select 3D Pattern.

Then, you will see a plot of array directivity similar to this.

2 Array Geometries and Analysis

2-30

Signal Radiation and Collection

• “Signal Radiation” on page 3-2
• “Signal Collection” on page 3-4

3

Signal Radiation
In this section...
“Support for Modeling Signal Radiation” on page 3-2
“Radiate Signal with Uniform Linear Array” on page 3-2

Support for Modeling Signal Radiation
You can use the phased.Radiator and phased.Collector objects to model narrowband signal
radiation and collection with an array. The array can be a single microphone or antenna element, or
an array of sensor elements.

To radiate a signal from a sensor array, use phased.Radiator. When you use this object, you must
specify these aspects of the radiator:

• Whether the output of all sensor elements is combined
• Operating frequency of the array
• Propagation speed of the wave
• Sensor (single element) or sensor array
• Whether or not to apply weights to signals radiated by different elements in the array. You apply

weights, when you execute the System object.

Radiate Signal with Uniform Linear Array
Construct a radiator using a two-element ULA with elements spaced 0.5 meters apart (the default
ULA). The operating frequency is 300 MHz, the propagation speed is the speed of light, and the
element outputs are combined to simulate the far field radiation pattern.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

array = phased.ULA('NumElements',2,'ElementSpacing',0.5);
radiator = phased.Radiator('Sensor',array,...
 'OperatingFrequency',300e6,...
 'PropagationSpeed',physconst('LightSpeed'),...
 'CombineRadiatedSignals',true);

Create a signal to radiate and propagate to the far field at an angle of (45°,0°) .

x = [1 -1 1 -1]';
y = radiator(x,[45;0]);

The far field signal results from multiplying the signal by the array pattern. The array pattern is the
product of the array element pattern and the array factor. For a uniform linear array, the array factor
is the superposition of elements in the steering vector phased.SteeringVector.

The following code produces an identical far-field signal by explicitly using the array factor.

array = phased.ULA('NumElements',2,'ElementSpacing',0.5);
steervec = phased.SteeringVector('SensorArray',array,...

3 Signal Radiation and Collection

3-2

 'IncludeElementResponse',true);
sv = steervec(300e6,[45;0]);
y1 = x*sum(sv);

Compare y1 to y.

disp(y1-y)

 0
 0
 0
 0

 Signal Radiation

3-3

Signal Collection
In this section...
“Support for Modeling Signal Collection” on page 3-4
“Narrowband Collector for Uniform Linear Array” on page 3-5
“Narrowband Collector for a Single Antenna Element” on page 3-6
“Wideband Signal Collection” on page 3-7

Support for Modeling Signal Collection
To model the collection of a signal with a sensor element or sensor array, you can use the
phased.Collector or phased.WidebandCollector. Both collector objects assume that incident
signals have propagated to the location of the array elements, but have not been received by the
array. In other words, the collector objects do not model the actual reception by the array. See
“Receiver Preamp” on page 4-30 for signal effects related to the gain and internal noise of the
array’s receiver.

In many array processing applications, the ratio of the signal’s bandwidth to the carrier frequency is
small. Expressed as a percentage, this ratio does not exceed a few percent. Examples include radar
applications where a pulse waveform is modulated by a carrier frequency in the microwave range.
These are narrowband signals. For narrowband signals, you can express the steering vector as a
function of a single frequency, the carrier frequency. For narrowband signals, the
phased.Collector object is appropriate.

In other applications, the narrowband assumption is not justified. In many acoustic and sonar
applications, the wave impinging on the array is a pressure wave that is unmodulated. It is not
possible to express the steering vector as a function of a single frequency. In these cases, the subband
approach implemented in phased.WidebandCollector is appropriate. The wideband collector
decomposes the input into subbands and computes the steering vector for each subband.

When you use the narrowband collector, phased.Collector, you must specify these aspects of the
collector:

• Operating frequency of the array
• Propagation speed of the wave
• Sensor (single element) or sensor array
• Type of incoming wave. Choices are 'Plane' and 'Unspecified'. If you select 'Plane', the

input signals are multiple plane waves impinging on the entire array. Each plane wave is received
by all collecting elements. If you select 'Unspecified', the input signal are individual waves
impinging on individual sensors.

• Whether to apply weights to signals collected by different elements in the array. If you want to
apply weights, you specify them when you execute the System object.

When you use the wideband collector, phased.WidebandCollector, you must specify these aspects
of the collector:

• Carrier frequency
• Whether the signal is demodulated to the baseband

3 Signal Radiation and Collection

3-4

• Operating frequency of the array
• Propagation speed of the wave
• Sampling rate
• Sensor (single element) or sensor array
• Type of incoming wave. Choices are 'Plane' and 'Unspecified'. If you select 'Plane', the

input signals are multiple plane waves impinging on the entire array. Each plane wave is received
by all collecting elements. If you select 'Unspecified', the input signal are individual waves
impinging on individual sensors.

• Whether to apply weights to signals collected by different elements in the array. If you want to
apply weights, you specify them when you execute the System object.

Narrowband Collector for Uniform Linear Array
This example shows how to construct a narrowband collector that models a plane wave impinging on
a two-element uniform linear array. The array has an element spacing of 0.5 m (default for a ULA).
The operating frequency of the array is 300 MHz.

Create the array and collector System objects.

array = phased.ULA('NumElements',2,'ElementSpacing',0.5);
collector = phased.Collector('Sensor',array,...
 'PropagationSpeed',physconst('LightSpeed'),...
 'OperatingFrequency',3e8,'Wavefront','Plane');

Create the signal and simulate reception from an angle of (45;0).

x =[1 -1 1 -1]';
y = collector(x,[45;0])

y = 4×2 complex

 0.4433 - 0.8964i 0.4433 + 0.8964i
 -0.4433 + 0.8964i -0.4433 - 0.8964i
 0.4433 - 0.8964i 0.4433 + 0.8964i
 -0.4433 + 0.8964i -0.4433 - 0.8964i

In the preceding case, the collector object multiplies the input signal, x, by the corresponding
element of the steering vector for the two-element ULA. The following code produces the response in
an equivalent manner. First, create the ULA and then create the steering vector. Compare with the
previous result.

array = phased.ULA('NumElements',2,'ElementSpacing',0.5);
steeringvec = phased.SteeringVector('SensorArray',array);
sv = steeringvec(3e8,[45;0]);
x =[1 -1 1 -1]';
y1 = x*sv.'

y1 = 4×2 complex

 0.4433 - 0.8964i 0.4433 + 0.8964i
 -0.4433 + 0.8964i -0.4433 - 0.8964i
 0.4433 - 0.8964i 0.4433 + 0.8964i
 -0.4433 + 0.8964i -0.4433 - 0.8964i

 Signal Collection

3-5

Narrowband Collector for a Single Antenna Element
The Sensor property of a phased.Collector System object™ can specify a single antenna
element. In this example, create a custom antenna element using the
phased.CustomAntennaElement System object. The antenna element has a cosine response over
elevation angles from (-90°,90°). Plot the polar pattern response of the antenna at 1 GHz on an
elevation cut at 0° azimuth. Display the antenna voltage response at 0° azimuth and 45° elevation.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

fc = 1e9;
antenna = phased.CustomAntennaElement;
antenna.AzimuthAngles = -180:180;
antenna.ElevationAngles = -90:90;
antenna.MagnitudePattern = mag2db(...
 repmat(cosd(antenna.ElevationAngles)',1,numel(antenna.AzimuthAngles)));
resp = antenna(fc,[0;45])

resp = 0.7071

pattern(antenna,fc,0,[-90:90],'Type','powerdb')

The antenna voltage response at 0° azimuth and 45° elevation is cos(45°) as expected.

3 Signal Radiation and Collection

3-6

Assume a narrowband sinusoidal input incident on the antenna element from 0° azimuth and 45°
elevation. Determine the signal collected at the element.

collector = phased.Collector('Sensor',antenna,'OperatingFrequency',fc);
x =[1 -1 1 -1]';
y = collector(x,[0;45])

y = 4×1

 0.7071
 -0.7071
 0.7071
 -0.7071

Wideband Signal Collection
This example shows how to simulate the reception of a wideband acoustic signal by a single
omnidirectional microphone element.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

x = randn(10,1);
c = 340.0;
microphone = phased.OmnidirectionalMicrophoneElement(...
 'FrequencyRange',[20 20e3],'BackBaffled',true);
collector = phased.WidebandCollector('Sensor',microphone,...
 'PropagationSpeed',c,'SampleRate',50e3,...
 'ModulatedInput',false);
y = collector(x,[30;10]);

 Signal Collection

3-7

Waveforms, Transmitter, and Receiver

• “Rectangular Pulse Waveforms” on page 4-2
• “Linear Frequency Modulated Pulse Waveforms” on page 4-6
• “Stepped FM Pulse Waveforms” on page 4-13
• “FMCW Waveforms” on page 4-16
• “Phase-Coded Waveforms” on page 4-18
• “Basic Radar Using Phase-Coded Waveform” on page 4-19
• “Waveforms with Staggered PRFs” on page 4-21
• “Plot Spectrogram Using Pulse Waveform Analyzer App” on page 4-23
• “Transmitter” on page 4-25
• “Receiver Preamp” on page 4-30
• “Model Coherent-on-Receive Behavior” on page 4-33

4

Rectangular Pulse Waveforms
In this section...
“Definition of Rectangular Pulse Waveform” on page 4-2
“How to Create Rectangular Pulse Waveforms” on page 4-2
“Rectangular Waveform Plot” on page 4-2
“Pulses of Rectangular Waveform” on page 4-3

Definition of Rectangular Pulse Waveform
Define the following function of time:

a(t) =
1 0 ≤ t ≤ τ
0 otherwise

Assume that a radar transmits a signal of the form:

x(t) = a(t)sin(ωct)

where ωc denotes the carrier frequency. Note that a(t) represents an on-off rectangular amplitude
modulation of the carrier frequency. After demodulation, the complex envelope of x(t) is the real-
valued rectangular pulse a(t) of duration τ seconds.

How to Create Rectangular Pulse Waveforms
To create a rectangular pulse waveform, use phased.RectangularWaveform. You can customize
certain characteristics of the waveform, including:

• Sampling rate
• Pulse duration
• Pulse repetition frequency
• Number of samples or pulses in each vector that represents the waveform

Rectangular Waveform Plot
This example shows how to create a rectangular pulse waveform variable using
phased.RectangularWaveform . The example also plots the pulse and finds the bandwidth of the
pulse.

Construct a rectangular pulse waveform with a duration of 50 μs, a sample rate of 1 MHz, and a pulse
repetition frequency (PRF) of 10 kHz.

waveform = phased.RectangularWaveform('SampleRate',1e6,...
 'PulseWidth',50e-6,'PRF',10e3);

Plot a single rectangular pulse by calling plot directly on the rectangular waveform variable. plot is
a method of phased.RectangularWaveform. This method produces an annotated graph of your
pulse waveform.

plot(waveform)

4 Waveforms, Transmitter, and Receiver

4-2

Find the bandwidth of the rectangular pulse.

bw = bandwidth(waveform)

bw = 20000

The bandwidth, bw, of a rectangular pulse in hertz is approximately the reciprocal of the pulse
duration 1/sRect.PulseWidth.

Pulses of Rectangular Waveform
This example shows how to create rectangular pulse waveform signals having different durations.
The example plots two pulses of each waveform.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create a rectangular pulse with a duration of 100 μs and a PRF of 1 kHz. Set the number of pulses in
the output equal to two.

waveform = phased.RectangularWaveform('PulseWidth',100e-6,...
 'PRF',1e3,'OutputFormat','Pulses','NumPulses',2);

Make a copy of your rectangular pulse and change the pulse width in your original waveform to 10
μs.

 Rectangular Pulse Waveforms

4-3

waveform2 = clone(waveform);
waveform.PulseWidth = 10e-6;

sRect and sRect1 now specify different rectangular pulses because you changed the pulse width of
waveform.

Execute the System objects to return two pulses of your rectangular pulse waveforms.

y = waveform();
y2 = waveform2();

Plot the real part of the waveforms.

totaldur = 2*1/waveform.PRF;
totnumsamp = totaldur*waveform.SampleRate;
t = unigrid(0,1/waveform.SampleRate,totaldur,'[)');
subplot(2,1,1)
plot(t.*1000,real(y))
axis([0 totaldur*1e3 0 1.5])
title('Two 10-\musec duration pulses (PRF = 1 kHz)')
set(gca,'XTick',0:0.2:totaldur*1e3)
subplot(2,1,2)
plot(t.*1000,real(y2))
axis([0 totaldur*1e3 0 1.5])
xlabel('Milliseconds')
title('Two 100-\musec duration pulses (PRF = 1 kHz)')
set(gca,'XTick',0:0.2:totaldur*1e3)

4 Waveforms, Transmitter, and Receiver

4-4

 Rectangular Pulse Waveforms

4-5

Linear Frequency Modulated Pulse Waveforms
In this section...
“Benefits of Using Linear FM Pulse Waveform” on page 4-6
“Definition of Linear FM Pulse Waveform” on page 4-6
“How to Create Linear FM Pulse Waveforms” on page 4-6
“Create Linear FM Pulse Waveform” on page 4-7
“Linear FM Pulse Waveform Plot” on page 4-7
“Ambiguity Function of Linear FM Waveform” on page 4-9
“Compare Autocorrelation for Rectangular and Linear FM Waveforms” on page 4-10

Benefits of Using Linear FM Pulse Waveform
Increasing the duration of a transmitted pulse increases its energy and improves target detection
capability. Conversely, reducing the duration of a pulse improves the range resolution of the radar.

For a rectangular pulse, the duration of the transmitted pulse and the processed echo are effectively
the same. Therefore, the range resolution of the radar and the target detection capability are coupled
in an inverse relationship.

Pulse compression techniques enable you to decouple the duration of the pulse from its energy by
effectively creating different durations for the transmitted pulse and processed echo. Using a linear
frequency modulated pulse waveform is a popular choice for pulse compression.

Definition of Linear FM Pulse Waveform
The complex envelope of a linear FM pulse waveform with increasing instantaneous frequency is:

x(t) = a(t)e jπ(β/τ)t2

where β is the bandwidth and τ is the pulse duration.

If you denote the phase by Θ(t), the instantaneous frequency is:

1
2π

dΘ(t)
dt = β

τ t

which is a linear function of t with slope equal to β/τ.

The complex envelope of a linear FM pulse waveform with decreasing instantaneous frequency is:

x(t) = a(t)e− jπβ/τ (t2− 2τt)

Pulse compression waveforms have a time-bandwidth product, βτ, greater than 1.

How to Create Linear FM Pulse Waveforms
To create a linear FM pulse waveform, use phased.LinearFMWaveform. You can customize certain
characteristics of the waveform, including:

4 Waveforms, Transmitter, and Receiver

4-6

• Sample rate
• Duration of a single pulse
• Pulse repetition frequency
• Sweep bandwidth
• Sweep direction (up or down), corresponding to increasing and decreasing instantaneous

frequency
• Envelope, which describes the amplitude modulation of the pulse waveform. The envelope can be

rectangular or Gaussian.

• The rectangular envelope is as follows, where τ is the pulse duration.

a(t) =
1 0 ≤ t ≤ τ
0 otherwise

• The Gaussian envelope is:

a(t) = e−t2/τ2 t ≥ 0
• Number of samples or pulses in each vector that represents the waveform

Create Linear FM Pulse Waveform
This example shows how to create a linear FM pulse waveform using phased.LinearFMWaveform.
The example illustrates how to specify property settings.

Create a linear FM pulse with a sample rate of 1 MHz, a pulse duration of 50 μs with an increasing
instantaneous frequency, and a sweep bandwidth of 100 kHz. The pulse repetition frequency is 10
kHz and the amplitude modulation is rectangular.

waveform = phased.LinearFMWaveform('SampleRate',1e6,...
 'PulseWidth',50e-6,'PRF',10e3,...
 'SweepBandwidth',100e3,'SweepDirection','Up',...
 'Envelope','Rectangular',...
 'OutputFormat','Pulses','NumPulses',1);

Linear FM Pulse Waveform Plot
This example shows how to plot a linear FM (LFM) pulse waveform. The LFM waveform has a
duration of 100 microseconds, a bandwidth of 200 kHz, and a PRF of 4 kHz. Use the default values
for the other properties. Compute the time-bandwidth product. Plot the real part of the waveform and
plot one full pulse repetition interval.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

waveform = phased.LinearFMWaveform('PulseWidth',100e-6,...
 'SweepBandwidth',200e3,'PRF',4e3);

Display the time-bandwidth product of the FM sweep.

disp(waveform.PulseWidth*waveform.SweepBandwidth)

 Linear Frequency Modulated Pulse Waveforms

4-7

 20

Plot the real part of the waveform.

plot(waveform)

Use the step method to obtain one full repetition interval of the signal. Plot the real and imaginary
parts.

y = waveform();
t = unigrid(0,1/waveform.SampleRate,1/waveform.PRF,'[)');
figure
subplot(2,1,1)
plot(t,real(y))
axis tight
title('Real Part')
subplot(2,1,2)
plot(t,imag(y))
xlabel('Time (s)')
title('Imaginary Part')
axis tight

4 Waveforms, Transmitter, and Receiver

4-8

Ambiguity Function of Linear FM Waveform
This example shows how to plot the ambiguity function of a linear FM pulse waveform.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Define and set up the linear FM waveform.

waveform = phased.LinearFMWaveform('PulseWidth',100e-6,...
 'SweepBandwidth',2e5,'PRF',1e3);

Generate samples of the waveform.

wav = waveform();

Create a 3-D surface plot of the ambiguity function for the waveform.

[afmag_lfm,delay_lfm,doppler_lfm] = ambgfun(wav,...
 waveform.SampleRate,waveform.PRF);
surf(delay_lfm*1e6,doppler_lfm/1e3,afmag_lfm,...
 'LineStyle','none')
axis tight
grid on
view([140,35])

 Linear Frequency Modulated Pulse Waveforms

4-9

colorbar
xlabel('Delay \tau (\mus)')
ylabel('Doppler f_d (kHz)')
title('Linear FM Pulse Waveform Ambiguity Function')

The surface has a narrow ridge that is slightly tilted. The tilt indicates better resolution in the zero
delay cut.

Compare Autocorrelation for Rectangular and Linear FM Waveforms
This example shows how to compute and plot the ambiguity function magnitudes for a rectangular
and linear FM pulse waveform. The zero Doppler cut (magnitudes of the autocorrelation sequences)
illustrates pulse compression in the linear FM pulse waveform.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create a rectangular waveform and a linear FM pulse waveform having the same duration and PRF.
Generate samples of each waveform.

rectwaveform = phased.RectangularWaveform('PRF',20e3);
lfmwaveform = phased.LinearFMWaveform('PRF',20e3);
xrect = rectwaveform();
xlfm = lfmwaveform();

4 Waveforms, Transmitter, and Receiver

4-10

Compute the ambiguity function magnitudes for each waveform.

[ambrect,delay] = ambgfun(xrect,rectwaveform.SampleRate,rectwaveform.PRF,...
 'Cut','Doppler');
ambfm = ambgfun(xlfm,lfmwaveform.SampleRate,lfmwaveform.PRF,...
 'Cut','Doppler');

Plot the ambiguity function magnitudes.

subplot(211)
stem(delay,ambrect)
title('Autocorrelation of Rectangular Pulse')
axis([-5e-5 5e-5 0 1])
set(gca,'XTick',1e-5*(-5:5))
subplot(212)
stem(delay,ambfm)
xlabel('Delay (seconds)')
title('Autocorrelation of Linear FM Pulse')
axis([-5e-5 5e-5 0 1])
set(gca,'XTick',1e-5*(-5:5))

 Linear Frequency Modulated Pulse Waveforms

4-11

See Also

Related Examples
• “Waveform Analysis Using the Ambiguity Function” on page 17-151

4 Waveforms, Transmitter, and Receiver

4-12

Stepped FM Pulse Waveforms
A stepped frequency pulse waveform consists of a series of N narrowband pulses. The frequency is
increased from step to step by a fixed amount, Δf, in Hz.

Similar to linear FM pulse waveforms, stepped frequency waveforms are a popular pulse compression
technique. Using this approach enables you to increase the range resolution of the radar without
sacrificing target detection capability.

To create a stepped FM pulse waveform, use phased.SteppedFMWaveform.

The stepped frequency pulse waveform has the following modifiable properties:

• SampleRate — Sampling rate in Hz
• PulseWidth — Pulse duration in seconds
• PRF — Pulse repetition frequency in Hz
• FrequencyStep — Frequency step in Hz
• NumSteps — Number of frequency steps
• OutputFormat — Output format in pulses or samples
• NumSamples — Number of samples in the output when the OutputFormat property is

'Samples'
• NumPulses — Number of pulses in the output when the OutputFormat property is 'Pulses'

Create and Plot Stepped FM Pulse Waveform
This example shows how to create and plot a 5-step stepped FM pulse waveform using the
phased.SteppedFM System object™. Set the pulse width (duration) to 50 µs, the pulse repetition
frequency (PRF) to 10 kHz, and the frequency step size to 20 kHz. The sampling rate is 1 MHz. By
default, the OutputFormat property is set to 'Pulses' and NumPulses is one.

waveform = phased.SteppedFMWaveform('SampleRate',1e6,...
 'PulseWidth',50e-6,'PRF',10e3,...
 'FrequencyStep',20e3,'NumSteps',5);

Use the bandwidth method to show that the bandwidth of the stepped FM pulse waveform equals
the product of the frequency step size and the number of steps.

bandwidth(waveform)

ans =

 100000

Because the OutputFormat property is set to 'Pulses' and the NumPulses property is set to one,
executing the System object returns one pulse repetition interval (PRI). The pulse duration within
that interval is set by the PulseWidth property. The signal in the remainder of the PRI consists of
zeros.

The frequency of the initial pulse is zero Hz (DC). Each time you execute the System object, the
frequency of the narrowband pulse increments by the value of the FrequencyStep property. If you

 Stepped FM Pulse Waveforms

4-13

execute the System object more times than the value of the NumSteps property, the process repeats,
starting over with the DC pulse.

Execute the System object to return successively higher frequency pulses. Plot the pulses one by one
in the same figure window. Pause the loop to visualize the increment in frequency with each execution
of the System object. Execute the System object one more time than the number of pulses to
demonstrate that the process starts over with the DC pulse.

This figure shows the pulse plot for the last iteration of the loop.

t = unigrid(0,1/waveform.SampleRate,1/waveform.PRF,'[)');
for i = 1:waveform.NumSteps
 plot(t,real(waveform()))
 pause(0.5)
 axis tight
end

This plot shows how the pulse returns to its DC value.

plot(t,waveform())

4 Waveforms, Transmitter, and Receiver

4-14

 Stepped FM Pulse Waveforms

4-15

FMCW Waveforms
In this section...
“Benefits of Using FMCW Waveform” on page 4-16
“How to Create FMCW Waveforms” on page 4-16
“Double Triangular Sweep” on page 4-16

Benefits of Using FMCW Waveform
Radar systems that use frequency-modulated, continuous-wave (FMCW) waveforms are typically
smaller and less expensive to manufacture than pulsed radar systems. FMCW waveforms can
estimate the target range effectively, whereas the simplest continuous-wave waveforms cannot.

FMCW waveforms are common in automotive radar systems and ground-penetrating radar systems.

How to Create FMCW Waveforms
To create an FMCW waveform, use phased.FMCWWaveform. You can customize certain
characteristics of the waveform, including:

• Sample rate.
• Period and bandwidth of the FM sweep. These quantities can cycle through multiple values during

your simulation.

Tip To find targets up to a given maximum range, r, you can typically use a sweep period of
approximately 5*range2time(r) or 6*range2time(r). To achieve a range resolution of
delta_r, use a bandwidth of at least range2bw(delta_r).

• Sweep shape. This shape can be sawtooth (up or down) or triangular.

Tip For moving targets, you can use a triangular sweep to resolve ambiguity between range and
Doppler.

phased.FMCWWaveform assumes that all frequency modulations are linear. For triangular sweeps,
the slope of the down sweep is the opposite of the slope of the up sweep.

Double Triangular Sweep
This example shows how to sample an FMCW waveform with a double triangular sweep in which the
two sweeps have different slopes. Then, the example plots a spectrogram.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create an FMCW waveform object for which the SweepTime and SweepBandwidth properties are
vectors of length two. For each period, the waveform alternates between the pairs of corresponding
sweep time and bandwidth values.

4 Waveforms, Transmitter, and Receiver

4-16

st = [1e-3 1.1e-3];
bw = [1e5 9e4];
waveform = phased.FMCWWaveform('SweepTime',st,...
 'SweepBandwidth',bw,'SweepDirection','Triangle',...
 'SweepInterval','Symmetric','SampleRate',2e5,...
 'NumSweeps',4);

Compute samples from four sweeps (two periods). In a triangular sweep, each period consists of an
up sweep and down sweep.

x = waveform();

Plot the spectrogram.

[S,F,T] = spectrogram(x,32,16,32,waveform.SampleRate);
image(T,fftshift(F),fftshift(mag2db(abs(S))))
xlabel('Time (sec)')
ylabel('Frequency (Hz)')

 FMCW Waveforms

4-17

Phase-Coded Waveforms

In this section...
“When to Use Phase-Coded Waveforms” on page 4-18
“How to Create Phase-Coded Waveforms” on page 4-18

When to Use Phase-Coded Waveforms
Situations in which you might use a phase-coded waveform instead of another type of waveform
include:

• When a rectangular pulse cannot provide both of these characteristics:

• Short enough pulse for good range resolution
• Enough energy in the signal to detect the reflected echo at the receiver

• When two or more radar systems are close to each other and you want to reduce interference
among them.

• When digital processing suggests using a waveform with a discrete set of phases. For example, a
Barker-coded waveform is a bi-phase waveform.

Conversely, you might use another waveform instead of a phase-coded waveform in the following
situations:

• When you need to detect or track high-speed targets

Phase-coded waveforms tend to perform poorly when signals have Doppler shifts.
• When the hardware requirements for phase-coded waveforms are prohibitively expensive

How to Create Phase-Coded Waveforms
To create a phase-coded waveform, use phased.PhaseCodedWaveform. You can customize certain
characteristics of the waveform, including:

• Type of phase code
• Number of chips
• Chip width
• Sample rate
• Pulse repetition frequency (PRF)
• Sequence index (Zadoff-Chu code only)

After you create a phased.PhaseCodedWaveform object, you can plot the waveform using the plot
method of this class. You can also generate samples of the waveform using the step method.

For a full list of properties and methods, see the phased.PhaseCodedWaveform reference page.

4 Waveforms, Transmitter, and Receiver

4-18

Basic Radar Using Phase-Coded Waveform
Instead of the rectangular waveform used in the “End-to-End Radar System” example, you can use a
phase-coded waveform. To do so, replace the phased.RectangularWaveform System object™ with
phased.PhaseCodedWaveform.

waveform = phased.PhaseCodedWaveform('Code','Frank','NumChips',4,...
 'ChipWidth',1e-6,'PRF',5e3,'OutputFormat','Pulses',...
 'NumPulses',1);

Then, redefine the pulse width, tau , using the properties of the new waveform.

tau = waveform.ChipWidth*waveform.NumChips;

The remainder of the code is almost identical to the code in the original examples and is presented
here without comments. For a detailed explanation of how the code works, see the original “End-to-
End Radar System” example.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[1e9 10e9]);
target = phased.RadarTarget('Model','Nonfluctuating',...
 'MeanRCS',0.5,'PropagationSpeed',physconst('LightSpeed'),...
 'OperatingFrequency',4e9);
transmitterplatform = phased.Platform('InitialPosition',[0;0;0],...
 'Velocity',[0;0;0]);
targetplatform = phased.Platform('InitialPosition',[7000; 5000; 0],...
 'Velocity',[-15;-10;0]);
[tgtrng,tgtang] = rangeangle(targetplatform.InitialPosition,...
 transmitterplatform.InitialPosition);

% Use the radar equation to compute the transmitted power needed for a given Pd and Pfa.
numpulses = 10;
Pd = 0.9;
Pfa = 1e-6;
maxrange = 1.5e4;
lambda = physconst('LightSpeed')/target.OperatingFrequency;
RCS = 0.5;
Ts = 290;
SNR = albersheim(Pd,Pfa,10);
Gain = 20;
dbterms = db2pow(SNR - 2*Gain);
Pt = (4*pi)^3*physconst('Boltzmann')*Ts/tau/RCS/(lambda^2)*maxrange^4*dbterms;

transmitter = phased.Transmitter('PeakPower',50e3,'Gain',20,...
 'LossFactor',0,'InUseOutputPort',true,...
 'CoherentOnTransmit',true);
radiator = phased.Radiator('Sensor',antenna,...
 'PropagationSpeed',physconst('LightSpeed'),...
 'OperatingFrequency',4e9);
collector = phased.Collector('Sensor',antenna,...
 'PropagationSpeed',physconst('LightSpeed'),...
 'Wavefront','Plane','OperatingFrequency',4e9);
receiver = phased.ReceiverPreamp('Gain',20,'NoiseFigure',2,...
 'ReferenceTemperature',290,'SampleRate',1e6,...
 'EnableInputPort',true,'SeedSource','Property','Seed',1e3);
channel = phased.FreeSpace(...
 'PropagationSpeed',physconst('LightSpeed'),...
 'OperatingFrequency',4e9,'TwoWayPropagation',false,...
 'SampleRate',1e6);

 Basic Radar Using Phase-Coded Waveform

4-19

T = 1/waveform.PRF;
txpos = transmitterplatform.InitialPosition;

rxsig = zeros(waveform.SampleRate*T,numpulses);
for n = 1:numpulses
 [tgtpos,tgtvel] = targetplatform(T);
 [tgtrng,tgtang] = rangeangle(tgtpos,txpos);
 sig = waveform();
 [sig,txstatus] = transmitter(sig);
 sig = radiator(sig,tgtang);
 sig = channel(sig,txpos,tgtpos,[0;0;0],tgtvel);
 sig = target(sig);
 sig = channel(sig,tgtpos,txpos,tgtvel,[0;0;0]);
 sig = collector(sig,tgtang);
 rxsig(:,n) = receiver(sig,~txstatus);
end
rxsig = pulsint(rxsig,'noncoherent');
t = unigrid(0,1/receiver.SampleRate,T,'[)');
rangegates = (physconst('LightSpeed')*t)/2;
plot(rangegates,rxsig)
hold on
xlabel('Meters'); ylabel('Power')
ylim = get(gca,'YLim');
plot([tgtrng,tgtrng],[0 ylim(2)],'r')
hold off

4 Waveforms, Transmitter, and Receiver

4-20

Waveforms with Staggered PRFs
In this section...
“When to Use Staggered PRFs” on page 4-21
“Linear FM Waveform with Staggered PRF” on page 4-21

When to Use Staggered PRFs
Using a nonconstant PRF has important applications in radar. This approach is called PRF or PRI
staggering.

Uses of staggered PRFs include

• Removal of Doppler ambiguities, or blind speeds, where Doppler frequencies that are multiples of
the PRF are aliased to zero

• Mitigation of the effects of jamming

To implement a staggered PRF, configure your waveform object using a vector instead of a scalar for
the PRF property value.

Linear FM Waveform with Staggered PRF
This example shows how to model a linear FM pulse waveform with two PRFs of 1 and 2 kHz. Set the
sweep bandwidth to 200 kHz and the duration of 100 μs. The sample rate is 1 MHz. Output 5 pulses.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

prfs = [1e3 2e3];
waveform = phased.LinearFMWaveform('PRF',prfs,'SweepBandwidth',200e3,...
 'PulseWidth',100e-6,'NumPulses',5);
sig = waveform();
T = length(sig)*(1/waveform.SampleRate);
t = unigrid(0,1/waveform.SampleRate,T,'[)');
plot(t.*1000,real(sig))
set(gca,'xtick',[0 1 1.5 2.5 3]);
xlabel('millisec')

 Waveforms with Staggered PRFs

4-21

4 Waveforms, Transmitter, and Receiver

4-22

Plot Spectrogram Using Pulse Waveform Analyzer App
The pulseWaveformAnalyzer is a MATLAB® App that lets you explore important properties of a
signal such as its waveform, spectrum, and ambiguity function.

Open pulseWaveformAnalyzer App

When you type pulseWaveformAnalyzer from the command line or select the app from the App
Toolstrip, an interactive window opens. The default window shows a rectangular waveform and its
spectrum. You can then select various options to analyze different waveforms.

pulseWaveformAnalyzer

Show the spectrogram of baseband FMCW signal

As an example, use the app to show the spectrogram of a continuous FMCW waveform.

1 Set the Waveform to FMCW
2 Set the Sweep Interval to Symmetric
3 Set the Number of Sweeps to 4

 Plot Spectrogram Using Pulse Waveform Analyzer App

4-23

4 In the Analysis tab, select Spectrogram

Then, you will see a plot of the spectrogram of the signal similar to this.

4 Waveforms, Transmitter, and Receiver

4-24

Transmitter
In this section...
“Transmitter Object” on page 4-25
“Phase Noise” on page 4-27

Transmitter Object
The phased.Transmitter object lets you model key components of the radar equation including
the peak transmit power, the transmit gain, and a system loss factor.

While the preceding functionality is important in applications dependent on amplitude such as signal
detectability, Doppler processing depends on the phase of the complex envelope. In order to
accurately estimate the radial velocity of moving targets, it is important that the radar operates in
either a fully coherent or pseudo-coherent mode. In the fully coherent, or coherent on transmit,
mode, the phase of the transmitted pulses is constant. Constant phase provides you with a reference
to detect Doppler shifts.

A transmitter that applies a random phase to each pulse creates phase noise that can obscure
Doppler shifts. If the components of the radar do not enable you to maintain constant phase, you can
create a pseudo-coherent, or coherent on receive radar by keeping a record of the random phase
errors introduced by the transmitter. The receiver can correct for these errors by modulation of the
complex envelope. The phased.Transmitter object enables you to model both coherent on
transmit and coherent on receive behavior.

The transmitter object has the following modifiable properties:

• PeakPower — Peak transmit power in watts
• Gain — Transmit gain in decibels
• LossFactor — Loss factor in decibels
• InUseOutputPort — Track transmitter's status. Setting this property to true outputs a vector of

1s and 0s indicating when transmitter is on and off. In a monostatic radar, the transmitter and
receiver cannot operate simultaneously.

• CoherentOnTransmit — Preserve coherence among transmitter pulses. Setting this property to
true (the default) models the operation of a fully coherent transmitter where the pulse-to-pulse
phase is constant. Setting this property to false introduces random phase noise from pulse to
pulse and models the operation of a non-coherent transmitter.

• PhaseNoiseOutputPort — Output the random pulse phases introduced by non-coherent
operation of the transmitter. This property only applies if the CoherentOnTransmit property is
false. By keeping a record of the random pulse phases, you can create a pseudo-coherent, or
coherent on receive radar.

Transmit Linear FM Pulse

Amplify and transmit a linear FM pulse.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

 Transmitter

4-25

Construct a transmitter with a peak transmit power of 1000 watts, a transmit gain of 20 decibels
(dB), and a loss factor of 0 dB. Set the InUseOutPutPort property to true to record the transmitter
status. Pulse waveform values are scaled based on the peak transmit power and the ratio of the
transmitter gain to loss factor.

transmitter = phased.Transmitter('PeakPower',1e3,'Gain',20,...
 'LossFactor',0,'InUseOutputPort',true)

transmitter =
 phased.Transmitter with properties:

 PeakPower: 1000
 Gain: 20
 LossFactor: 0
 InUseOutputPort: true
 CoherentOnTransmit: true

The waveform scaling factor is sqrt(PeakPower*db2pow(Gain - LossFactor))

Construct a linear FM pulse waveform for transmission. Use a 100 μsec linear FM pulse having a
bandwidth of 200 kHz. Use the default sweep direction and sample rate. Set the pulse repetition
frequency (PRF) to 2 kHz. Obtain one pulse by setting the NumPulses property of the
phased.LinearFMWaveform object to unity.

waveform = phased.LinearFMWaveform('PulseWidth',100e-6,'PRF',2e3,...
 'SweepBandwidth',200e3,'OutputFormat','Pulses','NumPulses',1);

Generate the pulse by executing the phased.LinearFMWaveform waveform System object™. Then,
transmit the pulse by executing the phased.Transmitter System object.

wf = waveform();
[txoutput,txstatus] = transmitter(wf);
t = unigrid(0,1/waveform.SampleRate,1/waveform.PRF,'[)');
subplot(211)
plot(t,real(txoutput))
axis tight
grid on
ylabel('Amplitude')
title('Transmitter Output (real part) - One PRI')
subplot(212)
plot(t,txstatus)
axis([0 t(end) 0 1.5])
xlabel('Seconds')
grid on
ylabel('Off-On Status')
set(gca,'ytick',[0 1])
title('Transmitter Status')

4 Waveforms, Transmitter, and Receiver

4-26

Phase Noise
To model a coherent on receive radar, you can set the CoherentOnTransmit property to false and
the PhaseNoiseOutputPort property to true. You can output the random phase added to each
sample when you execute the System object.

Transmit Rectangular Pulse With Phase Noise

This example illustrates adding phase noise to a rectangular pulse waveform having five pulses. A
random phase is added to each sample of the waveform. Compute the phase of the output waveform
and compare the phase to the phase noise returned when executing the System object™.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

For convenience, set the gain of the transmitter to 0 dB, the peak power to 1 W, and seed the random
number generator to ensure reproducible results.

waveform = phased.RectangularWaveform('NumPulses',5);
transmitter = phased.Transmitter('CoherentOnTransmit',false,...
 'PhaseNoiseOutputPort',true,'Gain',0,'PeakPower',1,...
 'SeedSource','Property','Seed',1000);
wf = waveform();
[txtoutput,phnoise] = transmitter(wf);

 Transmitter

4-27

phdeg = rad2deg(phnoise);
phdeg(phdeg>180)= phdeg(phdeg>180) - 360;
plot(wf)
title('Input Waveform')
axis([0 length(wf) 0 1.5])
ylabel('Amplitude')
grid on

subplot(2,1,1)
plot(rad2deg(atan2(imag(txtoutput),real(txtoutput))))
title('Phase of the Output')
ylabel('Degrees')
axis([0 length(wf) -180 180])
grid on
subplot(2,1,2)
plot(phdeg)
title('Phase Noise'); ylabel('Degrees')
axis([0 length(wf) -180 180])
grid on

4 Waveforms, Transmitter, and Receiver

4-28

The first figure shows the waveform. The phase of each pulse at the input to the transmitter is zero.
In the second figure, the top plot shows the phase of the transmitter output waveform. The bottom
plot shows the phase added to each sample. Focus on the first 100 samples. The pulse waveform is
equal to 1 for samples 1-50 and 0 for samples 51-100. The added random phase is a constant -124.7°
for samples 1-100, but this affects the output only when the pulse waveform is nonzero. In the output
waveform, you see that the output waveform has a phase of -124.7° for samples 1-50 and 0 for
samples 51-100. Examining the transmitter output and phase noise for samples where the input
waveform is nonzero, you can see that the phase output the System object and the phase of the
transmitter output agree.

 Transmitter

4-29

Receiver Preamp
In this section...
“Operation of Receiver Preamp” on page 4-30
“Configuring Receiver Preamp” on page 4-30
“Model Receiver Effects on Sinusoidal Input” on page 4-31

Operation of Receiver Preamp
The phased.ReceiverPreamp object lets you model the effects of gain and component-based noise
on the signal-to-noise ratio (SNR) of received signals. phased.ReceiverPreamp operates on
baseband signals. The object is not intended to model system effects at RF or intermediate frequency
(IF) stages.

Configuring Receiver Preamp
The phased.ReceiverPreamp object has the following modifiable properties:

• EnableInputPort — A logical property that enables you to specify when the receiver is on or off.
Input the actual status of the receiver as a vector to step. This property is useful when modeling
a monostatic radar system. In a monostatic radar, it is important to ensure the transmitter and
receiver are not operating simultaneously. See phased.Transmitter and “Transmitter” on page
4-25.

• Gain — Gain in dB (GdB)
• LossFactor — Loss factor in dB (LdB)
• NoiseMethod — Specify noise input as noise power or noise temperature
• NoiseFigure — Receiver noise figure in dB (FdB)
• ReferenceTemperature — Receiver reference temperature in kelvin (T)
• SampleRate — Sample rate (fs)
• NoisePower — Noise power specified in Watts (σ2)
• NoiseComplexity — Specify noise as real-valued or complex-valued
• EnableInputPort — Add input to specify when the receiver is active
• PhaseNoiseInputPort — Add input to specify phase noise for coherent on receive receiver
• SeedSource — Lets you specify random number generator seed
• Seed — Random number generator seed

The output signal, y[n], of the phased.ReceiverPreamp System object equals the input signal
scaled by the ratio of receiver amplitude gain to amplitude loss plus additive noise

y[n] = G
L x[n] + σ

2w[n]

where x[n] is the complex-valued input signal and w[n] is unit-variance noise complex-valued noise.

When the input signal is real-valued, the output signal, y[n], equals the real-valued input signal scaled
by the ratio of receiver amplitude gain to amplitude loss plus real-valued additive noise

4 Waveforms, Transmitter, and Receiver

4-30

y[n] = G
L x[n] + σw[n]

.

The amplitude gain, G, and loss, L, can be express in terms of the input dB parameters by

G = 10GdB/20

L = 10LdB/20

.

respectively.

The additive noise for the receiver is modeled as a zero-mean complex white Gaussian noise vector
with variance, σ2, equal to the noise power. The real and imaginary parts of the noise vector each
have variance equal to 1/2 the noise power.

You can set the noise power directly by choosing the NoiseMethod property to be 'Noise power'
and then setting the NoisePower property to a real positive number. Alternatively, you can set the
noise power using the system temperature by choosing the NoiseMethod property to be 'Noise
temperature'. Then

σ2 = kBBTF

where kB is Boltzmann’s constant, B is the noise bandwidth which is equal to the sample rate, fs, T is
the system temperature, and F is the noise figure in power units.

The noise figure, F, is a dimensionless quantity that indicates how much a receiver deviates from an
ideal receiver in terms of internal noise. An ideal receiver produces thermal noise power defined by
noise bandwidth and temperature. In terms of power units, the noise figure F = 10FdB/10. A noise figure
of 0 dB indicates that the noise power of a receiver equals the noise power of an ideal receiver.
Because an actual receiver cannot exhibit a noise power value less than an ideal receiver, the noise
figure is always greater than or equal to one. In decibels, the noise figure must be greater than or
equal to zero.

To model the effect of the receiver preamp on the signal, phased.ReceiverPreamp computes the
effective system noise temperature by taking the product of the reference temperature, T, and the
noise figure F in power units. See systemp for details.

Model Receiver Effects on Sinusoidal Input
Specify a phased.ReceiverPreamp System object™ with a gain of 20 dB, a noise figure of 5 dB, and
a reference temperature of 290 degrees kelvin.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

receiver = phased.ReceiverPreamp('Gain',20,...
 'NoiseFigure',5,'ReferenceTemperature',290,...
 'SampleRate',1e6,'SeedSource','Property','Seed',1e3);

 Receiver Preamp

4-31

Assume a 100-Hz sine wave input with an amplitude of 1 microvolt. Because the Phased Array System
Toolbox assumes that all modeling is done at baseband, use a complex exponential as the input when
executing the System object.

t = unigrid(0,0.001,0.1,'[)');
x = 1e-6*exp(1i*2*pi*100*t).';
y = receiver(x);

The output of the phased.ReceiverPreamp.step method is complex-valued as expected.

Now show how the same output can be produced from the multiplicative amplitude gain and additive
noise. First assume that the noise bandwidth equals the sample rate of the receiver preamp (1 MHz).
Then, the noise power is equal to:

NoiseBandwidth = receiver.SampleRate;
noisepow = physconst('Boltzmann')*...
 systemp(receiver.NoiseFigure,receiver.ReferenceTemperature)*NoiseBandwidth;

The noise power is the variance of the additive white noise. To determine the correct amplitude
scaling of the input signal, note that the gain is 20 dB. Because the loss factor in this case is 0 dB, the
scaling factor for the input signal is found by solving the following equation for the multiplicative gain
G from the gain in dB, GdB:

G = 10(GdB/20)

G = 10^(receiver.Gain/20)

G = 10

The gain is 10. By scaling the input signal by a factor of ten and adding complex white Gaussian noise
with the appropriate variance, you produce an output equivalent to the preceding call to
phased.ReceiverPreamp.step (use the same seed for the random number generation).

rng(1e3);
y1 = G*x + sqrt(noisepow/2)*(randn(size(x))+1j*randn(size(x)));

Compare a few values of y to y1.

disp(y1(1:10) - y(1:10))

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

4 Waveforms, Transmitter, and Receiver

4-32

Model Coherent-on-Receive Behavior
When modeling a coherent-on-receive monostatic radar, use the EnableInputPort and
PhaseNoiseInputPort properties. In a monostatic radar, the transmitter and receiver cannot
operate simultaneously. Therefore, it is important to keep track of when the transmitter is active so
that you can disable the receiver at those times. By setting the EnableInputPort to true, you can
input a record of when the transmitter is active as an argument when executing the
phased.ReceiverPreamp System object.

In a coherent-on-receive radar, the receiver corrects for the phase noise introduced at the transmitter
by using the record of those phase errors. By setting the PhaseNoiseInputPort property to true,
you can input a record of the transmitter phase errors as an argument when executing the
phased.ReceiverPreamp System object.

Coherent-on-Receive for Rectangular Pulse
To illustrate coherent-on-receive, construct a rectangular pulse waveform with five pulses. The
waveform pulse repetition frequency (PRF) is 10 kHz and the pulse width is 50 μs. The pulse
repetition interval (PRI) is exactly two times the pulse width so the transmitter alternates between
active and inactive time intervals of the same duration. For convenience, set the gains on both the
transmitter and receiver to 0 dB and the peak power on the transmitter to 1 W.

Use the PhaseNoiseOutputPort and InUseOutputPort properties of the transmitter to record the
phase noise and the status of the transmitter.

Enable the EnableInputPort and PhaseNoiseInputPort properties of the receiver preamp to
determine when the receiver is active and to correct for the phase noise introduced at the
transmitter.

Delay the output of the transmitter using the delayseq function to simulate the waveform arriving at
the receiver preamp when the transmitter is inactive and the receiver is active.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

waveform = phased.RectangularWaveform('NumPulses',5);
transmitter = phased.Transmitter('CoherentOnTransmit',false,...
 'PhaseNoiseOutputPort',true,'Gain',0,'PeakPower',1,...
 'SeedSource','Property','Seed',1000,'InUseOutputPort',true);
wf = waveform();
[troutput,trstatus,phasenoise] = transmitter(wf);
troutput = delayseq(troutput,waveform.PulseWidth,...
 waveform.SampleRate);
receiver = phased.ReceiverPreamp('Gain',0,...
 'PhaseNoiseInputPort',true,'EnableInputPort',true);
y = receiver(troutput,~trstatus,phasenoise);
subplot(2,1,1)
plot(real(troutput))
title('Delayed Transmitter Output with Phase Noise')
ylabel('Amplitude')
subplot(2,1,2)
plot(real(y))
xlabel('Samples')

 Model Coherent-on-Receive Behavior

4-33

ylabel('Amplitude')
title('Received Signal with Phase Correction')

4 Waveforms, Transmitter, and Receiver

4-34

Beamforming

• “Beamforming Overview” on page 5-2
• “Conventional Beamforming” on page 5-6
• “Adaptive Beamforming” on page 5-11
• “Wideband Beamforming” on page 5-15
• “Time-Delay Beamforming of Microphone ULA Array” on page 5-21
• “Visualization of Wideband Beamformer Performance” on page 5-23
• “Fixed-Point HDL-Optimized Minimum-Variance Distortionless-Response (MVDR) Beamformer”

on page 5-27

5

Beamforming Overview
In this section...
“Conventional Beamforming” on page 5-2
“Optimal and Adaptive Beamforming” on page 5-3

Beamforming is the spatial equivalent of frequency filtering and can be grouped into two classes:
data independent (conventional) and data-dependent (adaptive). All beamformers are designed to
emphasize signals coming from some directions and suppress signals and noise arriving from other
directions.

Phased Array System Toolbox provides nine different beamformers. This table summarizes the main
properties of the beamformers.

Beamformer Name Conventional or
Adaptive

Bandwidth Processing Domain

phased.PhaseShiftB
eamformer

Conventional Narrowband Time domain

phased.TimeDelayBe
amformer

Conventional Wideband Time domain

phased.SubbandPhas
eShiftBeamformer

Conventional Wideband Frequency domain

phased.LCMVBeamfor
mer

Adaptive Narrowband Frequency domain

phased.MVDRBeamfor
mer

Adaptive Narrowband Frequency domain

phased.FrostBeamfo
rmer

Adaptive Wideband Time domain

phased.GSCBeamform
er

Adaptive Wideband Time domain

phased.TimeDelayLC
MVBeamformer

Adaptive Wideband Time domain

phased.SubbandMVDR
Beamformer

Adaptive Wideband Frequency domain

Conventional Beamforming
Conventional beamforming, also called classical beamforming, is the easiest to understand.
Conventional beamforming techniques include delay-and-sum beamforming, phase-shift
beamforming, subband beamforming, and filter-and-sum beamforming. These beamformers are
similar because the weights and parameters that define the beampattern are fixed and do not depend
on the array input data. The weights are chosen to produce a specified array response to the signals
and interference in the environment. A signal arriving at an array has different times of arrival at
each sensor. For example, plane waves arriving at a linear array have a time delay that is a linear
function of distance along the array. Delay-and-sum beamforming compensates for these delays by
applying a reverse delay to each sensor. If the time delay is accurately computed, the signals from
each sensor add constructively.

5 Beamforming

5-2

Finding the compensating delay at each sensor requires accurate knowledge of the sensor locations
and signal direction. The delay-and-sum beamformer can be implemented in the frequency domain or
in the time domain. When the signal is narrowband, time delay becomes a phase shift in the
frequency domain and is implement by multiplying each sensor signal by a frequency-dependent
compensatory phase shift. This algorithm is implemented in the phased.PhaseShiftBeamformer.
For broadband signals, there are several approaches. One approach is to delay the signal in time by a
discrete number of samples. A problem with this method is that the degree of resolution that you can
distinguish is determined by the sampling rate of your data, because you cannot resolve delay
differences less than the sampling interval. Because this technique only works if the sampling rate is
high, you must increase the sampling frequency well beyond the Nyquist frequency so that the true
delay is very close to a sample time. A second method interpolates the signal between samples. Time
delay beamforming is implemented in phased.TimeDelayBeamformer. A third method Fourier
transforms the signals to the frequency domain, applies a linear phase shift, and converts the signal
back into the time domain. Phase-shift beamforming is performed at each frequency band (see
phased.SubbandPhaseShiftBeamformer).

Beamforming is not limited to plane waves but can be applied even when there is wavefront
curvature. In this case, the source lies in the near field. Perhaps the term beamforming is no longer
appropriate. You can use the source-array geometry to compute the phase shift for each point in
space and then apply this phase shift at each sensor element.

The advantage of a conventional beamformer is simplicity and ease of implementation. Another
advantage is its robustness against pointing errors and signal direction errors. A disadvantage is its
broad main lobe which decreases resolution of closely spaced sources or targets. A second
disadvantage is that it has large sidelobes that allow interference sources to leak into the main beam.

Optimal and Adaptive Beamforming
The second class of beamformers consists of the data-dependent beamformers. The terms optimal or
adaptive beamformers are sometimes used for this class interchangeably but they are not quite the
same. Optimal beamformers apply weights that are determined by optimizing some quantity. The
MVDR beamformer determines the beamforming weights, w, by maximizing the signal-to-noise
+interference ratio of the array output

w′s 2

w′Rnw = A2 w′a 2

w′Rnw

where s represents the signal values at the sensors, a represents the source steering vector, and A2

represents the source power at the array. Rn is the noise+interference covariance matrix. Because
the SNR is invariant under any scale factor applied to the weights, an equivalent formulation of this
criterion is to minimize the noise output w'R.nw subject to a constraint

w′Rnw s.t. w′a = 1

The solution of this equation is

wopt =
Rn−1a

a′Rn−1a

and yields the minimum variance distortionless response (MVDR) beamformer. Because of the
constraint, beamformer preserves the desired signal while minimizing contributions to the array
output due to noise and interference. The MVDR beamformer is implemented in

 Beamforming Overview

5-3

phased.MVDRBeamformer. A broadband version is implemented in
phased.SubbandMVDRBeamformer.

There are several advantages to the MVDR beamformer.

• The beamformer incorporates the noise and interference into an optimal solution.
• The beamformer has higher spatial resolution than a conventional beamformer.
• The beamformer puts nulls in the direction of any interference sources.
• Sidelobes are smaller and smoother.

There are two major disadvantages to the MVDR beamformer. The MVDR beamformer is sensitive to
errors in either the array parameters or arrival direction. The MVDR beamformer is susceptible to
self-nulling. In addition, trying to use MVDR as an adaptive beamformer requires a matrix inversion
every time the noise and interference statistics change. When there are many array elements, the
inversion can be computationally expensive.

In practical applications, an accurate steering vector and an accurate covariance matrix are not
always available. Generally, all that is available is the sampled covariance matrix. This deficiency can
lead to both inadequate interference suppression and distortion of the desired signal. In this case, the
true signal direction is slightly off from the beam pointing direction. Then the actual signal is treated
as interference.

However it often turns out that the noise is not separable from the signal and it is impossible to
determine Rn. In that case, you can estimate a sample covariance matrix from the data.

Rx = 1
K ∑k = 1

K
x(k)x′(k)

and minimizes w'Rxw instead. Minimizing this quantity leads to the minimum power distortionless
response (MPDR) beamformer. If the data vector, x, contains the signal and the estimated data
covariance matrix is perfect and the steering vector of the desired signal is known exactly, the MPDR
beamformer is equivalent to the MVDR beamformer. However, MPDR degrades more severely when
Rx is estimated from insufficient data or the signal arrival vector is not known precisely.

Rewrite the direction constraint in the form a’w = 1 by transposing both sides. This equivalent form
suggests that it possible to include multiple constraints by using a matrix constraint Cw = d where C
is now a constraint matrix and d represents the signal gains due to the constraints. This is the form
used in the linear constraint minimum variance (LCMV) beamformer. The LCMV beamformer is a
generalization of MVDR beamforming and is implemented in phased.LCMVBeamformer and
phased.TimeDelayLCMVBeamformer. There are several different approaches to specifying
constraints such as amplitude and derivative constraints. You can, for example, specify weights that
suppress interfering signals arriving from a particular direction while passing signals from a different
direction without distortion. The optimal LCMV weights are determined by the equation

wopt = Rn−1C′(CRn−1C′)−1d

The advantages and disadvantages of the MVDR beamformer also apply to the LCMV beamformer.

While MVDR and LCMV are adaptive in principle, re-computation of the weights requires the
inversion of a potentially large covariance matrix when the array has many elements. The Frost and
generalized sidelobe cancelers are reformulations of LCMV that convert the constrained optimization
into minimizing an unconstrained form and then compute the weights recursively. This approach

5 Beamforming

5-4

removes any need to invert a covariance matrix. See phased.FrostBeamformer and
phased.GSCBeamformer.

 Beamforming Overview

5-5

Conventional Beamforming
In this section...
“Uses for Beamformers” on page 5-6
“Support for Conventional Beamforming” on page 5-6
“Narrowband Phase Shift Beamformer for a ULA” on page 5-6

Uses for Beamformers
You can use a beamformer to spatially filter the arriving signals. Accentuating or attenuating signals
that arrive from specific directions helps you distinguish between signals of interest and interfering
signals from other directions.

Support for Conventional Beamforming
You can implement a narrowband phase shift beamformer using phased.PhaseShiftBeamformer.
When you use this object, you must specify these aspects of the situation you are simulating:

• Sensor array
• Signal propagation speed
• System operating frequency
• Beamforming direction

For wideband beamformers, see “Wideband Beamforming” on page 5-15.

Narrowband Phase Shift Beamformer for a ULA
This example shows how to create and beamform a 10-element ULA. Assume the carrier frequency is
1 GHz. Set the array element spacing to be one-half the carrier wavelength.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
array = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);

By default, the ULA elements are isotropic antennas created by the
phased.IsotropicAntennaElement System object™. Set the frequency range of the antenna
elements so that the carrier frequency lies within the operating range.

array.Element.FrequencyRange = [8e8 1.2e9];

Simulate a test signal. For this example, use a simple rectangular pulse.

t = linspace(0,0.3,300)';
testsig = zeros(size(t));
testsig(201:205) = 1;

5 Beamforming

5-6

Assume the rectangular pulse is incident on the ULA from an angle of 30° azimuth and 0° elevation.
Use the collectPlaneWave function of the ULA System object to simulate reception of the pulse
waveform from the specified angle.

angle_of_arrival = [30;0];
x = collectPlaneWave(array,testsig,angle_of_arrival,fc);

The signal x is a matrix with ten columns. Each column represents the received signal at one of the
array elements.

Add complex-valued Gaussian noise to the signal x. Reset the default random number stream for
reproducible results. Plot the magnitudes of the received pulses at the first four elements of the ULA.

rng default
npower = 0.5;
x = x + sqrt(npower/2)*(randn(size(x)) + 1i*randn(size(x)));
subplot(221)
plot(t,abs(x(:,1)))
title('Element 1 (magnitude)')
axis tight
ylabel('Magnitude')
subplot(222)
plot(t,abs(x(:,2)))
title('Element 2 (magnitude)')
axis tight
ylabel('Magnitude')
subplot(223)
plot(t,abs(x(:,3)))
title('Element 3 (magnitude)')
axis tight
xlabel('Seconds')
ylabel('Magnitude')
subplot(224)
plot(t,abs(x(:,4)))
title('Element 4 (magnitude)')
axis tight
xlabel('Seconds')
ylabel('Magnitude')

 Conventional Beamforming

5-7

Construct a phase-shift beamformer. Set the WeightsOutputPort property to true to output the
spatial filter weights that point the beamformer to the angle of arrival.

beamformer = phased.PhaseShiftBeamformer('SensorArray',array,...
 'OperatingFrequency',1e9,'Direction',angle_of_arrival,...
 'WeightsOutputPort',true);

Execute the phase shift beamformer to compute the beamformer output and to compute the applied
weights.

[y,w] = beamformer(x);

Plot the magnitude of the output waveform along with the noise-free original waveform for
comparison.

subplot(211)
plot(t,abs(testsig))
axis tight
title('Original Signal')
ylabel('Magnitude')
subplot(212)
plot(t,abs(y))
axis tight
title('Received Signal with Beamforming')
ylabel('Magnitude')
xlabel('Seconds')

5 Beamforming

5-8

To examine the effect of beamforming weights on the array response, plot the array normalized
power response with and without beamforming weights.

azang = -180:30:180;
subplot(211)
pattern(array,fc,[-180:180],0,'CoordinateSystem','rectangular',...
 'Type','powerdb','PropagationSpeed',physconst('LightSpeed'))
set(gca,'xtick',azang);
title('Array Response without Beamforming Weights')
subplot(212)
pattern(array,fc,[-180:180],0,'CoordinateSystem','rectangular',...
 'Type','powerdb','PropagationSpeed',physconst('LightSpeed'),...
 'Weights',w)
set(gca,'xtick',azang);
title('Array Response with Beamforming Weights')

 Conventional Beamforming

5-9

See Also

Related Examples
• “Conventional and Adaptive Beamformers” on page 17-190

5 Beamforming

5-10

Adaptive Beamforming
In this section...
“Benefits of Adaptive Beamforming” on page 5-11
“Support for Adaptive Beamforming” on page 5-11
“Nulling with LCMV Beamformer” on page 5-11

Benefits of Adaptive Beamforming
“Narrowband Phase Shift Beamformer for a ULA” on page 5-6 uses weights chosen independent of
any data received by the array. The weights in the narrowband phase shift beamformer steer the
array response in a specified direction. However, they do not account for any interference scenarios.
As a result, these conventional beamformers are susceptible to interference signals. Such
interference signals can be a particular problem if they occur at sidelobes of the array response.

By contrast, adaptive, or statistically optimum, beamformers can account for interference signals. An
adaptive beamformer algorithm chooses the weights based on the statistics of the received data. For
example, an adaptive beamformer can improve the SNR by using the received data to place nulls in
the array response. These nulls are placed at angles corresponding to the interference signals.

Support for Adaptive Beamforming
Phased Array System Toolbox software provides these adaptive beamformers:

• Linearly constrained minimum variance (LCMV) beamformers
• Minimum variance distortionless response (MVDR) beamformers
• Frost beamformers

Nulling with LCMV Beamformer
This example shows how to use an LCMV beamformer to point a null of the array response in the
direction of an interfering source. The array is a 10-element uniform linear array (ULA). By default,
the ULA elements are isotropic antennas created by the phased.IsotropicAntennaElement
System object™. Set the frequency range of the antenna elements so that the carrier frequency lies
within the operating range. The carrier frequency is 1 GHz.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
array = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);
array.Element.FrequencyRange = [8e8 1.2e9];

Simulate a test signal using a simple rectangular pulse.

t = linspace(0,0.3,300)';
testsig = zeros(size(t));
testsig(201:205) = 1;

Assume the rectangular pulse is incident on the ULA from an angle of 30° azimuth and 0° elevation.
Use the collectPlaneWave function of the ULA System object to simulate reception of the pulse
waveform from the incident angle.

 Adaptive Beamforming

5-11

angle_of_arrival = [30;0];
x = collectPlaneWave(array,testsig,angle_of_arrival,fc);

The signal x is a matrix with ten columns. Each column represents the received signal at one of the
array elements.

Construct a conventional phase-shift beamformer. Set the WeightsOutputPort property to true to
output the spatial filter weights.

convbeamformer = phased.PhaseShiftBeamformer('SensorArray',array,...
 'OperatingFrequency',1e9,'Direction',angle_of_arrival,...
 'WeightsOutputPort',true);

Add complex-valued white Gaussian noise to the signal x. Set the default random number stream for
reproducible results.

rng default
npower = 0.5;
x = x + sqrt(npower/2)*(randn(size(x)) + 1i*randn(size(x)));

Create a 10W interference source. Specify the barrage jammer to have an effective radiated power of
10 W. The interference signal from the barrage jammer is incident on the ULA from an angle of 120°
azimuth and 0° elevation. Use the collectPlaneWave function of the ULA System object to simulate
reception of the jammer signal.

jamsig = sqrt(10)*randn(300,1);
jammer_angle = [120;0];
jamsig = collectPlaneWave(array,jamsig,jammer_angle,fc);

Add complex-valued white Gaussian noise to simulate noise contributions not directly associated with
the jamming signal. Again, set the default random number stream for reproducible results. This noise
power is 0 dB below the jammer power. Beamform the signal using a conventional beamformer.

noisePwr = 1e-5;
rng(2008);
noise = sqrt(noisePwr/2)*...
 (randn(size(jamsig)) + 1j*randn(size(jamsig)));
jamsig = jamsig + noise;
rxsig = x + jamsig;
[yout,w] = convbeamformer(rxsig);

Implement the adaptive LCMV beamformer using the same ULA array. Use the target-free data,
jamsig, as training data. Output the beamformed signal and the beamformer weights.

steeringvector = phased.SteeringVector('SensorArray',array,...
 'PropagationSpeed',physconst('LightSpeed'));
LCMVbeamformer = phased.LCMVBeamformer('DesiredResponse',1,...
 'TrainingInputPort',true,'WeightsOutputPort',true);
LCMVbeamformer.Constraint = steeringvector(fc,angle_of_arrival);
LCMVbeamformer.DesiredResponse = 1;
[yLCMV,wLCMV] = LCMVbeamformer(rxsig,jamsig);

Plot the conventional beamformer output and the adaptive beamformer output.

subplot(211)
plot(t,abs(yout))
axis tight
title('Conventional Beamformer')

5 Beamforming

5-12

ylabel('Magnitude')
subplot(212)
plot(t,abs(yLCMV))
axis tight
title('LCMV (Adaptive) Beamformer')
xlabel('Seconds')
ylabel('Magnitude')

The adaptive beamformer significantly improves the SNR of the rectangular pulse at 0.2 s.

Using conventional and LCMV weights, plot the responses for each beamformer.

subplot(211)
pattern(array,fc,[-180:180],0,'PropagationSpeed',physconst('LightSpeed'),...
 'CoordinateSystem','rectangular','Type','powerdb','Normalize',true,...
 'Weights',w)
title('Array Response with Conventional Beamforming Weights');
subplot(212)
pattern(array,fc,[-180:180],0,'PropagationSpeed',physconst('LightSpeed'),...)
 'CoordinateSystem','rectangular','Type','powerdb','Normalize',true,...
 'Weights',wLCMV)
title('Array Response with LCMV Beamforming Weights');

 Adaptive Beamforming

5-13

The adaptive beamform places a null at the arrival angle of the interference signal, 120°.

See Also
phased.FrostBeamformer | phased.LCMVBeamformer | phased.MVDRBeamformer

Related Examples
• “Conventional and Adaptive Beamformers” on page 17-190

5 Beamforming

5-14

Wideband Beamforming
In this section...
“Support for Wideband Beamforming” on page 5-15
“Time-Delay Beamforming of Microphone ULA Array” on page 5-15
“Visualization of Wideband Beamformer Performance” on page 5-16

Support for Wideband Beamforming
Beamforming achieved by multiplying the sensor input by a complex exponential with the appropriate
phase shift only applies for narrowband signals. In the case of wideband, or broadband, signals, the
steering vector is not a function of a single frequency. Wideband processing is commonly used in
microphone and acoustic applications.

Phased Array System Toolbox software provides conventional and adaptive wideband beamformers.
They include:

• phased.FrostBeamformer
• phased.SubbandPhaseShiftBeamformer
• phased.TimeDelayBeamformer
• phased.TimeDelayLCMVBeamformer

See “Acoustic Beamforming Using a Microphone Array” on page 17-174 for an example of using
wideband beamforming to extract speech signals in noise.

Time-Delay Beamforming of Microphone ULA Array
This example shows how to perform wideband conventional time-delay beamforming with a
microphone array of omnidirectional elements. Create an acoustic (pressure wave) chirp signal. The
chirp signal has a bandwidth of 1 kHz and propagates at a speed of 340 m/s at ground level.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

c = 340;
t = linspace(0,1,50e3)';
sig = chirp(t,0,1,1000);

Collect the acoustic chirp with a ten-element ULA. Use omnidirectional microphone elements spaced
less than one-half the wavelength at the 50 kHz sampling frequency. The chirp is incident on the ULA
with an angle of 60∘ azimuth and 0∘ elevation. Add random noise to the signal.

microphone = phased.OmnidirectionalMicrophoneElement(...
 'FrequencyRange',[20 20e3]);
array = phased.ULA('Element',microphone,'NumElements',10,...
 'ElementSpacing',0.01);
collector = phased.WidebandCollector('Sensor',array,'SampleRate',5e4,...
 'PropagationSpeed',c,'ModulatedInput',false);
sigang = [60;0];

 Wideband Beamforming

5-15

rsig = collector(sig,sigang);
rsig = rsig + 0.1*randn(size(rsig));

Apply a wideband conventional time-delay beamformer to improve the SNR of the received signal.

beamformer = phased.TimeDelayBeamformer('SensorArray',array,...
 'SampleRate',5e4,'PropagationSpeed',c,'Direction',sigang);
y = beamformer(rsig);

subplot(2,1,1)
plot(t(1:5000),real(rsig(1:5e3,5)))
axis([0,t(5000),-0.5,1])
title('Signal (real part) at the 5th element of the ULA')
subplot(2,1,2)
plot(t(1:5000),real(y(1:5e3)))
axis([0,t(5000),-0.5,1])
title('Signal (real part) with time-delay beamforming')
xlabel('Seconds')

Visualization of Wideband Beamformer Performance
This example shows how to plot the response of an acoustic microphone element and an array of
microphone elements to validate the performance of a beamformer. The array must maintain an
acceptable array pattern throughout the bandwidth.

5 Beamforming

5-16

Create an 11-element uniform linear array (ULA) of microphones using cosine antenna elements as
microphones. The phased.CosineAntennaElement System object™ is general enough to be used
as a microphone element as well because it creates or receives a scalar field. You need to change the
response frequencies to the audible range. In addition make sure the PropagationSpeed parameter
in the array pattern methods are set to the speed of sound in air.

c = 340;
freq = [1000 2750];
fc = 2000;
numels = 11;
microphone = phased.CosineAntennaElement('FrequencyRange',freq);
array = phased.ULA('NumElements',numels,...
 'ElementSpacing',0.5*c/fc,'Element',microphone);

Plot the response pattern of the microphone element over a set of frequencies.

plotFreq = linspace(min(freq),max(freq),15);
pattern(microphone,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...
 'PlotStyle','waterfall','Type','powerdb')

This plot shows that the element pattern is constant over the entire bandwidth.

Plot the response pattern of an 11-element array over the same set of frequencies.

pattern(array,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...
 'PlotStyle','waterfall','Type','powerdb','PropagationSpeed',c)

 Wideband Beamforming

5-17

This plot shows that the element pattern mainlobe decreases with frequency.

Apply a subband phase shift beamformer to the array. The direction of interest is 30° azimuth and 0°
elevation. There are 8 subbands.

direction = [30;0];
numbands = 8;
beamformer = phased.SubbandPhaseShiftBeamformer('SensorArray',array,...
 'Direction',direction,...
 'OperatingFrequency',fc,'PropagationSpeed',c,...
 'SampleRate',1e3,...
 'WeightsOutputPort',true,'SubbandsOutputPort',true,...
 'NumSubbands',numbands);
rx = ones(numbands,numels);
[y,w,centerfreqs] = beamformer(rx);

Plot the response pattern of the array using the weights and center frequencies from the beamformer.

pattern(array,centerfreqs.',[-180:180],0,'Weights',w,'CoordinateSystem','rectangular',...
 'PlotStyle','waterfall','Type','powerdb','PropagationSpeed',c)

5 Beamforming

5-18

The above plot shows the beamformed pattern at the center frequency of each subband.

Plot the response pattern at three frequencies in two-dimensions.

centerfreqs = fftshift(centerfreqs);
w = fftshift(w,2);
idx = [1,5,8];
pattern(array,centerfreqs(idx).',[-180:180],0,'Weights',w(:,idx),'CoordinateSystem','rectangular',...
 'PlotStyle','overlay','Type','powerdb','PropagationSpeed',c)
legend('Location','South')

 Wideband Beamforming

5-19

This plot shows that the main beam direction remains constant while the beamwidth decreases with
frequency.

5 Beamforming

5-20

Time-Delay Beamforming of Microphone ULA Array
This example shows how to perform wideband conventional time-delay beamforming with a
microphone array of omnidirectional elements. Create an acoustic (pressure wave) chirp signal. The
chirp signal has a bandwidth of 1 kHz and propagates at a speed of 340 m/s at ground level.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

c = 340;
t = linspace(0,1,50e3)';
sig = chirp(t,0,1,1000);

Collect the acoustic chirp with a ten-element ULA. Use omnidirectional microphone elements spaced
less than one-half the wavelength at the 50 kHz sampling frequency. The chirp is incident on the ULA
with an angle of 60∘ azimuth and 0∘ elevation. Add random noise to the signal.

microphone = phased.OmnidirectionalMicrophoneElement(...
 'FrequencyRange',[20 20e3]);
array = phased.ULA('Element',microphone,'NumElements',10,...
 'ElementSpacing',0.01);
collector = phased.WidebandCollector('Sensor',array,'SampleRate',5e4,...
 'PropagationSpeed',c,'ModulatedInput',false);
sigang = [60;0];
rsig = collector(sig,sigang);
rsig = rsig + 0.1*randn(size(rsig));

Apply a wideband conventional time-delay beamformer to improve the SNR of the received signal.

beamformer = phased.TimeDelayBeamformer('SensorArray',array,...
 'SampleRate',5e4,'PropagationSpeed',c,'Direction',sigang);
y = beamformer(rsig);

subplot(2,1,1)
plot(t(1:5000),real(rsig(1:5e3,5)))
axis([0,t(5000),-0.5,1])
title('Signal (real part) at the 5th element of the ULA')
subplot(2,1,2)
plot(t(1:5000),real(y(1:5e3)))
axis([0,t(5000),-0.5,1])
title('Signal (real part) with time-delay beamforming')
xlabel('Seconds')

 Time-Delay Beamforming of Microphone ULA Array

5-21

5 Beamforming

5-22

Visualization of Wideband Beamformer Performance
This example shows how to plot the response of an acoustic microphone element and an array of
microphone elements to validate the performance of a beamformer. The array must maintain an
acceptable array pattern throughout the bandwidth.

Create an 11-element uniform linear array (ULA) of microphones using cosine antenna elements as
microphones. The phased.CosineAntennaElement System object™ is general enough to be used
as a microphone element as well because it creates or receives a scalar field. You need to change the
response frequencies to the audible range. In addition make sure the PropagationSpeed parameter
in the array pattern methods are set to the speed of sound in air.

c = 340;
freq = [1000 2750];
fc = 2000;
numels = 11;
microphone = phased.CosineAntennaElement('FrequencyRange',freq);
array = phased.ULA('NumElements',numels,...
 'ElementSpacing',0.5*c/fc,'Element',microphone);

Plot the response pattern of the microphone element over a set of frequencies.

plotFreq = linspace(min(freq),max(freq),15);
pattern(microphone,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...
 'PlotStyle','waterfall','Type','powerdb')

This plot shows that the element pattern is constant over the entire bandwidth.

 Visualization of Wideband Beamformer Performance

5-23

Plot the response pattern of an 11-element array over the same set of frequencies.

pattern(array,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...
 'PlotStyle','waterfall','Type','powerdb','PropagationSpeed',c)

This plot shows that the element pattern mainlobe decreases with frequency.

Apply a subband phase shift beamformer to the array. The direction of interest is 30° azimuth and 0°
elevation. There are 8 subbands.

direction = [30;0];
numbands = 8;
beamformer = phased.SubbandPhaseShiftBeamformer('SensorArray',array,...
 'Direction',direction,...
 'OperatingFrequency',fc,'PropagationSpeed',c,...
 'SampleRate',1e3,...
 'WeightsOutputPort',true,'SubbandsOutputPort',true,...
 'NumSubbands',numbands);
rx = ones(numbands,numels);
[y,w,centerfreqs] = beamformer(rx);

Plot the response pattern of the array using the weights and center frequencies from the beamformer.

pattern(array,centerfreqs.',[-180:180],0,'Weights',w,'CoordinateSystem','rectangular',...
 'PlotStyle','waterfall','Type','powerdb','PropagationSpeed',c)

5 Beamforming

5-24

The above plot shows the beamformed pattern at the center frequency of each subband.

Plot the response pattern at three frequencies in two-dimensions.

centerfreqs = fftshift(centerfreqs);
w = fftshift(w,2);
idx = [1,5,8];
pattern(array,centerfreqs(idx).',[-180:180],0,'Weights',w(:,idx),'CoordinateSystem','rectangular',...
 'PlotStyle','overlay','Type','powerdb','PropagationSpeed',c)
legend('Location','South')

 Visualization of Wideband Beamformer Performance

5-25

This plot shows that the main beam direction remains constant while the beamwidth decreases with
frequency.

5 Beamforming

5-26

Fixed-Point HDL-Optimized Minimum-Variance Distortionless-
Response (MVDR) Beamformer

This example shows how to implement a fixed-point HDL-optimized minimum-variance distortionless-
response (MVDR) beamformer. For more information on beamformers, see “Conventional and
Adaptive Beamformers” on page 17-258.

MVDR Objective

The MVDR beamformer preserves the gain in the direction of arrival of a desired signal and
attenuates interference from other directions [1], [2].

Given readings from a sensor array, such as the uniform linear array (ULA) in the following diagram,
form data matrix from samples of the array, where is an -by-1 column vector of readings from
the array sampled at time , and is one row of matrix . Many more samples are taken than
there are elements in the array. This results in the number of rows in being much greater than the
number of columns. An estimate of the covariance matrix is , where is the Hermitian or
complex-conjugate transpose of .

Compute the MVDR beamformer response by solving the following equation for , where is a
steering vector pointing in the direction of the desired signal.

The MVDR weight vector is computed from and using the following equation, which normalizes
 to preserve the gain in the direction of arrival of the desired signal.

The MVDR system response is the inner product between the MVDR weight vector and a current
sample from the sensor array .

 Fixed-Point HDL-Optimized Minimum-Variance Distortionless-Response (MVDR) Beamformer

5-27

HDL-Optimized MVDR

The three equations in the previous section are implemented by the three primary blocks in the
following model. The rate changes give the matrix solve additional clock cycles to update before the
next input sample. The number of clock cycles between a valid input and when the complex matrix
solve block is ready is twice its input wordlength to allow time for CORDIC iterations, plus 15 cycles
for internal delays.

load_system('MVDRBeamformerHDLOptimizedModel');
open_system('MVDRBeamformerHDLOptimizedModel/MVDR - HDL Optimized')

Instead of forming data matrix and computing the Cholesky factorization of covariance matrix
, the upper-triangular matrix of the QR decomposition of is computed directly and updated as

each data vector streams in from the sensor array. Because the data is updated indefinitely, a
forgetting factor is applied after each factorization. To integrate with an equivalent of a matrix of
rows, the forgetting factor should be set to

This example simulates the equivalent of a matrix with rows, so the forgetting factor is set
to 0.9983.

The Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting
Factor block is implemented using the method found in [3]. The upper-triangular matrix from the
QR decomposition of is identical to the Cholesky factorization of except the signs of values on
the diagonal. Solving the matrix equation by computing the Cholesky factorization of

 is not as efficient or as numerically sound as computing the QR decomposition of directly [4].

Run Model

Open and simulate the model.

open_system('MVDRBeamformerHDLOptimizedModel')

5 Beamforming

5-28

As the model is simulating, you can adjust the signal direction, steering angle and noise directions by
dragging the sliders, or by editing the constant values.

When the signal direction and steering angle are aligned as indicated by the blue and green lines, you
can see that the beam pattern has a gain of 0 dB. The noise sources are nulled as indicated by the red
lines.

 Fixed-Point HDL-Optimized Minimum-Variance Distortionless-Response (MVDR) Beamformer

5-29

The desired pulse appears when the noise sources are nulled. This example simulates with the same
latency as the hardware, so you can see the signal settle over time as the simulation starts and when
the directions are changed.

Set Parameters

The parameters for the beamformer are set in the model workspace. You can modify the parameters
by editing and running the setMVDRExampleModelWorkspace function.

References

[1] V. Behar et al. "Parameter Optimization of the adaptive MVDR QR-based beamformer for jamming
and multipath supression in GPS/GLONASS receivers". In: Proc. 16th Saint Petersburg International
Conference on Integrated Navigation systems. Saint Petersburg, Russia, May 2009, pp. 325--334.

[2] Jack Capon. "High-resolution frequency-wavenumber spectrum analysis". In: vol. 57. 1969, pp.
1408--1418.

[3] C.M. Rader. "VLSI Systolic Arrays for Adaptive Nulling". In: IEEE Signal Processing Magazine
(July 1996), pp. 29--49.

5 Beamforming

5-30

[4] Charles F. Van Loan. Introduction to Scientific Computing: A Matrix-Vector Approach Using
Matlab. Second edition. Prentice-Hall, 2000. isbn: 0-13-949157-0.

 Fixed-Point HDL-Optimized Minimum-Variance Distortionless-Response (MVDR) Beamformer

5-31

Direction-of-Arrival Estimation

• “Beamscan Direction-of-Arrival Estimation” on page 6-2
• “Super-Resolution DOA Estimation” on page 6-4
• “MUSIC Super-Resolution DOA Estimation” on page 6-7
• “Target Tracking Using Sum-Difference Monopulse Radar” on page 6-12

6

Beamscan Direction-of-Arrival Estimation
This example shows how to use the nonparametric beamscan technique to estimate the directions of
arrival (DOA) of two signals. The beamscan algorithm estimates the DOAs by scanning the array
beam over a region of interest. The algorithm computes the output power for each beamscan angle
and identifies the maxima as the DOA estimates.

Construct a uniform linear array (ULA) consisting of ten isotropic antenna elements. The carrier
frequency of the incoming narrowband sources is 1 GHz.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
antenna = phased.IsotropicAntennaElement('FrequencyRange',[8e8 1.2e9]);
array = phased.ULA('Element',antenna,'NumElements',10,'ElementSpacing',lambda/2);

The incident wavefield consists of linear FM pulses from two sources. The DOAs of the two sources
are 30° azimuth and 60° azimuth. Both sources have elevation angles of 0°.

waveform = phased.LinearFMWaveform('SweepBandwidth',1e5,...
 'PulseWidth',5e-6,'OutputFormat','Pulses','NumPulses',1);
sig1 = waveform();
sig2 = sig1;
ang1 = [30; 0];
ang2 = [60;0];
arraysig = collectPlaneWave(array,[sig1 sig2],[ang1 ang2],fc);
rng default
npower = 0.01;
noise = sqrt(npower/2)*...
 (randn(size(arraysig)) + 1i*randn(size(arraysig)));
rxsig = arraysig + noise;

Implement a beamscan DOA estimator. Scan the azimuth angles from −90° to 90°. Output the DOA
estimates, and plot the spatial spectrum. The locations of the two largest peaks of the spectrum
identify the DOAs of the signals.

estimator = phased.BeamscanEstimator('SensorArray',array,...
 'OperatingFrequency',fc,'ScanAngles',-90:90,...
 'DOAOutputPort',true,'NumSignals',2);
[y,sigang] = estimator(rxsig);
disp(sigang)

 64 28

Plot the spatial spectrum as a function of broadside angle.

plotSpectrum(estimator)

6 Direction-of-Arrival Estimation

6-2

See Also

Related Examples
• “Super-Resolution DOA Estimation” on page 6-4

 Beamscan Direction-of-Arrival Estimation

6-3

Super-Resolution DOA Estimation
This example shows how to estimate angles of arrival from two separate signal sources when both
angles fall within the main lobe of the array response a uniform linear array (ULA). In this case, a
beamscan DOA estimator cannot resolve the two sources. However, a super-resolution DOA estimator
using the root MUSIC algorithm is able to do so.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Plot the array response of the ULA. Zoom in on the main lobe.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
array = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);
array.Element.FrequencyRange = [8e8 1.2e9];
plotResponse(array,fc,physconst('LightSpeed'))
axis([-25 25 -30 0]);

Receive two signal sources with DOAs separated by 10°.

ang1 = [30; 0];
ang2 = [40; 0];
Nsnapshots = 1000;
rng default

6 Direction-of-Arrival Estimation

6-4

npower = 0.01;
rxsig = sensorsig(getElementPosition(array)/lambda,...
 Nsnapshots,[ang1 ang2],npower);

Estimate the directions of arrival using the beamscan estimator. Because both DOAs fall inside the
main lobe of the array response, the beamscan DOA estimator cannot resolve them as separate
sources.

beamscanestimator = phased.BeamscanEstimator('SensorArray',array,...
 'OperatingFrequency',fc,'ScanAngles',-90:90,...
 'DOAOutputPort',true,'NumSignals',2);
[~,sigang] = beamscanestimator(rxsig);
plotSpectrum(beamscanestimator)

Use the super-resolution DOA estimator to estimate the two directions. This estimator offers better
resolution than the nonparametric beamscan estimator.

MUSICestimator = phased.RootMUSICEstimator('SensorArray',array,...
 'OperatingFrequency',fc,'NumSignalsSource','Property',...
 'NumSignals',2,'ForwardBackwardAveraging',true);
doa_est = MUSICestimator(rxsig)

doa_est = 1×2

 40.0091 30.0048

This estimator correctly identifies the two distinct directions of arrival.

 Super-Resolution DOA Estimation

6-5

See Also
phased.RootMUSICEstimator

Related Examples
• “Beamscan Direction-of-Arrival Estimation” on page 6-2
• “High Resolution Direction of Arrival Estimation” on page 17-216

6 Direction-of-Arrival Estimation

6-6

MUSIC Super-Resolution DOA Estimation
In this section...
“Signal Model” on page 6-7
“Signal and Noise Subspaces” on page 6-8
“Root-MUSIC” on page 6-9
“Spatial Smoothing of Correlated Sources” on page 6-9

MUltiple SIgnal Classification (MUSIC) is a high-resolution direction-finding algorithm based on the
eigenvalue decomposition of the sensor covariance matrix observed at an array. MUSIC belongs to
the family of subspace-based direction-finding algorithms.

Signal Model
The signal model relates the received sensor data to the signals emitted by the source. Assume that
there are D uncorrelated or partially correlated signal sources, sd(t). The sensor data, xm(t), consists
of the signals, as received at the array, together with noise, nm(t). A sensor data snapshot is the
sensor data vector received at the M elements of an array at a single time t.

x(t) = As(t) + n(t)
s(t) = [s1(t), s2(t), …, sD(t))]′
A = [a(θ1) a(θ2) … a(θD)]

• x(t) is an M-by-1 vector of received snapshot of sensor data which consist of signals and additive
noise.

• A is an M-by-D matrix containing the arrival vectors. An arrival vector consists of the relative
phase shifts at the array elements of the plane wave from one source. Each column of A
represents the arrival vector from one of the sources and depends on the direction of arrival, θd.
θd is the direction of arrival angle for the dth source and can represents either the broadside angle
for linear arrays or the azimuth and elevation angle for planar or 3D arrays.

• s(t) is a D-by-1 vector of source signal values from D sources.
• n(t) is an M-by-1 vector of sensor noise values.

An important quantity in any subspace method is the sensor covariance matrix,Rx, derived from the
received signal data. When the signals are uncorrelated with the noise, the sensor covariance matrix
has two components, the signal covariance matrix and the noise covariance matrix.

Rx = E xxH = ARsAH + σn
2I

where Rs is the source covariance matrix. The diagonal elements of the source covariance matrix
represent source power and the off-diagonal elements represent source correlations.

Rs = E ssH

For uncorrelated sources or even partially correlated sources, Rs is a positive-definite Hermitian
matrix and has full rank, D, equal to the number of sources.

The signal covariance matrix, ARsAH, is an M-by-M matrix, also with rank D < M.

 MUSIC Super-Resolution DOA Estimation

6-7

An assumption of the MUSIC algorithm is that the noise powers are equal at all sensors and
uncorrelated between sensors. With this assumption, the noise covariance matrix becomes an M-by-M
diagonal matrix with equal values along the diagonal.

Because the true sensor covariance matrix is not known, MUSIC estimates the sensor covariance
matrix, Rx, from the sample sensor covariance matrix. The sample sensor covariance matrix is an
average of multiple snapshots of the sensor data

Rx = 1
T ∑k = 1

T
x(t)x(t)H,

where T is the number of snapshots.

Signal and Noise Subspaces
Because ARsAH has rank D, it has D positive real eigenvalues and M – D zero eigenvalues. The
eigenvectors corresponding to the positive eigenvalues span the signal subspace, Us= [v1,...,vD]. The
eigenvectors corresponding to the zero eigenvalues are orthogonal to the signal space and span the
null subspace, Un= [uD+1,...,uN]. The arrival vectors also belong to the signal subspace, but they are
eigenvectors. Eigenvectors of the null subspace are orthogonal to the eigenvectors of the signal
subspace. Null-subspace eigenvectors, ui, satisfy this equation:

ARsAHui = 0 uHARsAHui = 0 AHui
HRs AHui = 0 AHui = 0

Therefore the arrival vectors are orthogonal to the null subspace.

When noise is added, the eigenvectors of the sensor covariance matrix with noise present are the
same as the noise-free sensor covariance matrix. The eigenvalues increase by the noise power. Let vi
be one of the original noise-free signal space eigenvectors. Then

Rxvi = ARsAHvi + σ0
2Ivi = λi + σ0

2 vi

shows that the signal space eigenvalues increase by σ0
2.

The null subspace eigenvectors are also eigenvectors of Rx. Let ui be one of the null eigenvectors.
Then

Rxui = ARsAHui + σ0
2Iui = σ0

2ui

with eigenvalues of σ0
2 instead of zero. The null subspace becomes the noise subspace.

MUSIC works by searching for all arrival vectors that are orthogonal to the noise subspace. To do the
search, MUSIC constructs an arrival-angle-dependent power expression, called the MUSIC
pseudospectrum:

PMUSIC(ϕ) = 1
aH(ϕ)UnUn

Ha(ϕ)

When an arrival vector is orthogonal to the noise subspace, the peaks of the pseudospectrum are
infinite. In practice, because there is noise, and because the true covariance matrix is estimated by
the sampled covariance matrix, the arrival vectors are never exactly orthogonal to the noise
subspace. Then, the angles at which PMUSIC has finite peaks are the desired directions of arrival.

6 Direction-of-Arrival Estimation

6-8

Because the pseudospectrum can have more peaks than there are sources, the algorithm requires
that you specify the number of sources, D, as a parameter. Then the algorithm picks the D largest
peaks. For a uniform linear array (ULA), the search space is a one-dimensional grid of broadside
angles. For planar and 3D arrays, the search space is a two-dimensional grid of azimuth and elevation
angles.

Root-MUSIC
For a ULA, the denominator in the pseudospectrum is a polynomial in eikdcosφ, but can also be
considered a polynomial in the complex plane. In this cases, you can use root-finding methods to
solve for the roots, zi. These roots do not necessarily lie on the unit circle. However, Root-MUSIC
assumes that the D roots closest to the unit circle correspond to the true source directions. Then you
can compute the source directions from the phase of the complex roots.

Spatial Smoothing of Correlated Sources
When some of the D source signals are correlated, Rs is rank deficient, meaning that it has fewer than
D nonzero eigenvalues. Therefore, the number of zero eigenvalues of ARsAH exceeds the number, M –
D, of zero eigenvalues for the uncorrelated source case. MUSIC performance degrades when signals
are correlated, as occurs in a multipath propagation environment. A way to compensate for
correlation is to use spatial smoothing.

Spatial smoothing takes advantage of the translation properties of a uniform array. Consider two
correlated signals arriving at an L-element ULA. The source covariance matrix, Rs is a singular 2-by-2
matrix. The arrival vector matrix is an L-by-2 matrix

A1 =

1

eikdcosφ1

⋮
ei(L− 1)kdcosφ1

1

eikdcosφ2

⋮
ei(L− 1)kdcosφ2

= a φ1 a φ2

for signals arriving from the broadside angles φ1 and φ2. The quantity k is the signal wave number.
a(φ) represents an arrival vector at the angle φ.

You can create a second array by translating the first array along its axis by one element distance, d.
The arrival matrix for the second array is

A2 =

eikdcosφ1

ei2kdcosφ1

⋮
eiLkdcosφ1

eikdcosφ2

ei2kdcosφ2

⋮
eiLkdcosφ2

= eikdcosφ1a φ1 eikdcosφ2a φ2

where the arrival vectors are equal to the original arrival vectors but multiplied by a direction-
dependent phase shift. When you translate the original array J –1 more times, you get J copies of the
array. If you form a single array from all these copies, then the length of the single array is M = L + (J
– 1).

In practice, you start with an M-element array and form J overlapping subarrays. The number of
elements in each subarray is L = M – J + 1. The following figure shows the relationship between the
overall length of the array, M, the number of subarrays, J, and the length of each subarray, L.

 MUSIC Super-Resolution DOA Estimation

6-9

For the pth subarray, the source signal arrival matrix is

Ap = eik p− 1 dcosφ1a φ1 eik p− 1 dcosφ2a φ2

= a φ1 a φ2
eik p− 1 dcosφ1 0

0 eik p− 1 dcosφ2
= A1Pp− 1

P =
eikdcosφ1 0

0 eikdcosφ2
.

The original arrival vector matrix is postmultiplied by a diagonal phase matrix.

The last step is averaging the signal covariance matrices over all J subarrays to form the averaged
signal covariance matrix, Ravg

s. The average signal covariance matrix depends on the smoothed
source covariance matrix, Rsmooth.

Rs
avg = A1

1
J ∑p = 1

J
Pp− 1Rs Pp− 1 H A1

H = A1RsmoothA1
H

Rsmooth = 1
J ∑p = 1

J
Pp− 1Rs Pp− 1 H .

You can show that the diagonal elements of the smoothed source covariance matrix are the same as
the diagonal elements of the original source covariance matrix.

Rii
smooth = 1

J ∑p = 1

J
Pp− 1

im Rs mn Pp− 1
ni

H = 1
J ∑p = 1

J
Rs = Rs ii

However, the off-diagonal elements are reduced. The reduction factor is the beam pattern of a J-
element array.

6 Direction-of-Arrival Estimation

6-10

Ri j
smooth = 1

J ∑p = 1

J
eikd(p− 1) cosφ1− cosφ2 Rs i j = 1

J
sin kd J cosφ1− cosφ2
sin kd cosφ1− cosφ2

Rs i j

In summary, you can reduce the degrading effect of source correlation by forming subarrays and
using the smoothed covariance matrix as input to the MUSIC algorithm. Because of the beam pattern,
larger angular separation of sources leads to reduced correlation.

Spatial smoothing for linear arrays is easily extended to 2D and 3D uniform arrays.

 MUSIC Super-Resolution DOA Estimation

6-11

Target Tracking Using Sum-Difference Monopulse Radar
This example shows how to use the phased.SumDifferenceMonopulseTracker System object™
to track a moving target. The phased.SumDifferenceMonopulseTracker tracker solves for the
direction of a target from signals arriving on a uniform linear array (ULA). The sum-difference
monopulse algorithm requires a prior estimate of the target direction which is assumed to be close to
the actual direction. In a tracker, the current estimate serves as the prior information for the next
estimate. The target is a narrowband 500 MHz emitter moving at a constant velocity of 800 kph. For
a ULA array, the steering vector depends only upon the broadside angle. The broadside angle is the
angle between the source direction and a plane normal to the linear array. Any arriving signal is
specified by its broadside angle.

Create the target platform and define its motion

Assume the target is located at [0,10000,20000] with respect to the radar in the radar's local
coordinate system. Assume that the target is moving along the y-axis toward the radar at 800 kph.

x0 = [0,10000,20000].';
v0 = -800;
v0 = v0*1000/3600;
targetplatform = phased.Platform(x0,[0,v0,0].');

Set up the ULA array

The monopulse tracker uses a ULA array which consists of 8 isotropic antenna elements. The element
spacing is set to one-half the signal wavelength.

fc = 500e6;
c = physconst('LightSpeed');
lam = c/fc;
antenna = phased.IsotropicAntennaElement('FrequencyRange',[100e6,800e6],...
 'BackBaffled',true);
array = phased.ULA('Element',antenna,'NumElements',8,...
 'ElementSpacing',lam/2);

Assume a narrowband signal. This kind of signal can be simulated using the
phased.SteeringVector System object.

steervec = phased.SteeringVector('SensorArray',array);

Tracking Loop

Initialize the tracking loop. Create the phased.SumDifferenceMonopulseTracker System object.

tracker = phased.SumDifferenceMonopulseTracker('SensorArray',array,...
 'PropagationSpeed',c,...
 'OperatingFrequency',fc);

At each time step, compute the broadside angle of the target with respect to the array. Set the step
time to 0.5 seconds.

T = 0.5;
nsteps = 40;
t = (1:nsteps)*T;

Setup data vectors for storing and displaying results

6 Direction-of-Arrival Estimation

6-12

rng = zeros(1,nsteps);
broadang_actual = zeros(1,nsteps);
broadang_est = zeros(1,nsteps);
angerr = zeros(1,nsteps);

Step through the tracking loop. First provide an estimate of the initial broadside angle. In this
simulation, the actual broadside angle is known but add an error of five degrees.

[tgtrng,tgtang_actual] = rangeangle(x0,[0,0,0].');
broadang0 = az2broadside(tgtang_actual(1),tgtang_actual(2));
broadang_prev = broadang0 + 5.0; % add some sort of error

1 Compute the actual broadside angle, broadang_actual.
2 Compute the signal, signl, from the actual broadside angle, using the

phased.SteeringVector System object.
3 Using the phased.SumDifferenceMonopulseTracker tracker, estimate the broadside angle,

broadang_est, from the signal. The broadside angle derived from a previous step serves as an
initial estimate for the current step.

4 Compute the difference between the estimated broadside angle, broadang_est, and actual
broadside angle, broadang_actual. This is a measure of how good the solution is.

for n = 1:nsteps
 x = targetplatform(T);
 [rng(n),tgtang_actual] = rangeangle(x,[0,0,0].');
 broadang_actual(n) = az2broadside(tgtang_actual(1),tgtang_actual(2));
 signl = steervec(fc,broadang_actual(n)).';
 broadang_est(n) = tracker(signl,broadang_prev);
 broadang_prev = broadang_est(n);
 angerr(n) = broadang_est(n) - broadang_actual(n);
end

Results

Plot the range as a function of time showing the point of closest approach.

plot(t,rng/1000,'-o')
xlabel('time (sec)')
ylabel('Range (km)')

 Target Tracking Using Sum-Difference Monopulse Radar

6-13

Plot the estimated broadside angle as a function of time.

plot(t,broadang_actual,'-o')
xlabel('time (sec)')
ylabel('Broadside angle (deg)')

6 Direction-of-Arrival Estimation

6-14

A monopulse tracker cannot solve for the direction angle if the angular separation between samples
is too large. The maximum allowable angular separation is approximately one-half the null-to-null
beamwidth of the array. For an 8-element, half-wavelength-spaced ULA, the half-beamwidth is
approximately 14.3 degrees at broadside. In this simulation, the largest angular difference between
samples is

maxangdiff = max(abs(diff(broadang_est)));
disp(maxangdiff)

 0.2942

The angular separation between samples is less than the half-beamwidth.

Plot the angle error. This is the difference between the estimated angle and the actual angle. The plot
shows a very small error, on the order of microdegrees.

plot(t,angerr,'-o')
xlabel('time (sec)')
ylabel('Angle error (deg)')

 Target Tracking Using Sum-Difference Monopulse Radar

6-15

See Also
Functions
musicdoa

Objects
phased.MUSICEstimator | phased.MUSICEstimator2D

6 Direction-of-Arrival Estimation

6-16

Space-Time Adaptive Processing (STAP)

• “Angle-Doppler Response” on page 7-2
• “Displaced Phase Center Antenna Pulse Canceller” on page 7-7
• “Adaptive Displaced Phase Center Antenna Pulse Canceller” on page 7-11
• “Sample Matrix Inversion Beamformer” on page 7-17

7

Angle-Doppler Response
In this section...
“Benefits of Visualizing Angle-Doppler Response” on page 7-2
“Angle-Doppler Response of Stationary Array to Stationary Target” on page 7-2
“Angle-Doppler Response to Stationary Target at Moving Array” on page 7-4

Benefits of Visualizing Angle-Doppler Response
Visualizing a signal in the angle-Doppler domain can help you identify characteristics of the signal in
direction and speed. You can distinguish among targets moving at various speeds in various
directions. If a transmitter platform is stationary, returns from stationary targets map to zero in the
Doppler domain while returns from moving targets exhibit a nonzero Doppler shift. If you visualize
the array response in the angle-Doppler domain, a stationary target produces a response at a
specified angle and zero Doppler.

You can use the phased.AngleDopplerResponse object to visualize the angle-Doppler response of
input data. The phased.AngleDopplerResponse object uses a conventional narrowband (phase
shift) beamformer and an FFT-based Doppler filter to compute the angle-Doppler response.

Angle-Doppler Response of Stationary Array to Stationary Target
Display the angle-Doppler response of a stationary array to a stationary target. The array is a six-
element uniform linear array (ULA) located at the global origin (0,0,0). The target is located at
(5000,5000,0) meters and has a nonfluctuating radar cross section (RCS) of 1 square meter.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Construct the objects needed to simulate the target response at the array.

antenna = phased.IsotropicAntennaElement...
 ('FrequencyRange',[8e8 5e9],'BackBaffled',true);
lambda = physconst('LightSpeed')/4e9;
array = phased.ULA(6,'Element',antenna,'ElementSpacing',lambda/2);
waveform = phased.RectangularWaveform('PulseWidth',2e-006,...
 'PRF',5e3,'SampleRate',1e6,'NumPulses',1);
radiator = phased.Radiator('Sensor',array,...
 'PropagationSpeed',physconst('LightSpeed'),...
 'OperatingFrequency',4e9);
collector = phased.Collector('Sensor',array,...
 'PropagationSpeed',physconst('LightSpeed'),...
 'OperatingFrequency',4e9);
txplatform = phased.Platform('InitialPosition',[0;0;0],...
 'Velocity',[0;0;0]);
target = phased.RadarTarget('MeanRCS',1,'Model','nonfluctuating');
targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],...
 'Velocity',[0;0;0]);
freespace = phased.FreeSpace('OperatingFrequency',4e9,...
 'TwoWayPropagation',false,'SampleRate',1e6);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...

7 Space-Time Adaptive Processing (STAP)

7-2

 'EnableInputPort',true,'SampleRate',1e6,'Gain',40);
transmitter = phased.Transmitter('PeakPower',1e4,...
 'InUseOutputPort',true,'Gain',40);

Propagate ten rectangular pulses to and from the target, and collect the responses at the array.

PRF = 5e3;
NumPulses = 10;
wav = waveform();
tgtloc = targetplatform.InitialPosition;
txloc = txplatform.InitialPosition;
M = waveform.SampleRate*1/PRF;
N = array.NumElements;
rxsig = zeros(M,N,NumPulses);

for n = 1:NumPulses
 % get angle to target
 [~,tgtang] = rangeangle(tgtloc,txloc);
 % transmit pulse
 [txsig,txstatus] = transmitter(wav);
 % radiate pulse
 txsig = radiator(txsig,tgtang);
 % propagate pulse to target
 txsig = freespace(txsig,txloc,tgtloc,[0;0;0],[0;0;0]);
 % reflect pulse off stationary target
 txsig = target(txsig);
 % propagate pulse to array
 txsig = freespace(txsig,tgtloc,txloc,[0;0;0],[0;0;0]);
 % collect pulse
 rxsig(:,:,n) = collector(txsig,tgtang);
 % receive pulse
 rxsig(:,:,n) = receiver(rxsig(:,:,n),~txstatus);
end

Find and plot the angle-Doppler response. Then, add the label +Target at the expected azimuth
angle and Doppler frequency.

tgtdoppler = 0;
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);
tgtcell = val2ind(tgtrng,...
 physconst('LightSpeed')/(2*waveform.SampleRate));
snapshot = shiftdim(rxsig(tgtcell,:,:)); % Remove singleton dim
response = phased.AngleDopplerResponse('SensorArray',array,...
 'OperatingFrequency',4e9, ...
 'PropagationSpeed',physconst('LightSpeed'),...
 'PRF',PRF, 'ElevationAngle',tgtelang);
plotResponse(response,snapshot);
text(tgtazang,tgtdoppler,'+Target');

 Angle-Doppler Response

7-3

As expected, the angle-Doppler response shows the greatest response at zero Doppler and 45°
azimuth.

Angle-Doppler Response to Stationary Target at Moving Array
This example illustrates the nonzero Doppler shift exhibited by a stationary target in the presence of
array motion. In general, this nonzero shift complicates the detection of slow-moving targets because
the motion-induced Doppler shift and spread of the clutter returns obscure the Doppler shifts of such
targets.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

The scenario in this example is identical to that of “Angle-Doppler Response of Stationary Array to
Stationary Target” on page 7-2 except that the ULA is moving at a constant velocity. For convenience,
the MATLAB™ code to set up the objects is repeated. Notice that the InitialPosition and
Velocity properties of the txplatform System object™ have changed. The InitialPosition
property value is set to simulate an airborne ULA. The motivation for selecting the particular value of
the Velocity property is explained in “Applicability of DPCA Pulse Canceller” on page 7-7.

antenna = phased.IsotropicAntennaElement...
 ('FrequencyRange',[8e8 5e9],'BackBaffled',true);
lambda = physconst('LightSpeed')/4e9;
array = phased.ULA(6,'Element',antenna,'ElementSpacing',lambda/2);

7 Space-Time Adaptive Processing (STAP)

7-4

waveform = phased.RectangularWaveform('PulseWidth',2e-006,...
 'PRF',5e3,'SampleRate',1e6,'NumPulses',1);
radiator = phased.Radiator('Sensor',array,...
 'PropagationSpeed',physconst('LightSpeed'),...
 'OperatingFrequency',4e9);
collector = phased.Collector('Sensor',array,...
 'PropagationSpeed',physconst('LightSpeed'),...
 'OperatingFrequency',4e9);
vy = (array.ElementSpacing*waveform.PRF)/2;
txplatform = phased.Platform('InitialPosition',[0;0;3e3],...
 'Velocity',[0;vy;0]);
target = phased.RadarTarget('MeanRCS',1,'Model','nonfluctuating');
tgtvel = [0;0;0];
targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],...
 'Velocity',tgtvel);
freespace = phased.FreeSpace('OperatingFrequency',4e9,...
 'TwoWayPropagation',false,'SampleRate',1e6);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...
 'EnableInputPort',true,'SampleRate',1e6,'Gain',40);
transmitter = phased.Transmitter('PeakPower',1e4,...
 'InUseOutputPort',true,'Gain',40);

Transmit ten rectangular pulses toward the target as the ULA is moving. Then, collect the received
echoes.

PRF = 5e3;
NumPulses = 10;
wav = waveform();
tgtloc = targetplatform.InitialPosition;
M = waveform.SampleRate*1/PRF;
N = array.NumElements;
rxsig = zeros(M,N,NumPulses);
fasttime = unigrid(0,1/waveform.SampleRate,1/PRF,'[)');
rangebins = (physconst('LightSpeed')*fasttime)/2;

for n = 1:NumPulses
 % move transmitter
 [txloc,txvel] = txplatform(1/PRF);
 % get angle to target
 [~,tgtang] = rangeangle(tgtloc,txloc);
 % transmit pulse
 [txsig,txstatus] = transmitter(wav);
 % radiate pulse
 txsig = radiator(txsig,tgtang);
 % propagate pulse to target
 txsig = freespace(txsig,txloc,tgtloc,txvel,tgtvel);
 % reflect pulse off stationary target
 txsig = target(txsig);
 % propagate pulse to array
 txsig = freespace(txsig,tgtloc,txloc,tgtvel,txvel);
 % collect pulse
 rxsig(:,:,n) = collector(txsig,tgtang);
 % receive pulse
 rxsig(:,:,n) = receiver(rxsig(:,:,n),~txstatus);
end

Calculate the target angles and range with respect to the ULA. Then, calculate the Doppler shift
induced by the motion of the phased array.

 Angle-Doppler Response

7-5

sp = radialspeed(tgtloc,tgtvel,txloc,txvel);
tgtdoppler = 2*speed2dop(sp,lambda);
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);

The two-way Doppler shift is approximately 1626 Hz. The azimuth angle is 45° and is identical to the
value obtained in the stationary ULA example.

Plot the angle-Doppler response.

tgtcell = val2ind(tgtrng,...
 physconst('LightSpeed')/(2*waveform.SampleRate));
snapshot = shiftdim(rxsig(tgtcell,:,:)); % Remove singleton dim
hadresp = phased.AngleDopplerResponse('SensorArray',array,...
 'OperatingFrequency',4e9, ...
 'PropagationSpeed',physconst('LightSpeed'),...
 'PRF',PRF, 'ElevationAngle',tgtelang);
plotResponse(hadresp,snapshot);
text(tgtazang,tgtdoppler,'+Target');

The angle-Doppler response shows the greatest response at 45° azimuth at the expected Doppler
shift.

7 Space-Time Adaptive Processing (STAP)

7-6

Displaced Phase Center Antenna Pulse Canceller
In this section...
“When to Use the DPCA Pulse Canceller” on page 7-7
“DPCA Pulse Canceller to Reject Clutter” on page 7-7

When to Use the DPCA Pulse Canceller
In a moving target indication (MTI) radar, clutter returns can make it more difficult to detect and
track the targets of interest. A rudimentary way to mitigate the effects of clutter returns in such a
system is to implement a displaced phase center antenna (DPCA) pulse canceller on the slow-time
data.

You can implement a DPCA pulse canceller with phased.DPCACanceller. This implementation
assumes that the entire array is used on transmit. On receive, the array is divided into two subarrays.
The phase centers of the subarrays are separated by twice the distance the platform moves in one
pulse repetition interval.

Applicability of DPCA Pulse Canceller

The DPCA pulse canceller is applicable when both these conditions are true:

• Clutter is stationary across pulses.
• The motion satisfies

vT = d/2 (7-1)

where:

• v indicates the speed of the platform
• T represents the pulse repetition interval
• d indicates the interelement spacing of the array

DPCA Pulse Canceller to Reject Clutter
This example implements a DPCA pulse canceller for clutter rejection. Assume you have an airborne
radar platform modeled by a six-element ULA operating at 4 GHz. The array elements are spaced at
one-half the wavelength of the 4 GHz carrier frequency. The radar emits ten rectangular pulses two
microseconds in duration with a PRF of 5 kHz. The platform moves along the array axis with a speed
equal to one-half the product of the element spacing and the PRF. DPCA pulse cancellation is
applicable because vT = d/2 where

• v indicates the speed of the platform
• T represents the pulse repetition interval
• d indicates the interelement spacing of the array

The target has a nonfluctuating RCS of 1 square meter and moves with a constant velocity vector of
(15,15,0).

PRF = 5e3;
fc = 4e9;

 Displaced Phase Center Antenna Pulse Canceller

7-7

fs = 1e6;
c = physconst('LightSpeed');
antenna = phased.IsotropicAntennaElement...
 ('FrequencyRange',[8e8 5e9],'BackBaffled',true);
lambda = c/fc;
array = phased.ULA(6,'Element',antenna,'ElementSpacing',lambda/2);
waveform = phased.RectangularWaveform('PulseWidth',2e-6,...
 'PRF',PRF,'SampleRate',fs,'NumPulses',1);
radiator = phased.Radiator('Sensor',array,...
 'PropagationSpeed',c,...
 'OperatingFrequency',fc);
collector = phased.Collector('Sensor',array,...
 'PropagationSpeed',c,...
 'OperatingFrequency',fc);
vy = (array.ElementSpacing*PRF)/2;
transmitplatform = phased.Platform('InitialPosition',[0;0;3e3],...
 'Velocity',[0;vy;0]);

target = phased.RadarTarget('MeanRCS',1,...
 'Model','Nonfluctuating','OperatingFrequency',fc);
targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],...
 'Velocity',[15;15;0]);
channel = phased.FreeSpace('OperatingFrequency',fc,...
 'TwoWayPropagation',false,'SampleRate',fs);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...
 'EnableInputPort',true,'SampleRate',fs,'Gain',40);
transmitter = phased.Transmitter('PeakPower',1e4,...
 'InUseOutputPort',true,'Gain',40);

% Load simulated clutter data
load clutterdata

Propagate ten rectangular pulses to target and back, and collect the responses at the array. Also,
compute clutter echoes using the constant gamma model with a gamma value corresponding to
wooded terrain.

NumPulses = 10;
wav = waveform();
M = fs/PRF;
N = array.NumElements;
rxsig = zeros(M,N,NumPulses);
csig = zeros(M,N,NumPulses);
fasttime = unigrid(0,1/fs,1/PRF,'[)');
rangebins = (c*fasttime)/2;

for n = 1:NumPulses
 [txloc,txvel] = transmitplatform(1/PRF); % move transmitter
 [tgtloc,tgtvel] = targetplatform(1/PRF); % move target
 [~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target
 [txsig1,txstatus] = transmitter(wav); % transmit pulse
 txsig = radiator(txsig1,tgtang); % radiate pulse
 txsig = channel(txsig,txloc,tgtloc,...
 txvel,tgtvel); % propagate to target
 txsig = target(txsig); % reflect off target
 txsig = channel(txsig,tgtloc,txloc,...
 tgtvel,txvel); % propagate to array
 rxsig(:,:,n) = collector(txsig,tgtang); % collect pulse
 rxsig(:,:,n) = receiver(rxsig(:,:,n) + csig(:,:,n),...

7 Space-Time Adaptive Processing (STAP)

7-8

 ~txstatus); % receive pulse plus clutter return
end

Determine the target range, range gate, and two-way Doppler shift.

sp = radialspeed(tgtloc,tgtvel,txloc,txvel);
tgtdoppler = 2*speed2dop(sp,lambda);
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);
tgtcell = val2ind(tgtrng,c/(2*fs));

Use noncoherent pulse integration to visualize the signal received by the ULA for the first of the ten
pulses. Mark the target range gate with a vertical dashed line.

firstpulse = pulsint(rxsig(:,:,1),'noncoherent');
plot([tgtrng/1e3 tgtrng/1e3],[0 0.1],'-.',rangebins/1e3,firstpulse)
title('Noncoherent Integration of 1st Pulse at the ULA')
xlabel('Range (km)')
ylabel('Magnitude');

The large-magnitude clutter returns obscure the presence of the target. Apply the DPCA pulse
canceller to reject the clutter.

canceller = phased.DPCACanceller('SensorArray',array,'PRF',PRF,...
 'PropagationSpeed',c,...
 'OperatingFrequency',fc,...

 Displaced Phase Center Antenna Pulse Canceller

7-9

 'Direction',[0;0],'Doppler',tgtdoppler,...
 'WeightsOutputPort',true);
[y,w] = canceller(rxsig,tgtcell);

Plot the result of applying the DPCA pulse canceller. Mark the target range gate with a vertical
dashed line.

plot([tgtrng/1e3,tgtrng/1e3],[0 3.5e-5],'-.',rangebins/1e3,abs(y))
title('DPCA Canceller Output')
xlabel('Range (km)')
ylabel('Magnitude')

The DPCA pulse canceller has significantly rejected the clutter. As a result, the target is visible at the
expected range gate.

7 Space-Time Adaptive Processing (STAP)

7-10

Adaptive Displaced Phase Center Antenna Pulse Canceller
In this section...
“When to Use the Adaptive DPCA Pulse Canceller” on page 7-11
“Adaptive DPCA Pulse Canceller To Reject Clutter and Interference” on page 7-11

When to Use the Adaptive DPCA Pulse Canceller
Consider an airborne radar system that needs to suppress clutter returns and possibly jammer
interference. Under any of the following conditions, you might choose an adaptive DPCA (ADPCA)
pulse canceller for suppressing these effects.

• Jamming and other interference effects are substantial. The DPCA pulse canceller is susceptible to
interference because the DPCA pulse canceller does not use the received data.

• The sample matrix inversion (SMI) algorithm is inapplicable because of computational expense or
a rapidly changing environment.

The phased.ADPCAPulseCanceller object implements an ADPCA pulse canceller. This pulse
canceller uses the data received from two consecutive pulses to estimate the space-time interference
covariance matrix. In particular, the object lets you specify:

• The number of training cells. The algorithm uses training cells to estimate the interference. In
general, a larger number of training cells leads to a better estimate of interference.

• The number of guard cells close to the target cells. The algorithm recognizes guard cells to
prevent target returns from contaminating the estimate of the interference.

Adaptive DPCA Pulse Canceller To Reject Clutter and Interference
This example implements an adaptive DPCA pulse canceller for clutter and interference rejection.
The scenario is identical to the one in “DPCA Pulse Canceller to Reject Clutter” on page 7-7 except
that noise equivalent to a stationary broadband barrage jammer is added at the location
(3.5e3,1e3,0). The jammer has an effective radiated power of 1 kW.

To repeat the scenario for convenience, the airborne radar platform is a six-element ULA operating at
4 GHz. The array elements are spaced at one-half the wavelength of the 4 GHz carrier frequency. The
radar emits ten rectangular pulses of two μs duration with a PRF of 5 kHz. The platform is moving
along the array axis with a speed equal to one-half the product of the element spacing and the PRF.
ADPCA pulse cancellation is applicable because vT = d/2 where

• v indicates the speed of the platform
• T represents the pulse repetition interval
• d indicates the interelement spacing of the array

The target has a nonfluctuating RCS of 1 square meter and is moving with a constant velocity vector
of (15,15,0).

PRF = 5e3;
fc = 4e9;
fs = 1e6;
c = physconst('LightSpeed');

 Adaptive Displaced Phase Center Antenna Pulse Canceller

7-11

antenna = phased.IsotropicAntennaElement...
 ('FrequencyRange',[8e8 5e9],'BackBaffled',true);
lambda = c/fc;
array = phased.ULA(6,'Element',antenna,'ElementSpacing',lambda/2);
waveform = phased.RectangularWaveform('PulseWidth', 2e-6,...
 'PRF',PRF,'SampleRate',fs,'NumPulses',1);
radiator = phased.Radiator('Sensor',array,...
 'PropagationSpeed',c,...
 'OperatingFrequency',fc);
collector = phased.Collector('Sensor',array,...
 'PropagationSpeed',c,...
 'OperatingFrequency',fc);
vy = (array.ElementSpacing * PRF)/2;
transmitterplatform = phased.Platform('InitialPosition',[0;0;3e3],...
 'Velocity',[0;vy;0]);
% Load simulated constant gamma clutter
load clutterdata
target = phased.RadarTarget('MeanRCS',1,...
 'Model','Nonfluctuating','OperatingFrequency',fc);
targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],...
 'Velocity',[15;15;0]);
% add jammer signal with 200 samples per frame and an ERP of 1000 W.
jamsig = sqrt(1000)*randn(200,1);

jammerplatform = phased.Platform(...
 'InitialPosition',[3.5e3; 1e3; 0],'Velocity',[0;0;0]);
channel = phased.FreeSpace('OperatingFrequency',fc,...
 'TwoWayPropagation',false,'SampleRate',fs);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...
 'EnableInputPort',true,'SampleRate',fs,'Gain',40);
transmitter = phased.Transmitter('PeakPower',1e4,...
 'InUseOutputPort',true,'Gain',40);

Propagate the ten rectangular pulses to the target and back and collect the responses at the array.
Compute clutter echoes using the constant gamma model with a gamma value corresponding to
wooded terrain. Also, propagate the jamming signal from the jammer location to the airborne ULA.

NumPulses = 10;
wav = waveform();
M = fs/PRF;
N = array.NumElements;
rxsig = zeros(M,N,NumPulses);
%csig = zeros(M,N,NumPulses);
jsig = zeros(M,N,NumPulses);
fasttime = unigrid(0,1/fs,1/PRF,'[)');
rangebins = (c * fasttime)/2;
receiver.SeedSource = 'Property';
receiver.Seed = 56113;
jamloc = jammerplatform.InitialPosition;

for n = 1:NumPulses
 [txloc,txvel] = transmitterplatform(1/PRF); % move transmitter
 [tgtloc,tgtvel] = targetplatform(1/PRF); % move target
 [~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target
 [txsig,txstatus] = transmitter(wav); % transmit pulse

 txsig = radiator(txsig,tgtang); % radiate pulse

7 Space-Time Adaptive Processing (STAP)

7-12

 txsig = channel(txsig,txloc,tgtloc,...
 txvel,tgtvel); % propagate pulse to target
 txsig = target(txsig); % reflect off target
 txsig = channel(txsig,tgtloc,txloc,...
 tgtvel,txvel); % propagate to array
 rxsig(:,:,n) = collector(txsig,tgtang); % collect pulse

 [~,jamang] = rangeangle(jamloc,txloc); % angle from jammer to transmitter
 jamsig = channel(jamsig,jamloc,txloc,...
 [0;0;0],txvel); % propagate jammer signal
 jsig(:,:,n) = collector(jamsig,jamang); % collect jammer signal

 rxsig(:,:,n) = receiver(...
 rxsig(:,:,n) + csig(:,:,n) + jsig(:,:,n),...
 ~txstatus); % receive pulse plus clutter return plus jammer signal
end

Determine the target range, range gate, and two-way Doppler shift.

sp = radialspeed(tgtloc, targetplatform.Velocity, ...
 txloc, transmitterplatform.Velocity);
tgtdoppler = 2*speed2dop(sp,lambda);
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);
tgtcell = val2ind(tgtrng,c/(2*fs));

Process the array responses using the nonadaptive DPCA pulse canceller. To do so, construct the
DPCA object, and apply it to the received signals.

canceller = phased.DPCACanceller('SensorArray',array,'PRF',PRF,...
 'PropagationSpeed',c,...
 'OperatingFrequency',fc,...
 'Direction',[0;0],'Doppler',tgtdoppler,...
 'WeightsOutputPort',true);
[y,w] = canceller(rxsig,tgtcell);

Plot the DPCA result with the target range marked by a vertical dashed line. Notice how the presence
of the interference signal has obscured the target.

plot([tgtrng/1e3,tgtrng/1e3],[0 7e-2],'-.',rangebins/1e3,abs(y))
axis tight
xlabel('Range (km)')
ylabel('Magnitude')
title('DPCA Canceller Output with Jamming')

 Adaptive Displaced Phase Center Antenna Pulse Canceller

7-13

Apply the adaptive DPCA pulse canceller. Use 100 training cells and 4 guard cells, two on each side of
the target range gate.

canceller = phased.ADPCACanceller('SensorArray',array,'PRF',PRF,...
 'PropagationSpeed',c,...
 'OperatingFrequency',fc,...
 'Direction',[0;0],'Doppler',tgtdoppler,...
 'WeightsOutputPort',true,'NumGuardCells',4,...
 'NumTrainingCells',100);
[y_adpca,w_adpca] = canceller(rxsig,tgtcell);

Plot the result with the target range marked by a vertical dashed line. Notice how the adaptive DPCA
pulse canceller enables you to detect the target in the presence of the jamming signal.

plot([tgtrng/1e3,tgtrng/1e3],[0 4e-7],'-.',rangebins/1e3,abs(y_adpca))
axis tight
title('ADPCA Canceller Output with Jamming')
xlabel('Range (km)')
ylabel('Magnitude')

7 Space-Time Adaptive Processing (STAP)

7-14

Examine the angle-Doppler response. Notice the presence of the clutter ridge in the angle-Doppler
plane and the null at the jammer’s broadside angle for all Doppler frequencies.

angdopplerersponse = phased.AngleDopplerResponse('SensorArray',array,...
 'OperatingFrequency',fc,...
 'PropagationSpeed',c,...
 'PRF',PRF,'ElevationAngle',tgtelang);
plotResponse(angdopplerersponse,w_adpca)
title('Angle-Doppler Response with ADPCA Pulse Cancellation')
text(az2broadside(jamang(1),jamang(2)) + 10,...
 0,'\leftarrow Interference Null')

 Adaptive Displaced Phase Center Antenna Pulse Canceller

7-15

7 Space-Time Adaptive Processing (STAP)

7-16

Sample Matrix Inversion Beamformer
In this section...
“When to Use the SMI Beamformer” on page 7-17
“Sample Matrix Inversion Beamformer” on page 7-17

When to Use the SMI Beamformer
In situations where an airborne radar system needs to suppress clutter returns and jammer
interference, the system needs a more sophisticated algorithm than a DPCA pulse canceller can
provide. One option is the sample matrix inversion (SMI) algorithm. SMI is the optimum STAP
algorithm and is often used as a baseline for comparison with other algorithms.

The SMI algorithm is computationally expensive and assumes a stationary environment across many
pulses. If you need to suppress clutter returns and jammer interference with less computation, or in a
rapidly changing environment, consider using an ADPCA pulse canceller instead.

The phased.STAPSMIBeamformer object implements the SMI algorithm. In particular, the object
lets you specify:

• The number of training cells. The algorithm uses training cells to estimate the interference. In
general, a larger number of training cells leads to a better estimate of interference.

• The number of guard cells close to the target cells. The algorithm recognizes guard cells to
prevent target returns from contaminating the estimate of the interference.

Sample Matrix Inversion Beamformer
This scenario is identical to the one presented in “Adaptive DPCA Pulse Canceller To Reject Clutter
and Interference” on page 7-11. You can run the code for both examples to compare the ADPCA pulse
canceller with the SMI beamformer. The example details and code are repeated for convenience.

To repeat the scenario for convenience, the airborne radar platform is a six-element ULA operating at
4 GHz. The array elements are spaced at one-half the wavelength of the 4 GHz carrier frequency. The
radar emits ten rectangular pulses two μs in duration with a PRF of 5 kHz. The platform is moving
along the array axis with a speed equal to one-half the product of the element spacing and the PRF.
The target has a nonfluctuating RCS of 1 square meter and is moving with a constant velocity vector
of (15,15,0). A stationary broadband barrage jammer is located at (3.5e3,1e3,0). The jammer has an
effective radiated power of 1 kW.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

PRF = 5e3;
fc = 4e9;
fs = 1e6;
c = physconst('LightSpeed');
antenna = phased.IsotropicAntennaElement...
 ('FrequencyRange',[8e8 5e9],'BackBaffled',true);
lambda = c/fc;
array = phased.ULA(6,'Element',antenna,'ElementSpacing',lambda/2);

 Sample Matrix Inversion Beamformer

7-17

waveform = phased.RectangularWaveform('PulseWidth', 2e-6,...
 'PRF',PRF,'SampleRate',fs,'NumPulses',1);
radiator = phased.Radiator('Sensor',array,...
 'PropagationSpeed',c,...
 'OperatingFrequency',fc);
collector = phased.Collector('Sensor',array,...
 'PropagationSpeed',c,...
 'OperatingFrequency',fc);
vy = (array.ElementSpacing * PRF)/2;
transmitterplatform = phased.Platform('InitialPosition',[0;0;3e3],...
 'Velocity',[0;vy;0]);
% Load simulated constant gamma clutter
load clutterdata
target = phased.RadarTarget('MeanRCS',1,...
 'Model','Nonfluctuating','OperatingFrequency',fc);
targetplatform = phased.Platform('InitialPosition',[5e3; 5e3; 0],...
 'Velocity',[15;15;0]);
% add jammer signal with 200 samples per frame and an ERP of 1000 W.
jamsig = sqrt(1000)*randn(200,1);

jammerplatform = phased.Platform(...
 'InitialPosition',[3.5e3; 1e3; 0],'Velocity',[0;0;0]);
channel = phased.FreeSpace('OperatingFrequency',fc,...
 'TwoWayPropagation',false,'SampleRate',fs);
receiverpreamp = phased.ReceiverPreamp('NoiseFigure',0,...
 'EnableInputPort',true,'SampleRate',fs,'Gain',40);
transmitter = phased.Transmitter('PeakPower',1e4,...
 'InUseOutputPort',true,'Gain',40);

Propagate the ten rectangular pulses to and from the target and collect the responses at the array.
Compute clutter echoes using the constant gamma model with a gamma value corresponding to
wooded terrain. Also, propagate the jamming signal from the jammer location to the airborne ULA.

NumPulses = 10;
wav = waveform();
M = fs/PRF;
N = array.NumElements;
rxsig = zeros(M,N,NumPulses);
%csig = zeros(M,N,NumPulses);
jsig = zeros(M,N,NumPulses);
fasttime = unigrid(0,1/fs,1/PRF,'[)');
rangebins = (c*fasttime)/2;
clutter.SeedSource = 'Property';
clutter.Seed = 40543;
jammer.SeedSource = 'Property';
jammer.Seed = 96703;
receiverpreamp.SeedSource = 'Property';
receiverpreamp.Seed = 56113;
jamloc = jammerplatform.InitialPosition;

for n = 1:NumPulses
 [txloc,txvel] = transmitterplatform(1/PRF); % move transmitter
 [tgtloc,tgtvel] = targetplatform(1/PRF); % move target
 [~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target
 [txsig,txstatus] = transmitter(wav); % transmit pulse
 %csig(:,:,n) = clutter(txsig(abs(txsig)>0)); % collect clutter

 txsig = radiator(txsig,tgtang); % radiate pulse

7 Space-Time Adaptive Processing (STAP)

7-18

 txsig = channel(txsig,txloc,tgtloc,...
 txvel,tgtvel); % propagate pulse to target
 txsig = target(txsig); % reflect off target
 txsig = channel(txsig,tgtloc,txloc,...
 tgtvel,txvel); % propagate to array
 rxsig(:,:,n) = collector(txsig,tgtang); % collect pulse

 %jamsig = jammer(); % generate jammer signal
 [~,jamang] = rangeangle(jamloc,txloc); % angle from jammer to transmitter
 jamsig = channel(jamsig,jamloc,txloc,...
 [0;0;0],txvel); % propagate jammer signal
 jsig(:,:,n) = collector(jamsig,jamang); % collect jammer signal

 rxsig(:,:,n) = receiverpreamp(...
 rxsig(:,:,n) + csig(:,:,n) + jsig(:,:,n),...
 ~txstatus); % receive pulse plus clutter return plus jammer signal
end

Determine the target's range, range gate, and two-way Doppler shift.

sp = radialspeed(tgtloc, targetplatform.Velocity, ...
 txloc, transmitterplatform.Velocity);
tgtdoppler = 2*speed2dop(sp,lambda);
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);
tgtcell = val2ind(tgtrng,c/(2 * fs));

Construct an SMI beamformer object. Use 100 training cells, 50 on each side of the target range
gate. Use four guard cells, two range gates in front of the target cell and two range gates beyond the
target cell. Obtain the beamformer response and weights.

tgtang = [tgtazang; tgtelang];
beamformer = phased.STAPSMIBeamformer('SensorArray',array,...
 'PRF',PRF,'PropagationSpeed',c,...
 'OperatingFrequency',fc,...
 'Direction',tgtang,'Doppler',tgtdoppler,...
 'WeightsOutputPort',true,...
 'NumGuardCells',4,'NumTrainingCells',100);
[y,weights] = beamformer(rxsig,tgtcell);

Plot the resulting array output after beamforming.

plot([tgtrng,tgtrng],[0 5e-6],'-.',rangebins,abs(y))
axis tight
title('SMI Beamformer Output')
xlabel('Range (meters)')
ylabel('Magnitude')

 Sample Matrix Inversion Beamformer

7-19

Plot the angle-Doppler response with the beamforming weights.

response = phased.AngleDopplerResponse('SensorArray',array,...
 'OperatingFrequency',4e9,'PRF',PRF,...
 'PropagationSpeed',physconst('LightSpeed'));
plotResponse(response,weights)
title('Angle-Doppler Response with SMI Beamforming Weights')

7 Space-Time Adaptive Processing (STAP)

7-20

 Sample Matrix Inversion Beamformer

7-21

Detection

• “Neyman-Pearson Hypothesis Testing” on page 8-2
• “Receiver Operating Characteristics” on page 8-6
• “Monte-Carlo ROC Simulation” on page 8-11
• “Matched Filtering” on page 8-19
• “Stretch Processing” on page 8-25
• “FMCW Range Estimation” on page 8-27
• “Range-Doppler Response” on page 8-29
• “Constant False-Alarm Rate (CFAR) Detectors” on page 8-34
• “Measure Intensity Levels Using the Intensity Scope” on page 8-41

8

Neyman-Pearson Hypothesis Testing
In this section...
“Purpose of Hypothesis Testing” on page 8-2
“Support for Neyman-Pearson Hypothesis Testing” on page 8-2
“Threshold for Real-Valued Signal in White Gaussian Noise” on page 8-2
“Threshold for Two Pulses of Real-Valued Signal in White Gaussian Noise” on page 8-4
“Threshold for Complex-Valued Signals in Complex White Gaussian Noise” on page 8-4

Purpose of Hypothesis Testing
In phased-array applications, you sometimes need to decide between two competing hypotheses to
determine the reality underlying the data the array receives. For example, suppose one hypothesis,
called the null hypothesis, states that the observed data consists of noise only. Suppose another
hypothesis, called the alternative hypothesis, states that the observed data consists of a deterministic
signal plus noise. To decide, you must formulate a decision rule that uses specified criteria to choose
between the two hypotheses.

Support for Neyman-Pearson Hypothesis Testing
When you use Phased Array System Toolbox software for applications such as radar and sonar, you
typically use the Neyman-Pearson (NP) optimality criterion to formulate your hypothesis test.

When you choose the NP criterion, you can use npwgnthresh to determine the threshold for the
detection of deterministic signals in white Gaussian noise. The optimal decision rule derives from a
likelihood ratio test (LRT). An LRT chooses between the null and alternative hypotheses based on a
ratio of conditional probabilities.

npwgnthresh enables you to specify the maximum false-alarm probability as a constraint. A false
alarm means determining that the data consists of a signal plus noise, when only noise is present.

For details about the statistical assumptions the npwgnthresh function makes, see the reference
page for that function.

Threshold for Real-Valued Signal in White Gaussian Noise
This example shows how to compute empirically the probability of false alarm for a real-valued signal
in white Gaussian noise.

Determine the required signal-to-noise (SNR) in decibels for the NP detector when the maximum
tolerable false-alarm probability is 10^-3.

Pfa = 1e-3;
T = npwgnthresh(Pfa,1,'real');

Determine the actual detection threshold corresponding to the desired false-alarm probability,
assuming the variance is 1.

variance = 1;
threshold = sqrt(variance * db2pow(T));

8 Detection

8-2

Verify empirically that the detection threshold results in the desired false-alarm probability under the
null hypothesis. To do so, generate 1 million samples of a Gaussian random variable, and determine
the proportion of samples that exceed the threshold.

rng default
N = 1e6;
x = sqrt(variance) * randn(N,1);
falsealarmrate = sum(x > threshold)/N

falsealarmrate = 9.9500e-04

Plot the first 10,000 samples. The red horizontal line shows the detection threshold.

x1 = x(1:1e4);
plot(x1)
line([1 length(x1)],[threshold threshold],'Color','red')
xlabel('Sample')
ylabel('Value')

You can see that few sample values exceed the threshold. This result is expected because of the small
false-alarm probability.

 Neyman-Pearson Hypothesis Testing

8-3

Threshold for Two Pulses of Real-Valued Signal in White Gaussian
Noise
This example shows how to empirically verify the probability of false alarm in a system that
integrates two real-valued pulses. In this scenario, each integrated sample is the sum of two samples,
one from each pulse.

Determine the required SNR for the NP detector when the maximum tolerable false-alarm probability
is 10−3.

pfa = 1e-3;
T = npwgnthresh(pfa,2,'real');

Generate two sets of one million samples of a Gaussian random variable.

rng default
variance = 1;
N = 1e6;
pulse1 = sqrt(variance)*randn(N,1);
pulse2 = sqrt(variance)*randn(N,1);
intpuls = pulse1 + pulse2;

Compute the proportion of samples that exceed the threshold.

threshold = sqrt(variance*db2pow(T));
falsealarmrate = sum(intpuls > threshold)/N

falsealarmrate = 9.8900e-04

The empirical false alarm rate is very close to .001

Threshold for Complex-Valued Signals in Complex White Gaussian
Noise
This example shows how to empirically verify the probability of false alarm in a system that uses
coherent detection of complex-valued signals. Coherent detection means that the system utilizes
information about the phase of the complex-valued signals.

Determine the required SNR for the NP detector in a coherent detection scheme with one sample.
Use a maximum tolerable false-alarm probability of 10−3.

pfa = 1e-3;
T = npwgnthresh(pfa,1,'coherent');

Test that this threshold empirically results in the correct false-alarm rate The sufficient statistic in the
complex-valued case is the real part of the received sample.

rng default
variance = 1;
N = 1e6;
x = sqrt(variance/2)*(randn(N,1)+1j*randn(N,1));
threshold = sqrt(variance*db2pow(T));
falsealarmrate = sum(real(x)>threshold)/length(x)

falsealarmrate = 9.9500e-04

8 Detection

8-4

 Neyman-Pearson Hypothesis Testing

8-5

Receiver Operating Characteristics
Receiver Operating Characteristic (ROC) curves present graphical summaries of a detector's
performance. You can generate ROC curves using the rocpfa and rocsnr functions.

If you are interested in examining the effect of varying the false-alarm probability on the probability
of detection for a fixed SNR, you can use rocsnr. For example, the threshold SNR for the Neyman-
Pearson detector of a single sample in real-valued Gaussian noise is approximately 13.5 dB. Use
rocsnr to plot the probability of detection varies as a function of the false-alarm rate at that SNR.

T = npwgnthresh(1e-6,1,'real');
rocsnr(T,'SignalType','real')

The ROC curve lets you easily read off the probability of detection for a given false-alarm rate.

You can use rocsnr to examine detector performance for different received signal types at a fixed
SNR.

SNR = 13.54;
[Pd_real,Pfa_real] = rocsnr(SNR,'SignalType','real',...
 'MinPfa',1e-8);
[Pd_coh,Pfa_coh] = rocsnr(SNR,...
 'SignalType','NonfluctuatingCoherent',...
 'MinPfa',1e-8);
[Pd_noncoh,Pfa_noncoh] = rocsnr(SNR,'SignalType',...
 'NonfluctuatingNoncoherent','MinPfa',1e-8);

8 Detection

8-6

semilogx(Pfa_real,Pd_real)
hold on
grid on
semilogx(Pfa_coh,Pd_coh,'r')
semilogx(Pfa_noncoh,Pd_noncoh,'k')
xlabel('False-Alarm Probability')
ylabel('Probability of Detection')
legend('Real','Coherent','Noncoherent','location','southeast')
title('ROC Curve Comparison for Nonfluctuating RCS Target')
hold off

The ROC curves clearly demonstrate the superior probability of detection performance for coherent
and noncoherent detectors over the real-valued case.

The rocsnr function accepts an SNR vector input letting you quickly examine a number of ROC
curves.

SNRs = (6:2:12);
rocsnr(SNRs,'SignalType','NonfluctuatingNoncoherent')

 Receiver Operating Characteristics

8-7

The graph shows that, as the SNR increases, the supports of the probability distributions under the
null and alternative hypotheses become more disjointed. Therefore, for a given false-alarm
probability, the probability of detection increases.

You can examine the probability of detection as a function of SNR for a fixed false-alarm probability
with rocpfa. To obtain ROC curves for a Swerling I target model at false-alarm probabilities of
(1e-6,1e-4,1e-2,1e-1), use

Pfa = [1e-6 1e-4 1e-2 1e-1];
rocpfa(Pfa,'SignalType','Swerling1')

8 Detection

8-8

Use rocpfa to examine the effect of SNR on the probability of detection for a detector using
noncoherent integration with a false-alarm probability of 1e-4. Assume the target has a
nonfluctuating RCS and that you are integrating over 5 pulses.

[Pd,SNR] = rocpfa(1e-4,...
 'SignalType','NonfluctuatingNoncoherent',...
 'NumPulses',5);
figure;
plot(SNR,Pd); xlabel('SNR (dB)');
ylabel('Probability of Detection'); grid on;
title('Nonfluctuating Noncoherent Detector (5 Pulses)');

 Receiver Operating Characteristics

8-9

See Also

Related Examples
• Detector Performance Analysis using ROC Curves

8 Detection

8-10

Monte-Carlo ROC Simulation
This example shows how to generate a receiver operating characteristic (ROC) curve of a radar
system using a Monte-Carlo simulation. The receiver operating characteristic determines how well
the system can detect targets while rejecting large spurious signal values when a target is absent
(false alarms). A detection system will declare presence or absence of a target by comparing the
received signal value to a preset threshold. The probability of detection (Pd) of a target is the
probability that the instantaneous signal value is larger than the threshold whenever a target is
actually present. The probability of false alarm (Pfa) is the probability that the signal value is larger
than the threshold when a target is absent. In this case, the signal is due to noise and its properties
depend on the noise statistics. The Monte-Carlo simulation generates a very large number of radar
returns with and without a target present. The simulation computes Pd and Pfa are by counting the
proportion of signal values in each case that exceed the threshold.

A ROC curve plots Pd as a function of Pfa. The shape of a ROC curve depends on the received SNR of
the signal. If the arriving signal SNR is known, then the ROC curve shows how well the system
performs in terms of Pd and Pfa. If you specify Pd and Pfa, then you can determine how much power
is needed to achieve this requirement.

You can use the function rocsnr to compute theoretical ROC curves. This example shows a ROC
curve generated by a Monte-Carlo simulation of a single-antenna radar system and compares that
curve with a theoretical curve.

Specify Radar Requirements

Set the desired probability of detection to be 0.9 and the probability of false alarm to be 10−6. Set the
maximum range of the radar to 4000 meters and the range resolution to 50 meters. Set the actual
target range to 3000 meters. Set the target radar cross-section to 1.5 square meters and set the
operating frequency to 10 GHz. All computations are performed in baseband.

c = physconst('LightSpeed');
pd = 0.9;
pfa = 1e-6;
max_range = 4000;
target_range = 3000.0;
range_res = 50;
tgt_rcs = 1.5;
fc = 10e9;
lambda = c/fc;

Any simulation that computes Pfa and pd requires processing of many signals. To keep memory
requirements low, process the signals in chunks of pulses. Set the number of pulses to process to
45000 and set the size of each chunk to 10000.

Npulse = 45000;
Npulsebuffsize = 10000;

Select Waveform and Signal Parameters

Calculate the waveform pulse bandwidth using the pulse range resolution. Calculate the pulse
repetition frequency from the maximum range. Because the signal is baseband, set the sampling
frequency to twice the bandwidth. Calculate the pulse duration from the pulse bandwidth.

pulse_bw = c/(2*range_res);
prf = c/(2*max_range);

 Monte-Carlo ROC Simulation

8-11

fs = 2*pulse_bw;
pulse_duration = 10/pulse_bw;
waveform = phased.LinearFMWaveform('PulseWidth',pulse_duration,...
 'SampleRate',fs,'SweepBandwidth',...
 pulse_bw,'PRF',prf);

Achieving a particular Pd and Pfa requires that sufficient signal power arrive at the receiver after the
target reflects the signal. Compute the minimum SNR needed to achieve the specified probability of
false alarm and probability of detection by using the Albersheim equation.

snr_min = albersheim(pd,pfa);

To achieve this SNR, sufficient power must be transmitted to the target. Use the radar equation to
estimate the peak transmit power, peak_power, required to achieve the specified SNR in dB for the
target at a range of 3000 meters. The received signal also depends on the target radar cross-section
(RCS). which is assumed to follow a nonfluctuating model (Swerling 0). Set the radar to have
identical transmit and receive gains of 20 dB. The radar equation is given

txrx_gain = 20;
peak_power = ((4*pi)^3*noisepow(1/pulse_duration)*target_range^4*...
 db2pow(snr_min))/(db2pow(2*txrx_gain)*tgt_rcs*lambda^2)

peak_power = 293.1830

Set Up the Transmitter System Objects

Create System objects that make up the transmission part of the simulation: radar platform, antenna,
transmitter, and radiator.

antennaplatform = phased.Platform(...
 'InitialPosition',[0; 0; 0],...
 'Velocity',[0; 0; 0]);
antenna = phased.IsotropicAntennaElement(...
 'FrequencyRange',[5e9 15e9]);
transmitter = phased.Transmitter(...
 'Gain',txrx_gain,...
 'PeakPower',peak_power,...
 'InUseOutputPort',true);
radiator = phased.Radiator(...
 'Sensor',antenna,...
 'OperatingFrequency',fc);

Set Up the Target System Object

Create a target System objec™ corresponding to an actual reflecting target with a non-zero target
cross-section. Reflections from this target will simulate actual radar returns. In order to compute
false alarms, create a second target System object with zero radar cross section. Reflections from this
target are zero except for noise.

target{1} = phased.RadarTarget(...
 'MeanRCS',tgt_rcs,...
 'OperatingFrequency',fc);
targetplatform{1} = phased.Platform(...
 'InitialPosition',[target_range; 0; 0]);
target{2} = phased.RadarTarget(...
 'MeanRCS',0,...
 'OperatingFrequency',fc);

8 Detection

8-12

targetplatform{2} = phased.Platform(...
 'InitialPosition',[target_range; 0; 0]);

Set Up Free-Space Propagation System Objects

Model the propagation environment from the radar to the targets and back.

channel{1} = phased.FreeSpace(...
 'SampleRate',fs,...
 'TwoWayPropagation',true,...
 'OperatingFrequency',fc);
channel{2} = phased.FreeSpace(...
 'SampleRate',fs,...
 'TwoWayPropagation',true,...
 'OperatingFrequency',fc);

Set Up Receiver System Objects

Specify the noise by setting the NoiseMethod property to 'Noise temperature' and the
ReferenceTemperature property to 290 K.

collector = phased.Collector(...
 'Sensor',antenna,...
 'OperatingFrequency',fc);
receiver = phased.ReceiverPreamp(...
 'Gain',txrx_gain,...
 'NoiseMethod','Noise temperature',...
 'ReferenceTemperature',290.0,...
 'NoiseFigure',0,...
 'SampleRate',fs,...
 'EnableInputPort',true);
receiver.SeedSource = 'Property';
receiver.Seed = 2010;

Specify Fast-Time Grid

The fast-time grid is the set of time samples within one pulse repetition time interval. Each sample
corresponds to a range bin.

fast_time_grid = unigrid(0,1/fs,1/prf,'[)');
rangebins = c*fast_time_grid/2;

Create Transmitted Pulse from Waveform

Create the waveform you want to transmit.

wavfrm = waveform();

Create the transmitted signal that includes transmitted antenna gains.

[sigtrans,tx_status] = transmitter(wavfrm);

Create matched filter coefficients from the waveform System object. Then create the matched filter
System object.

MFCoeff = getMatchedFilter(waveform);
matchingdelay = size(MFCoeff,1) - 1;
filter = phased.MatchedFilter(...

 Monte-Carlo ROC Simulation

8-13

 'Coefficients',MFCoeff,...
 'GainOutputPort',false);

Compute Target Range Bin

Compute the target range, and then compute the index into the range bin array. Because the target
and radar are stationary, use the same values of position and velocity throughout the simulation loop.
You can assume that the range bin index is constant for the entire simulation.

ant_pos = antennaplatform.InitialPosition;
ant_vel = antennaplatform.Velocity;
tgt_pos = targetplatform{1}.InitialPosition;
tgt_vel = targetplatform{1}.Velocity;
[tgt_rng,tgt_ang] = rangeangle(tgt_pos,ant_pos);
rangeidx = val2ind(tgt_rng,rangebins(2)-rangebins(1),rangebins(1));

Loop Over Pulses

Create a signal processing loop. Each step is accomplished by executing the System objects. The loop
processes the pulses twice, once for the target-present condition and once for target-absent
condition.

1 Radiate the signal into space using phased.Radiator.
2 Propagate the signal to the target and back to the antenna using phased.FreeSpace.
3 Reflect the signal from the target using phased.Target.
4 Receive the reflected signals at the antenna using phased.Collector.
5 Pass the received signal though the receive amplifier using phased.ReceiverPreamp. This step

also adds the random noise to the signal.
6 Match filter the amplified signal using phased.MatchedFilter.
7 Store the matched filter output at the target range bin index for further analysis.

rcv_pulses = zeros(length(sigtrans),Npulsebuffsize);
h1 = zeros(Npulse,1);
h0 = zeros(Npulse,1);
Nbuff = floor(Npulse/Npulsebuffsize);
Nrem = Npulse - Nbuff*Npulsebuffsize;
for n = 1:2 % H1 and H0 Hypothesis
 trsig = radiator(sigtrans,tgt_ang);
 trsig = channel{n}(trsig,...
 ant_pos,tgt_pos,...
 ant_vel,tgt_vel);
 rcvsig = target{n}(trsig);
 rcvsig = collector(rcvsig,tgt_ang);

 for k = 1:Nbuff
 for m = 1:Npulsebuffsize
 rcv_pulses(:,m) = receiver(rcvsig,~(tx_status>0));
 end
 rcv_pulses = filter(rcv_pulses);
 rcv_pulses = buffer(rcv_pulses(matchingdelay+1:end),size(rcv_pulses,1));
 if n == 1
 h1((1:Npulsebuffsize) + (k-1)*Npulsebuffsize) = rcv_pulses(rangeidx,:).';
 else
 h0((1:Npulsebuffsize) + (k-1)*Npulsebuffsize) = rcv_pulses(rangeidx,:).';
 end

8 Detection

8-14

 end
 if (Nrem > 0)
 for m = 1:Nrem
 rcv_pulses(:,m) = receiver(rcvsig,~(tx_status>0));
 end
 rcv_pulses = filter(rcv_pulses);
 rcv_pulses = buffer(rcv_pulses(matchingdelay+1:end),size(rcv_pulses,1));
 if n == 1
 h1((1:Nrem) + Nbuff*Npulsebuffsize) = rcv_pulses(rangeidx,1:Nrem).';
 else
 h0((1:Nrem) + Nbuff*Npulsebuffsize) = rcv_pulses(rangeidx,1:Nrem).';
 end
 end
end

Create Histogram of Matched Filter Outputs

Compute histograms of the target-present and target-absent returns. Use 100 bins to give a rough
estimate of the spread of signal values. Set the range of histogram values from the smallest signal to
the largest signal.

h1a = abs(h1);
h0a = abs(h0);
thresh_low = min([h1a;h0a]);
thresh_hi = max([h1a;h0a]);
nbins = 100;
binedges = linspace(thresh_low,thresh_hi,nbins);
figure
histogram(h0a,binedges)
hold on
histogram(h1a,binedges)
hold off
title('Target-Absent Vs Target-Present Histograms')
legend('Target Absent','Target Present')

 Monte-Carlo ROC Simulation

8-15

Compare Simulated and Theoretical Pd and Pfa

To compute Pd and Pfa, calculate the number of instances that a target-absent return and a target-
present return exceed a given threshold. This set of thresholds has a finer granularity than the bins
used to create the histogram in the previous simulation. Then, normalize these counts by the number
of pulses to get an estimate of the probabilities. The vector sim_pfa is the simulated probability of
false alarm as a function of the threshold, thresh. The vector sim_pd is the simulated probability of
detection, also a function of the threshold. The receiver sets the threshold so that it can determine
whether a target is present or absent. The histogram above suggests that the best threshold is
around 1.8.

nbins = 1000;
thresh_steps = linspace(thresh_low,thresh_hi,nbins);
sim_pd = zeros(1,nbins);
sim_pfa = zeros(1,nbins);
for k = 1:nbins
 thresh = thresh_steps(k);
 sim_pd(k) = sum(h1a >= thresh);
 sim_pfa(k) = sum(h0a >= thresh);
end
sim_pd = sim_pd/Npulse;
sim_pfa = sim_pfa/Npulse;

To plot the experimental ROC curve, you must invert the Pfa curve so that you can plot Pd against
Pfa. You can invert the Pfa curve only when you can express Pfa as a strictly monotonic decreasing
function of thresh. To express Pfa this way, find all array indices where the Pfa is the constant over
neighboring indices. Then, remove these values from the Pd and Pfa arrays.

8 Detection

8-16

pfa_diff = diff(sim_pfa);
idx = (pfa_diff == 0);
sim_pfa(idx) = [];
sim_pd(idx) = [];

Limit the smallest Pfa to 10−6.

minpfa = 1e-6;
N = sum(sim_pfa >= minpfa);
sim_pfa = fliplr(sim_pfa(1:N)).';
sim_pd = fliplr(sim_pd(1:N)).';

Compute the theoretical Pfa and Pd values from the smallest Pfa to 1. Then plot the theoretical Pfa
curve.

[theor_pd,theor_pfa] = rocsnr(snr_min,'SignalType',...
 'NonfluctuatingNoncoherent',...
 'MinPfa',minpfa,'NumPoints',N,'NumPulses',1);
semilogx(theor_pfa,theor_pd)
hold on
semilogx(sim_pfa,sim_pd,'r.')
title('Simulated and Theoretical ROC Curves')
xlabel('Pfa')
ylabel('Pd')
grid on
legend('Theoretical','Simulated','Location','SE')

 Monte-Carlo ROC Simulation

8-17

Improve Simulation Using One Million Pulses

In the preceding simulation, Pd values at low Pfa do not fall along a smooth curve and do not even
extend down to the specified operating regime. The reason for this is that at very low Pfa levels, very
few, if any, samples exceed the threshold. To generate curves at low Pfa, you must use a number of
samples on the order of the inverse of Pfa. This type of simulation takes a long time. The following
curve uses one million pulses instead of 45,000. To run this simulation, repeat the example, but set
Npulse to 1000000.

8 Detection

8-18

Matched Filtering
In this section...
“Reasons for Using Matched Filtering” on page 8-19
“Support for Matched Filtering” on page 8-19
“Matched Filtering of Linear FM Waveform” on page 8-19
“Matched Filtering to Improve SNR for Target Detection” on page 8-21

Reasons for Using Matched Filtering
You can see from the results in “Receiver Operating Characteristics” on page 8-6 that the probability
of detection increases with increasing SNR. For a deterministic signal in white Gaussian noise, you
can maximize the SNR at the receiver by using a filter matched to the signal. The matched filter is a
time-reversed and conjugated version of the signal. The matched filter is shifted to be causal.

Support for Matched Filtering
Use phased.MatchedFilter to implement a matched filter.

When you use phased.MatchedFilter, you can customize characteristics of the matched filter
such as the matched filter coefficients and window for spectrum weighting. If you apply spectrum
weighting, you can specify the coverage region and coefficient sample rate; Taylor, Chebyshev, and
Kaiser windows have additional properties you can specify.

Matched Filtering of Linear FM Waveform
This example compares the results of matched filtering with and without spectrum weighting.
Spectrum weighting is often used with linear FM waveforms to reduce the sidelobes in the time
domain.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create a linear FM waveform with a duration of 0.1 milliseconds, a sweep bandwidth of 100 kHz, and
a pulse repetition frequency of 5 kHz. Add noise to the linear FM pulse and filter the noisy signal
using a matched filter. This example applies a matched filter with and without spectrum weighting.

Specify the waveform.

waveform = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3,...
 'SampleRate',1e6,'OutputFormat','Pulses','NumPulses',1,...
 'SweepBandwidth',1e5);
wav = getMatchedFilter(waveform);

Create a matched filter with no spectrum weighting, and a matched filter that uses a Taylor window
for spectrum weighting.

filter = phased.MatchedFilter('Coefficients',wav);
taylorfilter = phased.MatchedFilter('Coefficients',wav,...
 'SpectrumWindow','Taylor');

 Matched Filtering

8-19

Create the signal and add noise.

sig = waveform();
rng(17)
x = sig + 0.5*(randn(length(sig),1) + 1j*randn(length(sig),1));

Filter the noisy signal separately with each of the filters.

y = filter(x);
y_taylor = taylorfilter(x);

Plot the real parts of the waveform and noisy signal.

t = linspace(0,numel(sig)/waveform.SampleRate,...
 waveform.SampleRate/waveform.PRF);
subplot(2,1,1)
plot(t,real(sig))
title('Input Signal')
xlim([0 max(t)])
grid on
ylabel('Amplitude')
subplot(2,1,2)
plot(t,real(x))
title('Input Signal + Noise')
xlim([0 max(t)])
grid on
xlabel('Time (sec)')
ylabel('Amplitude')

8 Detection

8-20

Plot the magnitudes of the two matched filter outputs.

plot(t,abs(y),'b--')
title('Matched Filter Output')
xlim([0 max(t)])
grid on
hold on
plot(t,abs(y_taylor),'r-')
ylabel('Magnitude')
xlabel('Seconds')
legend('No Spectrum Weighting','Taylor Window')
hold off

Matched Filtering to Improve SNR for Target Detection
This example shows how to improve the SNR by performing matched filtering.

Place an isotropic antenna element at the global origin (0;0;0). Then, place a target with a
nonfluctuating RCS of 1 square meter approximately 7 km from the transmitter at (5000;5000;10).
Set the operating (carrier) frequency to 10 GHz. To simulate a monostatic radar, set the
InUseOutputPort property on the transmitter to true. Calculate the range and angle from the
transmitter to the target.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[5e9 15e9]);
transmitter = phased.Transmitter('Gain',20,'InUseOutputPort',true);
fc = 10e9;

 Matched Filtering

8-21

target = phased.RadarTarget('Model','Nonfluctuating',...
 'MeanRCS',1,'OperatingFrequency',fc);
txloc = [0;0;0];
tgtloc = [5000;5000;10];
transmitterplatform = phased.Platform('InitialPosition',txloc);
targetplatform = phased.Platform('InitialPosition',tgtloc);
[tgtrng,tgtang] = rangeangle(targetplatform.InitialPosition,...
 transmitterplatform.InitialPosition);

Create a rectangular pulse waveform 25 μs in duration with a PRF of 10 kHz. Use a single pulse for
this example. Determine the maximum unambiguous range for the given PRF. Use the radar equation
to determine the peak power required to detect a target. This target has an RCS of 1 square meter at
the maximum unambiguous range for the transmitter operating frequency and gain. The SNR is
based on a desired false-alarm rate of 1e-6 for a noncoherent detector.

waveform = phased.RectangularWaveform('PulseWidth',25e-6,...
 'OutputFormat','Pulses','PRF',10e3,'NumPulses',1);
c = physconst('LightSpeed');
maxrange = c/(2*waveform.PRF);
SNR = npwgnthresh(1e-6,1,'noncoherent');

lambda = physconst('LightSpeed')/target.OperatingFrequency;
Ts = 290;
dbterms = db2pow(SNR - 2*transmitter.Gain);
Pt = (4*pi)^3*physconst('Boltzmann')*Ts/waveform.PulseWidth/target.MeanRCS/(lambda^2)*maxrange^4*dbterms;

Set the peak transmit power to the output value from the radar equation.

transmitter.PeakPower = Pt;

Create radiator and collector objects that operate at 10 GHz. Create a free space path for the
propagation of the pulse to and from the target. Then, create a receiver and a matched filter for the
rectangular waveform.

radiator = phased.Radiator('PropagationSpeed',c,...
 'OperatingFrequency',fc,'Sensor',antenna);
channel = phased.FreeSpace('PropagationSpeed',c,...
 'OperatingFrequency',fc,'TwoWayPropagation',false);
collector = phased.Collector('PropagationSpeed',c,...
 'OperatingFrequency',fc,'Sensor',antenna);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...
 'EnableInputPort',true,'SeedSource','Property','Seed',2e3);
filter = phased.MatchedFilter(...
 'Coefficients',getMatchedFilter(waveform),...
 'GainOutputPort',true);

After you create all the objects that define your model, you can propagate the pulse to and from the
target. Collect the echo at the receiver, and implement the matched filter to improve the SNR.

Generate waveform.

wf = waveform();

Transmit waveform.

[wf,txstatus] = transmitter(wf);

Radiate pulse toward the target.

8 Detection

8-22

wf = radiator(wf,tgtang);

Propagate pulse toward the target.

wf = channel(wf,txloc,tgtloc,[0;0;0],[0;0;0]);

Reflect it off the target.

wf = target(wf);

Propagate the pulse back to transmitter.

wf = channel(wf,tgtloc,txloc,[0;0;0],[0;0;0]);

Collect the echo.

wf = collector(wf,tgtang);

Receive target echo.

rx_puls = receiver(wf,~txstatus);
[mf_puls,mfgain] = filter(rx_puls);

Get group delay of matched filter.

Gd = length(filter.Coefficients)-1;

The group delay is constant.

Shift the matched filter output.

mf_puls=[mf_puls(Gd+1:end); mf_puls(1:Gd)];
subplot(2,1,1)
t = unigrid(0,1e-6,1e-4,'[)');
rangegates = c.*t;
rangegates = rangegates/2;
plot(rangegates,abs(rx_puls))
title('Received Pulse')
ylabel('Amplitude')
hold on
plot([tgtrng, tgtrng], [0 max(abs(rx_puls))],'r')
subplot(2,1,2)
plot(rangegates,abs(mf_puls))
title('With Matched Filtering')
xlabel('Meters')
ylabel('Amplitude')
hold on
plot([tgtrng, tgtrng], [0 max(abs(mf_puls))],'r')
hold off

 Matched Filtering

8-23

8 Detection

8-24

Stretch Processing
In this section...
“Reasons for Using Stretch Processing” on page 8-25
“Support for Stretch Processing” on page 8-25
“Stretch Processing Procedure” on page 8-25

Reasons for Using Stretch Processing
The linear FM waveform is popular in radar systems because its large time-bandwidth product can
provide good range resolution. However, the large bandwidth of this waveform makes digital matched
filtering difficult because it requires expensive, high-quality analog-to-digital converters. Stretch
processing, also known as deramping or dechirping, is an alternative to matched filtering. Stretch
processing provides pulse compression by looking for the return within a predefined range interval of
interest. Stretch processing typically occurs in the analog domain. Unlike matched filtering, stretch
processing reduces the bandwidth requirement of subsequent processing.

Support for Stretch Processing
The phased.StretchProcessor System object implements stretch processing. You can use this
object as part of a simulation that uses phased.LinearFMWaveform or directly with your own data.

Stretch Processing Procedure
The typical procedure for stretch processing is as follows:

1 Choose a range interval of interest, centered on a reference range. Stretch processing focuses on
this interval instead of the entire range span that the pulse can cover.

2 Define and configure a stretch processor object. The configuration includes the reference range,
length of the range interval of interest, characteristics of the linear FM waveform, and signal
propagation speed.

• If you are using a phased.LinearFMWaveform object to implement the linear FM waveform,
use the getStretchProcessor method to define and automatically configure a stretch
processor object.

• Otherwise, create a phased.StretchProcessor object directly, and set its properties as
needed.

3 Perform stretch processing by calling the step method on your stretch processor object. You
provide your received signal as an input argument. The step method generates a reference
signal and correlates it with your received signal.

4 Compute a periodogram of the output from step, and identify the peak frequencies. You can use
the following features to help you perform this step:

• periodogram
• psd
• findpeaks

5 Convert each peak frequency to the corresponding range value, using the stretchfreq2rng
function.

 Stretch Processing

8-25

See Also
phased.StretchProcessor | phased.LinearFMWaveform | stretchfreq2rng | periodogram |
findpeaks

Related Examples
• Range Estimation Using Stretch Processing

8 Detection

8-26

FMCW Range Estimation
The purpose of FMCW range estimation is to estimate the range of a target. For example, a radar for
collision avoidance in an automobile needs to estimate the distance to the nearest obstacle. FMCW
range estimation algorithms can vary in the details, but the typical high-level procedure is as follows:

1 Dechirp — Dechirp the received signal by mixing it with the transmitted signal. If you use the
dechirp function, the transmitted signal is the reference signal.

2 Find beat frequency — From the dechirped signal, extract the beat frequency or pair of beat
frequencies. If the FMCW signal has a sawtooth shape (up-sweep or down-sweep sawtooth
shape), you extract one beat frequency. If the FMCW signal has a triangular sweep, you extract
up-sweep and down-sweep beat frequencies.

Extracting beat frequencies can use a variety of algorithms. For example, you can use the
following features to help you perform this step:

• pwelch or periodogram
• psd
• findpeaks
• rootmusic
• phased.CFARDetector

3 Compute range — Use the beat frequency or frequencies to compute the corresponding range
value. The beat2range function can perform this computation.

While developing your algorithm, you might also perform these auxiliary tasks:

• Visualize targets in the range-Doppler domain, using the phased.RangeDopplerResponse
System object.

• Determine whether you need to compensate for range-Doppler coupling. Such coupling can occur
if the target is moving relative to the radar. You can use the rdcoupling function to compute the
range offset due to range-Doppler coupling. If the range offset is not negligible, common
compensation techniques include:

• Subtracting the range offset from your initial range estimate
• Having the FMCW signal use a triangle sweep instead of an up sweep or down sweep

• Explore the relationships among your system’s range requirements and parameters of the FMCW
waveform. You can use these functions:

• range2time
• time2range
• range2bw

See Also
phased.FMCWWaveform | phased.RangeDopplerResponse | time2range | range2time |
range2bw | dechirp | beat2range | range2beat | rdcoupling | periodogram | findpeaks |
pwelch | rootmusic

 FMCW Range Estimation

8-27

Related Examples
• “Automotive Adaptive Cruise Control Using FMCW Technology” (Radar Toolbox)

8 Detection

8-28

Range-Doppler Response
In this section...
“Benefits of Producing Range-Doppler Response” on page 8-29
“Support for Range-Doppler Processing” on page 8-29
“Range-Speed Response Pattern of Target” on page 8-30

Benefits of Producing Range-Doppler Response
Visualizing a signal in the range-Doppler domain can help you intuitively understand connections
among targets. From a range-Doppler map, you can:

• See how far away the targets are and how quickly they are approaching or receding.
• Distinguish among targets moving at various speeds at various ranges, in particular:

• If a transmitter platform is stationary, a range-Doppler map shows a response from stationary
targets at zero Doppler.

• For targets that are moving relative to the transmitter platform, the range-Doppler map shows
a response at nonzero Doppler values.

You can also use the range-Doppler response in nonvisual ways. For example, you can perform peak
detection in the range-Doppler domain and use the information to resolve the range-Doppler coupling
of an FMCW radar system.

Support for Range-Doppler Processing
You can use the phased.RangeDopplerResponse object to compute and visualize the range-
Doppler response of input data. This object performs range processing in fast time, followed by
Doppler processing in slow time. The object configuration and syntax typically depend on the kind of
radar system.

Pulsed Radar Systems

This procedure is used typically to produce a range-Doppler response for a pulsed radar system. (In
the special case of linear FM pulses, the procedure in “FMCW Radar Systems” on page 8-30 is an
alternative option.)

1 Create a phased.RangeDopplerResponse object, setting the RangeMethod property to
'Matched Filter'.

2 Customize these characteristics, or accept default values for any of them:

• Signal propagation speed
• Sample rate
• Length of the FFT for Doppler processing
• Characteristics of the window for Doppler weighting, if any
• Doppler domain output preference in terms of radial speed or Doppler shift frequency. (If you

select radial speed, also specify the signal carrier frequency.)
3 Organize your data, x, into a matrix. The columns in this matrix correspond to separate,

consecutive pulses.

 Range-Doppler Response

8-29

4 Use plotResponse to plot the range-Doppler response or step to obtain data representing the
range-Doppler response. Include x and matched filter coefficients in your syntax when you call
plotResponse or step.

For examples, see the step reference page or “Range-Speed Response Pattern of Target” on page 8-
30.

FMCW Radar Systems

This procedure is used typically to produce a range-Doppler response for an FMCW radar system. You
can also use this procedure for a system that uses linear FM pulsed signals. In the case of pulsed
signals, you typically use stretch processing to dechirp the signal.

1 Create a phased.RangeDopplerResponse object, setting the RangeMethod property to
'Dechirp'.

2 Customize these characteristics, or accept default values for any of them:

• Signal propagation speed
• Sample rate
• FM sweep slope
• Whether the processor should dechirp or decimate your signal
• Length of the FFT for range processing. The algorithm performs an FFT to translate the

dechirped data into the beat frequency domain, which provides range information.
• Characteristics of the window for range weighting, if any
• Length of the FFT for Doppler processing
• Characteristics of the window for Doppler weighting, if any
• Doppler domain output preference in terms of radial speed or Doppler shift frequency. (If you

select radial speed, also specify the signal carrier frequency.)
3 Organize your data, x, into a matrix in which the columns correspond to sweeps or pulses that

are separate and consecutive.

In the case of an FMCW waveform with a triangle sweep, the sweeps alternate between positive
and negative slopes. However, phased.RangeDopplerResponse is designed to process
consecutive sweeps of the same slope. To apply phased.RangeDopplerResponse for a
triangle-sweep system, use one of the following approaches:

• Specify a positive SweepSlope property value, with x corresponding to upsweeps only. The
true values of Doppler or speed are half of what step returns or plotResponse plots.

• Specify a negative SweepSlope property value, with x corresponding to downsweeps only.
The true values of Doppler or speed are half of what step returns or plotResponse plots.

4 Use plotResponse to plot the range-Doppler response or step to obtain data representing the
range-Doppler response. Include x in the syntax when you call plotResponse or step. If your
data is not already dechirped, also include a reference signal in the syntax.

For an example, see the plotResponse reference page.

Range-Speed Response Pattern of Target
This example shows how to visualize the speed and range of a target in a pulsed radar system that
uses a rectangular waveform.

8 Detection

8-30

Place an isotropic antenna element at the global origin (0,0,0). Then, place a target with a
nonfluctuating RCS of 1 square meter at (5000,5000,10), which is approximately 7 km from the
transmitter. Set the operating (carrier) frequency to 10 GHz. To simulate a monostatic radar, set the
InUseOutputPort property on the transmitter to true. Calculate the range and angle from the
transmitter to the target.

antenna = phased.IsotropicAntennaElement(...
 'FrequencyRange',[5e9 15e9]);
transmitter = phased.Transmitter('Gain',20,'InUseOutputPort',true);
fc = 10e9;
target = phased.RadarTarget('Model','Nonfluctuating',...
 'MeanRCS',1,'OperatingFrequency',fc);
txloc = [0;0;0];
tgtloc = [5000;5000;10];
antennaplatform = phased.Platform('InitialPosition',txloc);
targetplatform = phased.Platform('InitialPosition',tgtloc);
[tgtrng,tgtang] = rangeangle(targetplatform.InitialPosition,...
 antennaplatform.InitialPosition);

Create a rectangular pulse waveform 2μs in duration with a PRF of 10 kHz. Determine the maximum
unambiguous range for the given PRF. Use the radar equation to determine the peak power required
to detect a target. This target has an RCS of 1 square meter at the maximum unambiguous range for
the transmitter operating frequency and gain. The SNR is based on a desired false-alarm rate of
for a noncoherent detector.

waveform = phased.RectangularWaveform('PulseWidth',2e-6,...
 'OutputFormat','Pulses','PRF',1e4,'NumPulses',1);
c = physconst('LightSpeed');
maxrange = c/(2*waveform.PRF);
SNR = npwgnthresh(1e-6,1,'noncoherent');
lambda = c/target.OperatingFrequency;
maxrange = c/(2*waveform.PRF);
tau = waveform.PulseWidth;
Ts = 290;
dbterm = db2pow(SNR - 2*transmitter.Gain);
Pt = (4*pi)^3*physconst('Boltzmann')*Ts/tau/target.MeanRCS/lambda^2*maxrange^4*dbterm;

Set the peak transmit power to the value obtained from the radar equation.

transmitter.PeakPower = Pt;

Create radiator and collector objects that operate at 10 GHz. Create a free space path for the
propagation of the pulse to and from the target. Then, create a receiver.

radiator = phased.Radiator(...
 'PropagationSpeed',c,...
 'OperatingFrequency',fc,'Sensor',antenna);
channel = phased.FreeSpace(...
 'PropagationSpeed',c,...
 'OperatingFrequency',fc,'TwoWayPropagation',false);
collector = phased.Collector(...
 'PropagationSpeed',c,...
 'OperatingFrequency',fc,'Sensor',antenna);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...
 'EnableInputPort',true,'SeedSource','Property','Seed',2e3);

Propagate 25 pulses to and from the target. Collect the echoes at the receiver, and store them in a 25-
column matrix named rx_puls.

 Range-Doppler Response

8-31

numPulses = 25;
rx_puls = zeros(100,numPulses);

Simulation loop

for n = 1:numPulses

Generate waveform

 wf = waveform();

Transmit waveform

 [wf,txstatus] = transmitter(wf);

Radiate pulse toward the target

 wf = radiator(wf,tgtang);

Propagate pulse toward the target

 wf = channel(wf,txloc,tgtloc,[0;0;0],[0;0;0]);

Reflect it off the target

 wf = target(wf);

Propagate the pulse back to transmitter

 wf = channel(wf,tgtloc,txloc,[0;0;0],[0;0;0]);

Collect the echo

 wf = collector(wf,tgtang);

Receive the target echo

 rx_puls(:,n) = receiver(wf,~txstatus);

end

Create a range-Doppler response object that uses the matched filter approach. Configure this object
to show radial speed rather than Doppler frequency. Use plotResponse to plot the range versus
speed.

rangedoppler = phased.RangeDopplerResponse(...
 'RangeMethod','Matched Filter',...
 'PropagationSpeed',c,...
 'DopplerOutput','Speed','OperatingFrequency',fc);
plotResponse(rangedoppler,rx_puls,getMatchedFilter(waveform))

8 Detection

8-32

The plot shows the stationary target at a range of approximately 7000 m.

See Also
phased.RangeDopplerResponse

Related Examples
• “Automotive Adaptive Cruise Control Using FMCW Technology” (Radar Toolbox)

 Range-Doppler Response

8-33

Constant False-Alarm Rate (CFAR) Detectors
In this section...
“False Alarm Rate for CFAR Detectors” on page 8-34
“Cell-Averaging CFAR Detector” on page 8-36
“CFAR Detector Adaptation to Noisy Input Data” on page 8-37
“Extensions of Cell-Averaging CFAR Detector” on page 8-38
“Detection Probability for CFAR Detector” on page 8-38

False Alarm Rate for CFAR Detectors
In the Neyman-Pearson framework, the probability of detection is maximized subject to the constraint
that the false-alarm probability does not exceed a specified level. The false-alarm probability depends
on the noise variance. Therefore, to calculate the false-alarm probability, you must first estimate the
noise variance. If the noise variance changes, you must adjust the threshold to maintain a constant
false-alarm rate. Constant false-alarm rate detectors implement adaptive procedures that enable you
to update the threshold level of your test when the power of the interference changes.

To motivate the need for an adaptive procedure, assume a simple binary hypothesis test where you
must decide between the signal-absent and signal-present hypotheses for a single sample. The signal
has amplitude 4, and the noise is zero-mean Gaussian with unit variance.

First, set the false-alarm rate to 0.001 and determine the threshold.

T = npwgnthresh(1e-3,1,'real');
threshold = sqrt(db2pow(T))

threshold =

 3.0902

Check that this threshold yields the desired false-alarm rate probability and then compute the
probability of detection.

pfa = 0.5*erfc(threshold/sqrt(2))
pd = 0.5*erfc((threshold-4)/sqrt(2))

pfa =

 1.0000e-03

pd =

 0.8185

8 Detection

8-34

Next, assume that the noise power increases by 6.02 dB, doubling the noise variance. If your detector
does not adapt to this increase in variance by determining a new threshold, your false-alarm rate
increases significantly.

pfa = 0.5*erfc(threshold/2)

pfa =

 0.0144

The following figure shows the effect of increasing the noise variance on the false-alarm probability
for a fixed threshold.

noisevar = 1:0.1:10;
noisepower = 10*log10(noisevar);
pfa = 0.5*erfc(threshold./sqrt(2*noisevar));
semilogy(noisepower,pfa./1e-3)
grid on
title('Increase in P_{FA} due to Noise Variance')
ylabel('Increase in P_{FA} (Orders of Magnitude)')
xlabel('Noise Power Increase (dB)')

 Constant False-Alarm Rate (CFAR) Detectors

8-35

Cell-Averaging CFAR Detector
The cell-averaging CFAR detector estimates the noise variance for the range cell of interest, or cell
under test, by analyzing data from neighboring range cells designated as training cells. The noise
characteristics in the training cells are assumed to be identical to the noise characteristics in the cell
under test (CUT).

This assumption is key in justifying the use of the training cells to estimate the noise variance in the
CUT. Additionally, the cell-averaging CFAR detector assumes that the training cells do not contain any
signals from targets. Thus, the data in the training cells are assumed to consist of noise only.

To make these assumptions realistic:

• It is preferable to have some buffer, or guard cells, between the CUT and the training cells. The
buffer provided by the guard cells guards against signal leaking into the training cells and
adversely affecting the estimation of the noise variance.

• The training cells should not represent range cells too distant in range from the CUT, as the
following figure illustrates.

8 Detection

8-36

The optimum estimator for the noise variance depends on distributional assumptions and the type of
detector. Assume the following:

1 You are using a square-law detector.
2 You have a Gaussian, complex-valued, random variable (RV) with independent real and imaginary

parts.
3 The real and imaginary parts each have mean zero and variance equal to σ2/2.

Note If you denote this RV by Z=U+jV, the squared magnitude |Z|2 follows an exponential
distribution with mean σ2.

If the samples in training cells are the squared magnitudes of such complex Gaussian RVs, you can
use the sample mean as an estimator of the noise variance.

To implement cell-averaging CFAR detection, use phased.CFARDetector. You can customize
characteristics of the detector such as the numbers of training cells and guard cells, and the
probability of false alarm.

CFAR Detector Adaptation to Noisy Input Data
This example shows how to create a CFAR detector and test its ability to adapt to the statistics of
input data. The test uses noise-only trials. By using the default square-law detector, you can
determine how close the empirical false-alarm rate is to the desired false-alarm probability.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create a CFAR detector object with two guard cells, 20 training cells, and a false-alarm probability of
0.001. By default, this object assumes a square-law detector with no pulse integration.

detector = phased.CFARDetector('NumGuardCells',2,...
 'NumTrainingCells',20,'ProbabilityFalseAlarm',1e-3);

There are 10 training cells and 1 guard cell on each side of the cell under test (CUT). Set the CUT
index to 12.

CUTidx = 12;

 Constant False-Alarm Rate (CFAR) Detectors

8-37

Seed the random number generator for a reproducible set of input data.

rng(1000);

Set the noise variance to 0.25. This value corresponds to an approximate -6 dB SNR. Generate a 23-
by-10000 matrix of complex-valued, white Gaussian rv's with the specified variance. Each row of the
matrix represents 10,000 Monte Carlo trials for a single cell.

Ntrials = 1e4;
variance = 0.25;
Ncells = 23;
inputdata = sqrt(variance/2)*(randn(Ncells,Ntrials)+1j*randn(Ncells,Ntrials));

Because the example implements a square-law detector, take the squared magnitudes of the elements
in the data matrix.

Z = abs(inputdata).^2;

Provide the output from the square-law operator and the index of the cell under test to the CFAR
detector.

Z_detect = detector(Z,CUTidx);

The output, Z_detect, is a logical vector with 10,000 elements. Sum the elements in Z_detect and
divide by the total number of trials to obtain the empirical false-alarm rate.

pfa = sum(Z_detect)/Ntrials

pfa = 0.0013

The empirical false-alarm rate is 0.0013, which corresponds closely to the desired false-alarm rate of
0.001.

Extensions of Cell-Averaging CFAR Detector
The cell-averaging algorithm for a CFAR detector works well in many situations, but not all. For
example, when targets are closely located, cell averaging can cause a strong target to mask a weak
target nearby. The phased.CFARDetector System object supports the following CFAR detection
algorithms.

Algorithm Typical Usage
Cell-averaging CFAR Most situations
Greatest-of cell-averaging CFAR When it is important to avoid false alarms at the edge of

clutter
Smallest-of cell-averaging CFAR When targets are closely located
Order statistic CFAR Compromise between greatest-of and smallest-of cell

averaging

Detection Probability for CFAR Detector
This example shows how to compare the probability of detection resulting from two CFAR algorithms.
In this scenario, the order statistic algorithm detects a target that the cell-averaging algorithm does
not.

8 Detection

8-38

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create a CFAR detector that uses the cell-averaging CFAR algorithm.

Ntraining = 10;
Nguard = 2;
Pfa_goal = 0.01;
detector = phased.CFARDetector('Method','CA',...
 'NumTrainingCells',Ntraining,'NumGuardCells',Nguard,...
 'ProbabilityFalseAlarm',Pfa_goal);

The detector has 2 guard cells, 10 training cells, and a false-alarm probability of 0.01. This object
assumes a square-law detector with no pulse integration.

Generate a vector of input data based on a complex-valued white Gaussian random variable.

Ncells = 23;
Ntrials = 100000;
inputdata = 1/sqrt(2)*(randn(Ncells,Ntrials) + ...
 1i*randn(Ncells,Ntrials));

In the input data, replace rows 8 and 12 to simulate two targets for the CFAR detector to detect.

inputdata(8,:) = 3*exp(1i*2*pi*rand);
inputdata(12,:) = 9*exp(1i*2*pi*rand);

Because the example implements a square-law detector, take the squared magnitudes of the elements
in the input data vector.

Z = abs(inputdata).^2;

Perform the detection on rows 8 through 12.

Z_detect = detector(Z,8:12);

The Z_detect matrix has five rows. The first and last rows correspond to the simulated targets. The
three middle rows correspond to noise.

Compute the probability of detection of the two targets. Also, estimate the probability of false alarm
using the noise-only rows.

Pd_1 = sum(Z_detect(1,:))/Ntrials

Pd_1 = 0

Pd_2 = sum(Z_detect(end,:))/Ntrials

Pd_2 = 1

Pfa = max(sum(Z_detect(2:end-1,:),2)/Ntrials)

Pfa = 6.0000e-05

The 0 value of Pd_1 indicates that this detector does not detect the first target.

Change the CFAR detector so it uses the order statistic CFAR algorithm with a rank of 5.

 Constant False-Alarm Rate (CFAR) Detectors

8-39

release(detector);
detector.Method = 'OS';
detector.Rank = 5;

Repeat the detection and probability computations.

Z_detect = detector(Z,8:12);
Pd_1 = sum(Z_detect(1,:))/Ntrials

Pd_1 = 0.5820

Pd_2 = sum(Z_detect(end,:))/Ntrials

Pd_2 = 1

Pfa = max(sum(Z_detect(2:end-1,:),2)/Ntrials)

Pfa = 0.0066

Using the order statistic algorithm instead of the cell-averaging algorithm, the detector detects the
first target in about 58% of the trials.

8 Detection

8-40

Measure Intensity Levels Using the Intensity Scope
This tutorial shows you how to measure the intensity of signals using the UI of the intensity scope.
First, create an intensity scope. You can start with the example below, “RTI and DTI Displays in Full
Radar Simulation” on page 8-42, or you can create your own scope. When this example launches,
range-time-intensity (RTI) and Doppler-time-intensity (DTI) display windows open. This tutorial
focuses on the RTI display so you can close the DTI window once the processing loop completes. This
figure shows the RTI display after processing has completed. The display shows three tracks.

To examine the data, click the Cursor Measurement button in the Toolbar. You see two cursors,
each of which is represented by pairs of cross-hairs. To distinguish cursors, one pair consists of solid
lines and the second pair consists of dashed lines and are tagged with a 1 or a 2.

 Measure Intensity Levels Using the Intensity Scope

8-41

Cursor 1 has solid cross-hairs and overlays the intersection of two signal lines. Cursor 2 has dashed
cross-hairs and overlays a signal-free region. The Cursor Measurements pane shows the
coordinates of the cursors in time and range (labelled X) and the intensities at these positions. Cursor
1 is located at a range of 2775 meters and a time of 3.6 seconds. The signal intensity at this point is
1.989e-6 watts. Cursor 2 is located at a range of 3725 meters and a time of 2.9 seconds. The signal
intensity at this point is 3.327e-7 watts. You can move the cursors to any positions of interest and
obtain the intensity values.

RTI and DTI Displays in Full Radar Simulation
Use the phased.IntensityScope System Object™ to display the detection output of a radar system
simulation. The radar scenario contains a stationary single-element monostatic radar and three
moving targets.

Set Radar Operating Parameters

Set the maximum range, peak power range resolution, operating frequency, transmitter gain, and
target radar cross-section.

max_range = 5000;
range_res = 50;
fc = 10e9;
tx_gain = 20;
peak_power = 5500.0;

Choose the signal propagation speed to be the speed of light, and compute the signal wavelength
corresponding to the operating frequency.

c = physconst('LightSpeed');
lambda = c/fc;

8 Detection

8-42

Compute the pulse bandwidth from the range resolution. Set the sampling rate, fs, to twice the pulse
bandwidth. The noise bandwidth is also set to the pulse bandwidth. The radar integrates a number of
pulses set by num_pulse_int. The duration of each pulse is the inverse of the pulse bandwidth.

pulse_bw = c/(2*range_res);
pulse_length = 1/pulse_bw;
fs = 2*pulse_bw;
noise_bw = pulse_bw;
num_pulse_int = 10;

Set the pulse repetition frequency to match the maximum range of the radar.

prf = c/(2*max_range);

Create System Objects for the Model

Choose a rectangular waveform.

waveform = phased.RectangularWaveform('PulseWidth',pulse_length,...
 'PRF',prf,'SampleRate',fs);

Set the receiver amplifier characteristics.

amplifier = phased.ReceiverPreamp('Gain',20,'NoiseFigure',0,...
 'SampleRate',fs,'EnableInputPort',true,'SeedSource','Property',...
 'Seed',2007);
transmitter = phased.Transmitter('Gain',tx_gain,'PeakPower',peak_power,...
 'InUseOutputPort',true);

Specify the radar antenna as a single isotropic antenna.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[5e9 15e9]);

Set up a monostatic radar platform.

radarplatform = phased.Platform('InitialPosition',[0; 0; 0],...
 'Velocity',[0; 0; 0]);

Set up the three target platforms using a single System object.

targetplatforms = phased.Platform(...
 'InitialPosition',[2000.66 3532.63 3845.04; 0 0 0; 0 0 0], ...
 'Velocity',[150 -150 0; 0 0 0; 0 0 0]);

Create the radiator and collector System objects.

radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',fc);
collector = phased.Collector('Sensor',antenna,'OperatingFrequency',fc);

Set up the three target RCS properties.

targets = phased.RadarTarget('MeanRCS',[1.6 2.2 1.05],'OperatingFrequency',fc);

Create System object to model two-way freespace propagation.

channels= phased.FreeSpace('SampleRate',fs,'TwoWayPropagation',true,...
 'OperatingFrequency',fc);

Define a matched filter.

 Measure Intensity Levels Using the Intensity Scope

8-43

MFcoef = getMatchedFilter(waveform);
filter = phased.MatchedFilter('Coefficients',MFcoef,'GainOutputPort',true);

Create Range and Doppler Bins

Set up the fast-time grid. Fast time is the sampling time of the echoed pulse relative to the pulse
transmission time. The range bins are the ranges corresponding to each bin of the fast time grid.

fast_time = unigrid(0,1/fs,1/prf,'[)');
range_bins = c*fast_time/2;

To compensate for range loss, create a time varying gain System Object.

gain = phased.TimeVaryingGain('RangeLoss',2*fspl(range_bins,lambda),...
 'ReferenceLoss',2*fspl(max_range,lambda));

Set up Doppler bins. Doppler bins are determined by the pulse repetition frequency. Create an FFT
System object for Doppler processing.

DopplerFFTbins = 32;
DopplerRes = prf/DopplerFFTbins;
fft = dsp.FFT('FFTLengthSource','Property',...
 'FFTLength',DopplerFFTbins);

Create Data Cube

Set up a reduced data cube. Normally, a data cube has fast-time and slow-time dimensions and the
number of sensors. Because the data cube has only one sensor, it is two-dimensional.

rx_pulses = zeros(numel(fast_time),num_pulse_int);

Create IntensityScope System Objects

Create two IntensityScope System objects, one for Doppler-time-intensity and the other for range-
time-intensity.

dtiscope = phased.IntensityScope('Name','Doppler-Time Display',...
 'XLabel','Velocity (m/sec)', ...
 'XResolution',dop2speed(DopplerRes,c/fc)/2, ...
 'XOffset',dop2speed(-prf/2,c/fc)/2,...
 'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','Mag');
rtiscope = phased.IntensityScope('Name','Range-Time Display',...
 'XLabel','Range (m)', ...
 'XResolution',c/(2*fs), ...
 'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','Mag');

Run the Simulation Loop over Multiple Radar Transmissions

Transmit 2000 pulses. Coherently process groups of 10 pulses at a time.

For each pulse:

1 Update the radar position and velocity radarplatform
2 Update the target positions and velocities targetplatforms
3 Create the pulses of a single wave train to be transmitted transmitter
4 Compute the ranges and angles of the targets with respect to the radar

8 Detection

8-44

5 Radiate the signals to the targets radiator
6 Propagate the pulses to the target and back channels
7 Reflect the signals off the target targets
8 Receive the signal sCollector
9 Amplify the received signal amplifier
10 Form data cube

For each set of 10 pulses in the data cube:

1 Match filter each row (fast-time dimension) of the data cube.
2 Compute the Doppler shifts for each row (slow-time dimension) of the data cube.

pri = 1/prf;
nsteps = 200;
for k = 1:nsteps
 for m = 1:num_pulse_int
 [ant_pos,ant_vel] = radarplatform(pri);
 [tgt_pos,tgt_vel] = targetplatforms(pri);
 sig = waveform();
 [s,tx_status] = transmitter(sig);
 [~,tgt_ang] = rangeangle(tgt_pos,ant_pos);
 tsig = radiator(s,tgt_ang);
 tsig = channels(tsig,ant_pos,tgt_pos,ant_vel,tgt_vel);
 rsig = targets(tsig);
 rsig = collector(rsig,tgt_ang);
 rx_pulses(:,m) = amplifier(rsig,~(tx_status>0));
 end

 rx_pulses = filter(rx_pulses);
 MFdelay = size(MFcoef,1) - 1;
 rx_pulses = buffer(rx_pulses((MFdelay + 1):end), size(rx_pulses,1));
 rx_pulses = gain(rx_pulses);
 range = pulsint(rx_pulses,'noncoherent');
 rtiscope(range);
 dshift = fft(rx_pulses.');
 dshift = fftshift(abs(dshift),1);
 dtiscope(mean(dshift,2));
 radarplatform(.05);
 targetplatforms(.05);
end

 Measure Intensity Levels Using the Intensity Scope

8-45

8 Detection

8-46

All of the targets lie on the x-axis. Two targets are moving along the x-axis and one is stationary.
Because the radar is at the origin, you can read the target speed directly from the Doppler-Time
Display window. The values agree with the specified velocities of -150, 150, and 0 m/sec.

 Measure Intensity Levels Using the Intensity Scope

8-47

Environment and Target Models

• “Free Space Path Loss” on page 9-2
• “Two-Ray Multipath Propagation” on page 9-10
• “Free-Space Propagation of Wideband Signals” on page 9-12
• “Radar Target” on page 9-14
• “Swerling 1 Target Models” on page 9-17
• “Swerling Target Models” on page 9-21
• “Swerling 3 Target Models” on page 9-26
• “Swerling 4 Target Models” on page 9-30

9

Free Space Path Loss
In this section...
“Support for Modeling Propagation in Free Space” on page 9-2
“Free Space Path Loss in dB” on page 9-2
“Propagate Linear FM Pulse Waveform to Target and Back” on page 9-3
“One-Way and Two-Way Propagation” on page 9-4
“Propagate Signal from Stationary Radar to Moving Target” on page 9-5

Support for Modeling Propagation in Free Space
Propagation environments have significant effects on the amplitude, phase, and shape of propagating
space-time wavefields. In some cases, you may want to simulate a system that propagates
narrowband signals through free space. If so, you can use the phased.FreeSpace System object to
model the range-dependent time delay, phase shift, Doppler shift, and gain effects.

Consider this object as a point-to-point propagation channel. By setting object properties, you can
customize certain characteristics of the environment and the signals propagating through it,
including:

• Propagation speed and sampling rate of the signal you are propagating
• Signal carrier frequency
• Whether the object models one-way or two-way propagation

Each time you call step on a phased.FreeSpace object, you specify not only the signal to
propagate, but also the location and velocity of the signal origin and destination.

You can use fspl to determine the free space path loss, in decibels, for a given distance and
wavelength.

Free Space Path Loss in dB
Assume a transmitter is located at (1000,250,10) in the global coordinate system. Assume a target is
located at (3000,750,20). The transmitter operates at 1 GHz. Determine the free space path loss in
decibels for a narrowband signal propagating to and from the target.

[tgtrng,~] = rangeangle([3000; 750; 20],[1000; 250; 10]);

Multiply the range by two for two-way propagation.

tgtrng = 2*tgtrng;

Determine the wavelength for 1 GHz.

lambda = physconst('LightSpeed')/1e9;

Solve for the loss using fspl.

L = fspl(tgtrng,lambda)

L = 104.7524

9 Environment and Target Models

9-2

The free space path loss in decibels is approximately 105 dB.

Alternatively, you can compute the loss directly from

Loss = pow2db((4*pi*tgtrng/lambda)^2)

Loss = 104.7524

Propagate Linear FM Pulse Waveform to Target and Back
Construct a linear FM pulse waveform of 50 ms duration with a bandwidth of 100 kHz. Model the
range-dependent time delay and amplitude loss incurred during two-way propagation. The pulse
propagates between the transmitter located at (1000,250,10) and a target located at (3000,750,20).
The signals propagate at the speed of light.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

waveform = phased.LinearFMWaveform('SweepBandwidth',1e5,...
 'PulseWidth',5e-5,'OutputFormat','Pulses',...
 'NumPulses',1,'SampleRate',1e6,'PRF',1e4);
signal = waveform();
channel = phased.FreeSpace('SampleRate',1e6,...
 'TwoWayPropagation',true,'OperatingFrequency',1e9);
y = channel(signal,[1000; 250; 10],[3000; 750; 20],[0;0;0],[0;0;0]);

Plot the magnitude of the transmitted and received pulse to show the amplitude loss and time delay.

t = unigrid(0,1/waveform.SampleRate,1/waveform.PRF,'[)');
subplot(2,1,1)
plot(t.*1e6,abs(signal))
title('Magnitude of Transmitted Pulse')
xlabel('Time (microseconds)')
ylabel('Magnitude')
subplot(2,1,2)
plot(t.*1e6,abs(y))
title('Magnitude of Received Pulse')
xlabel('Time (microseconds)')
ylabel('Magnitude')

 Free Space Path Loss

9-3

The delay in the received pulse is approximately 14 μs, the expected value for a distance of 4.123 km.

One-Way and Two-Way Propagation
The TwoWayPropagation property of the phased.FreeSpace System object™ lets you simulate
either one- or two-way propagation. The following example demonstrates how to use this property for
a single linear FM pulse propagating to a target and back. The sensor is a single isotropic radiating
antenna operating at 1 GHz located at (1000,250,10). The target is located at (3000,750,20) and has
a nonfluctuating RCS of 1 square meter.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

The following code constructs the required System objects and calculates the range and angle from
the antenna to the target.

waveform = phased.LinearFMWaveform('SweepBandwidth',1e5,...
 'PulseWidth',5e-5,'OutputFormat','Pulses',...
 'NumPulses',1,'SampleRate',1e6);
antenna = phased.IsotropicAntennaElement('FrequencyRange',[500e6 1.5e9]);
transmitter = phased.Transmitter('PeakPower',1e3,'Gain',20);
radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',1e9);
channel = phased.FreeSpace('SampleRate',1e6,...
 'TwoWayPropagation',true,'OperatingFrequency',1e9);

9 Environment and Target Models

9-4

target = phased.RadarTarget('MeanRCS',1,'Model','Nonfluctuating');
collector = phased.Collector('Sensor',antenna,'OperatingFrequency',1e9);
sensorpos = [3000;750;20];
tgtpos = [1000;250;10];
[tgtrng,tgtang] = rangeangle(sensorpos,tgtpos);

Because the TwoWayPropagation property is set to true, you compute the total propagation only
once.

Compute the radiated signal.

pulse = waveform();
pulse = transmitter(pulse);
pulse = radiator(pulse,tgtang);

Propagate the pulse to the target and back.

pulse = channel(pulse,sensorpos,tgtpos,[0;0;0],[0;0;0]);
pulse = target(pulse);
sig = collector(pulse,tgtang);

Alternatively, you can break up the two-way propagation into two separate one-way propagation
paths. You do so by setting the TwoWayPropagation property to false.

channel1 = phased.FreeSpace('SampleRate',1e9,...
 'TwoWayPropagation',false,'OperatingFrequency',1e6);

Radiate the pulse.

pulse = waveform();
pulse = transmitter(pulse);
pulse = radiator(pulse,tgtang);

Propagate the pulse from the antenna to the target.

pulse = channel1(pulse,sensorpos,tgtpos,[0;0;0],[0;0;0]);
pulse = target(pulse);

Propagate the reflected pulse from the target to the antenna.

pulse = channel(pulse,tgtpos,sensorpos,[0;0;0],[0;0;0]);
sig = collector(pulse,tgtang);

Propagate Signal from Stationary Radar to Moving Target
This example shows how to propagate a signal in free space from a stationary radar to a moving
target.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Define the signal sample rate, propagation speed, and carrier frequency. Define the signal as a
sinusoid of frequency 150 Hz. Set the sample rate to 1 kHz and the carrier frequency to 300 MHz.
The propagation speed is the speed of light.

 Free Space Path Loss

9-5

fs = 1.0e3;
c = physconst('Lightspeed');
fc = 300e3;
f = 150.0;
N = 1024;
t = (0:N-1)'/fs;
x = exp(1i*2*pi*f*t);

Assume the target is approaching the radar at 300.0 m/s, and the radar is stationary. Find the
Doppler shift that corresponds to this relative speed.

v = 1000.0;
dop = speed2dop(v,c/fc)

dop = 1.0007

From the formula, the one-way Doppler shift is 1 Hz.

Create a phased.FreeSpace System object™, and use it to propagate the signal from the radar to
the target. Assume the radar is at (0, 0, 0) and the target is at (100, 0, 0).

channel = phased.FreeSpace('SampleRate',fs,...
 'PropagationSpeed',c,'OperatingFrequency',fc);
origin_pos = [0;0;0];
dest_pos = [100;0;0];
origin_vel = [0;0;0];
dest_vel = [-v;0;0];
y = channel(x,origin_pos,dest_pos,origin_vel,dest_vel);

Plot the spectrum of the transmitted signal. The peak at 150 Hz reflects the frequency of the signal.

window = 64;
ovlp = 32;
[Pxx,F] = pwelch(x,window,ovlp,N,fs);
plot(F,10*log10(Pxx))
xlabel('Frequency (Hz)')
ylabel('Power/Frequency (dB/Hz)')
title('Transmitted Signal')

9 Environment and Target Models

9-6

Plot the spectrum of the propagated signal. The peak at 250 Hz reflects the frequency of the signal
plus the Doppler shift of 100 Hz.

window = 64;
ovlp = 32;
[Pyy,F] = pwelch(y,window,ovlp,N,fs);
plot(F,10*log10(Pyy))
grid
xlabel('Frequency (Hz)')
ylabel('Power/Frequency (dB/Hz)')
title('Propagated Signal')

 Free Space Path Loss

9-7

The Doppler shift is too small to see. Overlay the two spectra in the region of 150 Hz.

figure
idx = find(F>=130 & F<=170);
plot(F(idx),10*log10(Pxx(idx)),'b')
grid
hold on
plot(F(idx),10*log10(Pyy(idx)),'r')
hold off
xlabel('Frequency (Hz)')
ylabel('Power/Frequency (dB/Hz)')
title('Transmitted and Propagated Signals')
legend('Transmitted','Propagated')

9 Environment and Target Models

9-8

The peak shift appears to be approximately 1 Hz.

 Free Space Path Loss

9-9

Two-Ray Multipath Propagation
A two-ray propagation channel is the next step up in complexity from a free-space channel and is the
simplest case of a multipath propagation environment. The free-space channel models a straight-line
line-of-sight path from point 1 to point 2. In a two-ray channel, the medium is specified as a
homogeneous, isotropic medium with a reflecting planar boundary. The boundary is always set at z =
0. There are at most two rays propagating from point 1 to point 2. The first ray path propagates along
the same line-of-sight path as in the free-space channel (see the phased.FreeSpace System object).
The line-of-sight path is often called the direct path. The second ray reflects off the boundary before
propagating to point 2. According to the Law of Reflection , the angle of reflection equals the angle of
incidence. In short-range simulations such as cellular communications systems and automotive
radars, you can assume that the reflecting surface, the ground or ocean surface, is flat.

The figure illustrates two propagation paths. From the source position, ss, and the receiver position,
sr, you can compute the arrival angles of both paths, θ′los and θ′rp. The arrival angles are the elevation
and azimuth angles of the arriving radiation with respect to a local coordinate system. In this case,
the local coordinate system coincides with the global coordinate system. You can also compute the
transmitting angles, θlos and θrp. In the global coordinates, the angle of reflection at the boundary is
the same as the angles θrp and θ′rp. The reflection angle is important to know when you use angle-
dependent reflection-loss data. You can determine the reflection angle by using the rangeangle
function and setting the reference axes to the global coordinate system. The total path length for the
line-of-sight path is shown in the figure by Rlos which is equal to the geometric distance between
source and receiver. The total path length for the reflected path is Rrp= R1 + R2. The quantity L is the
ground range between source and receiver.

You can easily derive exact formulas for path lengths and angles in terms of the ground range and
object heights in the global coordinate system.

9 Environment and Target Models

9-10

R = x s− x r

Rlos = R = zr − zs
2 + L2

R1 =
zr

zr + zz
zr + zs

2 + L2

R2 =
zs

zs + zr
zr + zs

2 + L2

Rrp = R1 + R2 = zr + zs
2 + L2

tanθlos =
zs− zr

L

tanθrp = −
zs + zr

L
θ′los = − θlos

θ′rp = θrp

 Two-Ray Multipath Propagation

9-11

Free-Space Propagation of Wideband Signals
Propagate a wideband signal with three tones in an underwater acoustic with constant speed of
propagation. You can model this environment as free space. The center frequency is 100 kHz and the
frequencies of the three tones are 75 kHz, 100 kHz, and 125 kHz, respectively. Plot the spectrum of
the original signal and the propagated signal to observe the Doppler effect. The sampling frequency
is 100 kHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

c = 1500;
fc = 100e3;
fs = 100e3;
relfreqs = [-25000,0,25000];

Set up a stationary radar and moving target and compute the expected Doppler.

rpos = [0;0;0];
rvel = [0;0;0];
tpos = [30/fs*c; 0;0];
tvel = [45;0;0];
dop = -tvel(1)./(c./(relfreqs + fc));

Create a signal and propagate the signal to the moving target.

t = (0:199)/fs;
x = sum(exp(1i*2*pi*t.'*relfreqs),2);
channel = phased.WidebandFreeSpace(...
 'PropagationSpeed',c,...
 'OperatingFrequency',fc,...
 'SampleRate',fs);
y = channel(x,rpos,tpos,rvel,tvel);

Plot the spectra of the original signal and the Doppler-shifted signal.

periodogram([x y],rectwin(size(x,1)),1024,fs,'centered')
ylim([-150 0])
legend('original','propagated');

9 Environment and Target Models

9-12

For this wideband signal, you can see that the magnitude of the Doppler shift increases with
frequency. In contrast, for narrowband signals, the Doppler shift is assumed constant over the band.

 Free-Space Propagation of Wideband Signals

9-13

Radar Target

Radar Target Properties
The phased.RadarTarget System object models a reflected signal from a target. The target may
have a nonfluctuating or fluctuating radar cross section (RCS). This object has the following
modifiable properties:

• MeanRCSSource — Source of the target's mean radar cross section
• MeanRCS — Target's mean RCS
• Model — Statistical model for the target's RCS
• PropagationSpeed — Signal propagation speed
• OperatingFrequency — Operating frequency
• SeedSource — Source of the seed for the random number generator to generate the target's

random RCS values
• Seed — Seed for the random number generator

Gain for Nonfluctuating RCS Target
Create a radar target with a nonfluctuating RCS of 1 square meter and an operating frequency of 1
GHz. Specify a wave propagation speed equal to the speed of light.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

sigma = 1.0;
target = phased.RadarTarget('Model','nonfluctuating','MeanRCS',sigma,...
 'PropagationSpeed',physconst('LightSpeed'),'OperatingFrequency',1e9);

For a nonfluctuation target, the reflected waveform equals the incident waveform scaled by the gain

G = 4πσ
λ2

Here, σ represents the mean target RCS, and λ is the wavelength of the operating frequency.

Set the signal incident on the target to be a vector of ones to obtain the gain factor used by the
phased.RadarTarget System object™.

x = ones(10,1);
y = target(x)

y = 10×1

 11.8245
 11.8245
 11.8245
 11.8245
 11.8245
 11.8245
 11.8245

9 Environment and Target Models

9-14

 11.8245
 11.8245
 11.8245

Compute the gain from the formula to verify that the output of the System object equals the
theoretical value.

lambda = target.PropagationSpeed/target.OperatingFrequency;
G = sqrt(4*pi*sigma/lambda^2)

G = 11.8245

Fluctuating RCS Targets
The previous examples used nonfluctuating values for the target's RCS. This model is not valid in
many scenarios. There are several cases where the RCS exhibits relatively small or large magnitude
fluctuations. These fluctuations can occur rapidly on pulse-to-pulse, or more slowly, on scan-to-scan
time scales:

• Several small randomly distributed reflectors with no dominant reflector — This target, at
close range or when the radar uses pulse-to-pulse frequency agility, can exhibit large magnitude
rapid (pulse-to-pulse) fluctuations in the RCS. That same complex reflector at long range with no
frequency agility can exhibit large magnitude fluctuations in the RCS over a longer time scale
(scan-to-scan).

• Dominant reflector along with several small reflectors — The reflectors in this target can
exhibit small magnitude fluctuations on pulse-to-pulse or scan-to-scan time scales, subject to:

• How rapidly the aspect changes
• Whether the radar uses frequency agility

To account for significant fluctuations in the RCS, you need to use statistical models. The four
Swerling models, described in the following table, are widely used to cover these kinds of fluctuating-
RCS cases.

Swerling Case Number Description
I Scan-to-scan decorrelation. Rayleigh/exponential

PDF — A number of randomly distributed
scatterers with no dominant scatterer.

II Pulse-to-pulse decorrelation. Rayleigh/
exponential PDF — A number of randomly
distributed scatterers with no dominant scatterer.

III Scan-to-scan decorrelation — Chi-square PDF
with 4 degrees of freedom. A number of
scatterers with one scatterer dominant.

IV Pulse-to-pulse decorrelation — Chi-square PDF
with 4 degrees of freedom. A number of
scatterers with one scatterer dominant.

You can simulate a Swerling target model by setting the Model property. Use the step method and
set the UPDATERCS input argument to true or false. Setting UPDATERCS to true updates the RCS

 Radar Target

9-15

value according to the specified probability model each time you call step. If you set UPDATERCS to
false, the previous RCS value is used.

Model Pulse Reflection from Nonfluctuating Target
This example creates and transmits a linear FM waveform with a 1 GHz carrier frequency. The
waveform is transmitted and collected by an isotropic antenna with a back-baffled response. The
waveform propagates to and from a target with a nonfluctuating RCS of 1 square meter. The target is
located at a range of 1.414 km from the antenna at an azimuth angle of 45° and an elevation of 0°.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Set up the radar system.

antenna = phased.IsotropicAntennaElement('BackBaffled',true);
antennapos = phased.Platform('InitialPosition',[0;0;0]);
targetpos = phased.Platform('InitialPosition',[1000; 1000; 0]);
waveform = phased.LinearFMWaveform('PulseWidth',100e-6);
transmitter = phased.Transmitter('PeakPower',1e3,'Gain',40);
radiator = phased.Radiator('OperatingFrequency',1e9, ...
 'Sensor',antenna);
channel = phased.FreeSpace('OperatingFrequency',1e9,...
 'TwoWayPropagation',true);
target = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',1e9);
collector = phased.Collector('OperatingFrequency',1e9,...
 'Sensor',antenna);

Compute the transmitted and received waveforms.

wav = waveform();
txwav = transmitter(wav);
radwav = radiator(txwav,[0 0]');
propwav = channel(radwav,antennapos.InitialPosition,...
 targetpos.InitialPosition,[0;0;0],[0;0;0]);
reflwav = target(propwav);
collwav = collector(reflwav,[45 0]');

9 Environment and Target Models

9-16

Swerling 1 Target Models
The example presents a scenario consisting of a rotating monostatic radar and a target with a radar
cross-section described by a Swerling 1 model. In this example, the radar and target are stationary.

Swerling 1 versus Swerling 2 Models

For Swerling 1 and Swerling 2 target models, the total RCS arises from many independent small
scatterers of approximately equal individual RCS. The total RCS may vary with every pulse in a scan
(Swerling 2) or may be constant over a complete scan consisting of multiple pulses (Swerling 1). In
either case, the statistics obey a chi-squared probability density function with two degrees of
freedom.

Dwell Time and Radar Scan

For simplicity, start with a rotating radar having a rotation time of 5 seconds corresponding to a
rotation rate or scan rate of 72 degrees/sec.

Trot = 5.0;
rotrate = 360/Trot;

The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time that a target is
illuminated by the main beam, radar pulses strike the target and reflect back to the radar. The time
period during which the target is illuminated is called the dwell time. This time period is also called a
scan. The example will process 3 scans of the target.

HPBW = 3.0;
Tdwell = HPBW/rotrate;
Nscan = 3;

The number of pulses that arrive on target during the dwell time depends upon the pulse repetition
frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI). Assume 5000 pulses are
transmitted per second.

prf = 5000.0;
pri = 1/prf;

The number of pulses in one dwell time is

Np = floor(Tdwell*prf);

Set up a Swerling 1 radar model

You create a Swerling 1 target by properly employing the step method of the RadarTarget System
object™. To effect a Swerling 1 model, set the Model property of the phased.RadarTarget System
object to either 'Swerling1' or 'Swerling2'. Both are equivalent. Then, at the first call to the
step method at the beginning of the scan, set the updatercs argument to true. Set updatercs to
false for the remaining calls to step during the scan. This means that the radar cross section is
only updated at the beginning of a scan and remains constant for the remainder of the scan.

Set the target model to 'Swerling1'.

tgtmodel = 'Swerling1';

Set up radar model System object components

Set up the radiating antenna. Assume the operating frequency of the antenna is 1 GHz.

 Swerling 1 Target Models

9-17

fc = 1e9;
antenna = phased.IsotropicAntennaElement('BackBaffled',true);
radiator = phased.Radiator('OperatingFrequency',fc, ...
 'Sensor',antenna);

Specify the location of the stationary antenna.

radarplatform = phased.Platform('InitialPosition',[0;0;0]);

Specify the location of a stationary target.

targetplatform = phased.Platform('InitialPosition',[2000; 0; 0]);

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step method.

waveform = phased.LinearFMWaveform('PulseWidth',50e-6,...
 'OutputFormat','Pulses','NumPulses',1);

Set up the transmitting amplifier.

transmitter = phased.Transmitter('PeakPower',1000.0,'Gain',40);

Set up the propagation environment to be free space.

channel = phased.FreeSpace('OperatingFrequency',fc,'TwoWayPropagation',true);

Specify the radar target to have a mean RCS of 1 m2 and be of the Swerling model type 1 or 2. You
can use Swerling 1 or 2 interchangeably.

target = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc,...
 'Model',tgtmodel);

Set up the radar collector.

collector = phased.Collector('OperatingFrequency',1e9,...
 'Sensor',antenna);

Define a matched filter to process the incoming signal.

wav = step(waveform);
filter = phased.MatchedFilter('Coefficients',getMatchedFilter(waveform));

Processing loop for 3 scans of a Swerling 1 target

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the target
5 Reflect waveform from radar target
6 Collect radiation to create received signal
7 Match filter received signal

Provide memory for radar return amplitudes.

z = zeros(Nscan,Np);
tp = zeros(Nscan,Np);

9 Environment and Target Models

9-18

Enter the loop. Set updatercs to true only for the first pulse of the scan.

for m = 1:Nscan
 t0 = (m-1)*Trot;
 t = t0;
 for k = 1:Np

 if k == 1
 updatercs = true;
 else
 updatercs = false;
 end
 t = t + pri;
 txwav = transmitter(wav);

Find the radar and target positions

 [xradar,vradar] = radarplatform(t);
 [xtgt,vtgt] = targetplatform(t);

Radiate waveform to target

 [~,ang] = rangeangle(xtgt,xradar);
 radwav = radiator(txwav,ang);

Propagate waveform to and from the target

 propwav = channel(radwav,xradar,xtgt,vradar,vtgt);

Reflect waveform from target. Set the updatercs flag.

 reflwav = target(propwav,updatercs);

Collect the received waveform

 collwav = collector(reflwav,ang);

Apply matched filter to incoming signal

 y = filter(collwav);
 z(m,k) = max(abs(y));
 tp(m,k) = t;

 end
end

Plot the pulse amplitudes

Plot the amplitudes of the pulses for the scan as a function of time.

plot(tp(:),z(:),'.')
xlabel('Time (sec)')
ylabel('Pulse Amplitudes')

 Swerling 1 Target Models

9-19

Notice that the pulse amplitudes are constant within a scan.

9 Environment and Target Models

9-20

Swerling Target Models
The example illustrates the use of Swerling target models to describe the fluctuations in radar cross-
section. The scenario consists of a rotating monostatic radar and a target having a radar cross-
section described by a Swerling 2 model. In this example, the radar and target are stationary.

Swerling 1 versus Swerling 2 Models

In Swerling 1 and Swerling 2 target models, the total RCS arises from many independent small
scatterers of approximately equal individual RCS. The total RCS may vary with every pulse in a scan
(Swerling 2) or may be constant over a complete scan consisting of multiple pulses (Swerling 1). In
either case, the statistics obey a chi-squared probability density function with two degrees of
freedom.

Dwell Time and Radar Scan

For simplicity, start with a rotating radar having a rotation time of 5 seconds corresponding to a
rotation or scan rate of 72 degrees/sec.

Trot = 5.0;
scanrate = 360/Trot;

The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time that a target is
illuminated by the main beam, radar pulses strike the target and reflect back to the radar. The time
period during which the target is illuminated is called the dwell time. This time is also called a scan.
The radar will process 3 scans of the target.

HPBW = 3.0;
Tdwell = HPBW/scanrate;
Nscan = 3;

The number of pulses that arrive on target during the dwell time depends upon the pulse repetition
frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI). Assume 5000 pulses are
transmitted per second.

prf = 5000.0;
pri = 1/prf;

The number of pulses in one dwell time is

Np = floor(Tdwell*prf);

Set up a Swerling 2 model

You create a Swerling 2 target by properly employing the step method of the RadarTarget System
object™. To effect a Swerling 2 model, set the Model property of the phased.RadarTarget System
object to either 'Swerling1' or 'Swerling2'. Both are equivalent. Then, at every call to the step
method, set the updatercs argument to true. This means that the radar cross-section is updated at
every pulse.

Set the target model to 'Swerling1' .

tgtmodel = 'Swerling2';

Set up radar model System object components

Set up the radiating antenna. Assume the operating frequency of the antenna is 1 GHz.

 Swerling Target Models

9-21

fc = 1e9;
antenna = phased.IsotropicAntennaElement('BackBaffled',true);
radiator = phased.Radiator('OperatingFrequency',fc,'Sensor',antenna);

Specify the location of the stationary antenna.

radarplatform = phased.Platform('InitialPosition',[0;0;0]);

Specify the location of a stationary target.

targetplatform = phased.Platform('InitialPosition',[2000; 0; 0]);

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step method.

waveform = phased.LinearFMWaveform('PulseWidth',50e-6,...
 'OutputFormat','Pulses','NumPulses',1);

Set up the transmitting amplifier.

transmitter = phased.Transmitter('PeakPower',1000.0,'Gain',40);

Set up the propagation environment to be free space.

channel = phased.FreeSpace('OperatingFrequency',fc,...
 'TwoWayPropagation',true);

Specify the radar target to have a mean RCS of 1 m2 and be of the Swerling model type 1 or 2. You
can use Swerling 1 or 2 interchangeably.

target = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc,...
 'Model',tgtmodel);

Set up the radar collector.

collector = phased.Collector('OperatingFrequency',1e9,...
 'Sensor',antenna);

Define a matched filter to process the incoming signal.

wav = waveform();
filter = phased.MatchedFilter(...
 'Coefficients',getMatchedFilter(waveform));

Processing loop for 3 scans of a Swerling 2 target

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the radar target
5 Reflect waveform from radar target.
6 Collect radiation to create received signal
7 Match filter received signal

Provide memory for radar return amplitudes.

z = zeros(Nscan,Np);
tp = zeros(Nscan,Np);

9 Environment and Target Models

9-22

Enter the loop. Set updatercs to true only for the first pulse of the scan.

for m = 1:Nscan
 t0 = (m-1)*Trot;
 t = t0;
 updatercs = true;
 for k = 1:Np

 t = t + pri;
 txwav = transmitter(wav);

Find the radar and target positions

 [xradar,vradar] = radarplatform(t);
 [xtgt,vtgt] = targetplatform(t);

Radiate waveform to target

 [~,ang] = rangeangle(xtgt,xradar);
 radwav = radiator(txwav,ang);

Propagate waveform to and from the target

 propwav = channel(radwav,radarplatform.InitialPosition,...
 targetplatform.InitialPosition,[0;0;0],[0;0;0]);

Reflect waveform from target. Set the updatercs flag.

 reflwav = target(propwav,updatercs);

Collect the received waveform

 collwav = collector(reflwav,ang);

Apply matched filter to incoming signal

 y = filter(collwav);
 z(m,k) = max(abs(y));
 tp(m,k) = t;

 end
end

Plot the pulse amplitudes

Plot the amplitudes of the pulses for the scan as a function of time.

plot(tp(:),z(:),'.')
xlabel('Time (sec)')
ylabel('Pulse Amplitude')

 Swerling Target Models

9-23

Notice that the pulse amplitudes vary within a scan.

Histogram the received pulse amplitudes

figure;
hist(z(:),25)
xlabel('Pulse Amplitude')
ylabel('Count')

9 Environment and Target Models

9-24

 Swerling Target Models

9-25

Swerling 3 Target Models
The example presents a scenario of a rotating monostatic radar and a target having a radar cross-
section described by a Swerling 3 model. In this example, the radar and target are stationary.

Swerling 3 versus Swerling 4 Models

In Swerling 3 and Swerling 4 target models, the total RCS arises from a target consisting of one large
scattering surface with several other small scattering surfaces. The total RCS may vary with every
pulse in a scan (Swerling 4) or may be constant over a complete scan consisting of multiple pulses
(Swerling 3). In either case, the statistics obey a chi-squared probability density function with four
degrees of freedom.

Dwell Time and Radar Scan

For simplicity, start with a rotating radar having a rotation time of 5 seconds corresponding to a
rotation or scan rate of 72 degrees/sec.

Trot = 5.0;
scanrate = 360/Trot;

The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time that a target is
illuminated by the main beam, radar pulses strike the target and reflect back to the radar. The time
period during which the target is illuminated is called the dwell time. This time is also called a scan.
The radar will process 3 scans of the target.

HPBW = 3.0;
Tdwell = HPBW/scanrate;
Nscan = 3;

The number of pulses that arrive on target during the dwell time depends upon the pulse repetition
frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI). Assume 5000 pulses are
transmitted per second.

prf = 5000.0;
pri = 1/prf;

The number of pulses in one dwell time is

Np = floor(Tdwell*prf);

Set up Swerling 3 radar model

You create a Swerling 3 target by properly employing the step method of the RadarTarget System
object™. To effect a Swerling 3 model, set the Model property of the phased.RadarTarget System
object to either 'Swerling3' or 'Swerling4'. Both are equivalent. Then, at the first call to the
step method at the beginning of the scan, set the updatercs argument to true. Set updatercs to
false for the remaining calls to step during the scan. This means that the radar cross section is
only updated at the beginning of a scan and remains constant for the remainder of the scan.

Set the target model to 'Swerling3' .

tgtmodel = 'Swerling3';

Set up radar model System object components

Set up the radiating antenna. Assume the operating frequency of the antenna is 1 GHz.

9 Environment and Target Models

9-26

fc = 1e9;
antenna = phased.IsotropicAntennaElement('BackBaffled',true);
radiator = phased.Radiator('OperatingFrequency',fc,'Sensor',antenna);

Specify the location of the stationary antenna.

radarplatform = phased.Platform('InitialPosition',[0;0;0]);

Specify the location of a stationary target.

targetplatform = phased.Platform('InitialPosition',[2000; 0; 0]);

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step method.

waveform = phased.LinearFMWaveform('PulseWidth',50e-6,...
 'OutputFormat','Pulses','NumPulses',1);

Set up the transmitting amplifier.

transmitter = phased.Transmitter('PeakPower',1000.0,'Gain',40);

Set up the propagation environment to be free space.

channel = phased.FreeSpace('OperatingFrequency',fc,...
 'TwoWayPropagation',true);

Specify the radar target to have a mean RCS of 1 m2 and be of the Swerling model type 3 or 4. You
can use Swerling 3 or 4 interchangeably.

target = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc,...
 'Model',tgtmodel);

Set up the radar collector.

collector = phased.Collector('OperatingFrequency',1e9,...
 'Sensor',antenna);

Define a matched filter to process the incoming signal.

wav = step(waveform);
filter = phased.MatchedFilter('Coefficients',getMatchedFilter(waveform));

Processing loop for 3 scans of a Swerling 3 target

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the radar target
5 Reflect waveform from radar target
6 Collect radiation to create received signal
7 Match filter received signal

Provide memory for radar return amplitudes.

z = zeros(Nscan,Np);
tp = zeros(Nscan,Np);

 Swerling 3 Target Models

9-27

Enter the loop. Set updatercs to true only for the first pulse of the scan.

for m = 1:Nscan
 t0 = (m-1)*Trot;
 t = t0;
 for k = 1:Np

 if k == 1
 updatercs = true;
 else
 updatercs = false;
 end
 t = t + pri;
 txwav = transmitter(wav);

Find the radar and target positions

 [xradar,vradar] = radarplatform(pri);
 [xtgt,vtgt] = targetplatform(pri);

Radiate waveform to target

 [~,ang] = rangeangle(xtgt,xradar);
 radwav = radiator(txwav,ang);

Propagate waveform to and from the target

 propwav = channel(radwav,xradar,xtgt,vradar,vtgt);

Reflect waveform from target. Set the updatercs flag.

 reflwav = target(propwav,updatercs);

Collect the received waveform

 collwav = collector(reflwav,ang);

Apply matched filter to incoming signal

 y = filter(collwav);
 z(m,k) = max(abs(y));
 tp(m,k) = t;

 end
end

Plot the pulse amplitudes

Plot the amplitudes of the pulses for the scan as a function of time.

plot(tp(:),z(:),'.')
xlabel('Time (sec)')
ylabel('Pulse Amplitude')

9 Environment and Target Models

9-28

Notice that the pulse amplitudes are constant within a scan.

 Swerling 3 Target Models

9-29

Swerling 4 Target Models
The example presents a scenario of a rotating monostatic radar and a target having a radar cross-
section described by a Swerling 4 model. In this example, the radar and target are stationary.

Swerling 3 versus Swerling 4 Targets

In Swerling 3 and Swerling 4 target models, the total RCS arises from a target consisting of one large
scattering surface with several other small scattering surfaces. The total RCS may vary with every
pulse in a scan (Swerling 4) or may be constant over a complete scan consisting of multiple pulses
(Swerling 3). In either case, the statistics obey a chi-squared probability density function with four
degrees of freedom.

Dwell Time and Radar Scan

For simplicity, start with a rotating radar having a rotation time of 5 seconds corresponding to a
rotation or scan rate of 72 degrees/sec.

Trot = 5.0;
scanrate = 360/Trot;

The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time that a target is
illuminated by the main beam, radar pulses strike the target and reflect back to the radar. The time
period during which the target is illuminated is called the dwell time. This time is also called a scan.
The radar will process 3 scans of the target.

HPBW = 3.0;
Tdwell = HPBW/scanrate;
Nscan = 3;

The number of pulses that arrive on target during the dwell time depends upon the pulse repetition
frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI). Assume 5000 pulses are
transmitted per second.

prf = 5000.0;
pri = 1/prf;

The number of pulses in one dwell time is

Np = floor(Tdwell*prf);

Set up a Swerling 4 model

You create a Swerling 4 target by properly employing the step method of the RadarTarget System
object™. To effect a Swerling 4 model, set the Model property of the phased.RadarTarget System
object to either 'Swerling3' or 'Swerling4'. Both are equivalent. Then, at every call to the step
method, set the updatercs argument to true. This means that the radar cross section is updated for
every pulse in the scan.

Set the target model to 'Swerling4' .

tgtmodel = 'Swerling4';

Set up radar model System object components

Set up the radiating antenna. Assume the operating frequency of the antenna is 1 GHz.

9 Environment and Target Models

9-30

fc = 1e9;
antenna = phased.IsotropicAntennaElement('BackBaffled',true);
radiator = phased.Radiator('OperatingFrequency',fc, ...
 'Sensor',antenna);

Specify the location of the stationary antenna.

radarplatform = phased.Platform('InitialPosition',[0;0;0]);

Specify the location of a stationary target.

targetplatform = phased.Platform('InitialPosition',[2000; 0; 0]);

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step method.

waveform = phased.LinearFMWaveform('PulseWidth',50e-6, ...
 'OutputFormat','Pulses','NumPulses',1);

Set up the transmitting amplifier.

transmitter = phased.Transmitter('PeakPower',1000.0,'Gain',40);

Set up the propagation environment to be free space.

channel = phased.FreeSpace('OperatingFrequency',fc, ...
 'TwoWayPropagation',true);

Specify the radar target to have a mean RCS of 1 m2 and be of the Swerling model type 1 or 2. You
can use Swerling 1 or 2 interchangeably.

target = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc, ...
 'Model',tgtmodel);

Set up the radar collector.

collector = phased.Collector('OperatingFrequency',1e9, ...
 'Sensor',antenna);

Define a matched filter to process the incoming signal.

wav = waveform();
filter = phased.MatchedFilter('Coefficients',getMatchedFilter(waveform));

Processing loop for 3 scans of a Swerling 4 target

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the radar target
5 Reflect waveform from radar target.
6 Collect radiation to create received signal
7 Match filter received signal

Provide memory for radar return amplitudes.

z = zeros(Nscan,Np);
tp = zeros(Nscan,Np);

 Swerling 4 Target Models

9-31

Enter the loop. Set updatercs to true only for all pulses of the scan.

for m = 1:Nscan
 t0 = (m-1)*Trot;
 t = t0;
 updatercs = true;
 for k = 1:Np

 t = t + pri;
 txwav = transmitter(wav);

Find the radar and target positions

 [xradar,vradar] = radarplatform(pri);
 [xtgt,vtgt] = targetplatform(pri);

Radiate waveform to target

 [~,ang] = rangeangle(xtgt,xradar);
 radwav = radiator(txwav,ang);

Propagate waveform to and from the target

 propwav = channel(radwav,xradar,xtgt,vradar,vtgt);

Reflect waveform from target. Set the updatercs flag.

 reflwav = target(propwav,updatercs);

Collect the received waveform

 collwav = collector(reflwav,ang);

Apply matched filter to incoming signal

 y = step(filter,collwav);
 z(m,k) = max(abs(y));
 tp(m,k) = t;

 end
end

Plot the pulse amplitudes

Plot the amplitudes of the pulses for the scan as a function of time.

plot(tp(:),z(:),'.')
xlabel('Time (sec)')
ylabel('Pulse Amplitude')

9 Environment and Target Models

9-32

Notice that the pulse amplitudes vary within a scan.

Histogram the received pulse amplitudes

hist(z(:),25)
xlabel('Pulse Amplitude')

 Swerling 4 Target Models

9-33

9 Environment and Target Models

9-34

Coordinate Systems and Motion
Modeling

• “Rectangular Coordinates” on page 10-2
• “Spherical Coordinates” on page 10-10
• “Global and Local Coordinate Systems” on page 10-17
• “Global and Local Coordinate Systems Radar Example” on page 10-31
• “Motion Modeling in Phased Array Systems” on page 10-39
• “Model Motion of Circling Airplane” on page 10-43
• “Visualize Multiplatform Scenario” on page 10-45
• “Doppler Shift and Pulse-Doppler Processing” on page 10-48

10

Rectangular Coordinates
In this section...
“Definitions of Coordinates” on page 10-2
“Notation for Vectors and Points” on page 10-3
“Orthogonal Basis and Euclidean Norm” on page 10-3
“Orientation of Coordinate Axes” on page 10-3
“Rotations and Rotation Matrices” on page 10-4

Definitions of Coordinates
Construct a rectangular, or Cartesian, coordinate system for three-dimensional space by specifying
three mutually orthogonal coordinate axes. The following figure shows one possible specification of
the coordinate axes.

Rectangular coordinates specify a position in space in a given coordinate system as an ordered 3-
tuple of real numbers, (x,y,z), with respect to the origin (0,0,0). Considerations for choosing the origin
are discussed in “Global and Local Coordinate Systems” on page 10-17.

You can view the 3-tuple as a point in space, or equivalently as a vector in three-dimensional
Euclidean space. Viewed as a vector space, the coordinate axes are basis vectors and the vector gives

10 Coordinate Systems and Motion Modeling

10-2

the direction to a point in space from the origin. Every vector in space is uniquely determined by a
linear combination of the basis vectors. The most common set of basis vectors for three-dimensional
Euclidean space are the standard unit basis vectors:

[1 0 0], [0 1 0], [0 0 1]

Notation for Vectors and Points
In Phased Array System Toolbox software, you specify both coordinate axes and points as column
vectors.

Note In this software, all coordinate vectors are column vectors. For convenience, the
documentation represents column vectors in the format [x y z] without transpose notation.

Both the vector notation [x y z] and point notation (x,y,z) are used interchangeably. The interpretation
of the column vector as a vector or point depends on the context. If the column vector specifies the
axes of a coordinate system or direction, it is a vector. If the column vector specifies coordinates, it is
a point.

Orthogonal Basis and Euclidean Norm
Any three linearly independent vectors define a basis for three-dimensional space. However, this
software assumes that the basis vectors you use are orthogonal.

The standard distance measure in space is the l2 norm, or Euclidean norm. The Euclidean norm of a
vector [x y z] is defined by:

x2 + y2 + z2

The Euclidean norm gives the length of the vector measured from the origin as the hypotenuse of a
right triangle. The distance between two vectors [x0 y0 z0] and [x1 y1 z1] is:

(x0− x1)2 + (y0− y1)2 + (z0− z1)2

Orientation of Coordinate Axes
Given an orthonormal set of basis vectors representing the coordinate axes, there are multiple ways
to orient the axes. The following figure illustrates one such orientation, called a right-handed
coordinate system. The arrows on the coordinate axes indicate the positive directions.

 Rectangular Coordinates

10-3

If you take your right hand and point it along the positive x-axis with your palm facing the positive y-
axis and extend your thumb, your thumb indicates the positive direction of the z-axis.

Rotations and Rotation Matrices
In transforming vectors in three-dimensional space, rotation matrices are often encountered. Rotation
matrices are used in two senses: they can be used to rotate a vector into a new position or they can
be used to rotate a coordinate basis (or coordinate system) into a new one. In this case, the vector is
left alone but its components in the new basis will be different from those in the original basis. In
Euclidean space, there are three basic rotations: one each around the x, y and z axes. Each rotation is
specified by an angle of rotation. The rotation angle is defined to be positive for a rotation that is
counterclockwise when viewed by an observer looking along the rotation axis towards the origin. Any
arbitrary rotation can be composed of a combination of these three (Euler’s rotation theorem). For
example, you can rotate a vector in any direction using a sequence of three rotations:
v′ = Av = Rz(γ)Ry(β)Rx(α)v.

The rotation matrices that rotate a vector around the x, y, and z-axes are given by:

• Counterclockwise rotation around x-axis

Rx(α) =
1 0 0
0 cosα −sinα
0 sinα cosα

10 Coordinate Systems and Motion Modeling

10-4

• Counterclockwise rotation around y-axis

Ry(β) =
cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

• Counterclockwise rotation around z-axis

Rz(γ) =
cosγ −sinγ 0
sinγ cosγ 0

0 0 1

The following three figures show what positive rotations look like for each rotation axis:

 Rectangular Coordinates

10-5

For any rotation, there is an inverse rotation satisfying A−1A = 1. For example, the inverse of the x-
axis rotation matrix is obtained by changing the sign of the angle:

10 Coordinate Systems and Motion Modeling

10-6

Rx
−1(α) = Rx(− α) =

1 0 0
0 cosα sinα
0 −sinα cosα

= Rx′ (α)

This example illustrates a basic property: the inverse rotation matrix is the transpose of the original.
Rotation matrices satisfy A’A = 1, and consequently det(A) = 1. Under rotations, vector lengths are
preserved as well as the angles between vectors.

We can think of rotations in another way. Consider the original set of basis vectors, i, j, k, and rotate
them all using the rotation matrix A. This produces a new set of basis vectors i′, j,′ k′ related to the
original by:

i′ = Ai
j′ = Aj
k′ = Ak

Using the transpose, you can write the new basis vectors as a linear combinations of the old basis
vectors:

i′
j′
k′

= A′
i
j
k

Now any vector can be written as a linear combination of either set of basis vectors:

v = vxi + vyj + vzk = v′xi′ + v′yj′ + v′zk′

Using algebraic manipulation, you can derive the transformation of components for a fixed vector
when the basis (or coordinate system) rotates. This transformation uses the transpose of the rotation
matrix.

v′x
v′y
v′z

= A−1
vx
vy
vz

= A′
vx
vy
vz

The next figure illustrates how a vector is transformed as the coordinate system rotates around the x-
axis. The figure after shows how this transformation can be interpreted as a rotation of the vector in
the opposite direction.

 Rectangular Coordinates

10-7

10 Coordinate Systems and Motion Modeling

10-8

See Also

More About
• “Global and Local Coordinate Systems” on page 10-17

 Rectangular Coordinates

10-9

Spherical Coordinates
In this section...
“Support for Spherical Coordinates” on page 10-10
“Azimuth and Elevation Angles” on page 10-10
“Phi and Theta Angles” on page 10-11
“U and V Coordinates” on page 10-12
“Conversion between Rectangular and Spherical Coordinates” on page 10-13
“Broadside Angles” on page 10-14
“Convert Between Broadside Angles and Azimuth and Elevation” on page 10-16

Support for Spherical Coordinates
Spherical coordinates describe a vector or point in space with a distance and two angles. The
distance, R, is the usual Euclidean norm. There are multiple conventions regarding the specification
of the two angles. They include:

• Azimuth and elevation angles
• Phi and theta angles
• u and v coordinates

Phased Array System Toolbox software natively supports the azimuth/elevation representation. The
software also provides functions for converting between the azimuth/elevation representation and the
other representations. See “Phi and Theta Angles” on page 10-11 and “U and V Coordinates” on
page 10-12.

Azimuth and Elevation Angles
In Phased Array System Toolbox software, the predominant convention for spherical coordinates is as
follows:

• Use the azimuth angle, az, and the elevation angle, el, to define the location of a point on the unit
sphere.

• Specify all angles in degrees.
• List coordinates in the sequence (az,el,R).

The azimuth angle of a vector is the angle between the x-axis and the orthogonal projection of the
vector onto the xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth
angles lie between –180 and 180 degrees. The elevation angle is the angle between the vector and its
orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-axis
from the xy plane. By default, the boresight direction of an element or array is aligned with the
positive x-axis. The boresight direction is the direction of the main lobe of an element or array.

Note The elevation angle is sometimes defined in the literature as the angle a vector makes with the
positive z-axis. The MATLAB® and Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector shown as a green solid line.

10 Coordinate Systems and Motion Modeling

10-10

Phi and Theta Angles
As an alternative to azimuth and elevation angles, you can use angles denoted by φ and θ to express
the location of a point on the unit sphere. To convert the φ/θ representation to and from the
corresponding azimuth/elevation representation, use coordinate conversion functions,
phitheta2azel and azel2phitheta.

The phi angle (φ) is the angle from the positive y-axis to the vector’s orthogonal projection onto the yz
plane. The angle is positive toward the positive z-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the x-axis to the vector itself. The angle is positive toward the yz
plane. The theta angle is between 0 and 180 degrees.

The figure illustrates phi and theta for a vector that appears as a green solid line.

 Spherical Coordinates

10-11

The coordinate transformations between φ/θ and az/el are described by the following equations

sinel = sinϕsinθ
tanaz = cosϕtanθ
cosθ = coselcosaz
tanϕ = tanel/sinaz

U and V Coordinates
In radar applications, it is often useful to parameterize the hemisphere x ≥ 0 using coordinates
denoted by u and v.

• To convert the φ/θ representation to and from the corresponding u/v representation, use
coordinate conversion functions phitheta2uv and uv2phitheta.

10 Coordinate Systems and Motion Modeling

10-12

• To convert the azimuth/elevation representation to and from the corresponding u/v representation,
use coordinate conversion functions azel2uv and uv2azel.

You can define u and v in terms of φ and θ:

u = sinθcosϕ
v = sinθsinϕ

In these expressions, φ and θ are the phi and theta angles, respectively.

To convert azimuth and elevation to u and v use the transformation

u = coselsinaz
v = sinel

which is valid only in the range abs(az)≤=90.

The values of u and v satisfy the inequalities

−1 ≤ u ≤ 1
−1 ≤ v ≤ 1
u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v using

tanϕ = v/u

sinθ = u2 + v2

The azimuth and elevation angles can also be written in terms of u and v:

sinel = v

tanaz = u
1− u2− v2

Conversion between Rectangular and Spherical Coordinates
The following equations define the relationships between rectangular coordinates and the (az,el,R)
representation used in Phased Array System Toolbox software.

To convert rectangular coordinates to (az,el,R):

R = x2 + y2 + z2

az = tan−1(y/x)

el = tan−1(z/ x2 + y2)

To convert (az,el,R) to rectangular coordinates:

x = Rcos(el)cos(az)
y = Rcos(el)sin(az)
z = Rsin(el)

 Spherical Coordinates

10-13

When specifying a target’s location with respect to a phased array, it is common to refer to its
distance and direction from the array. The distance from the array corresponds to R in spherical
coordinates. The direction corresponds to the azimuth and elevation angles.

Tip To convert between rectangular coordinates and (az,el,R), use the MATLAB functions cart2sph
and sph2cart. These functions specify angles in radians. To convert between degrees and radians,
use deg2rad and rad2deg.

Broadside Angles
Broadside angles are useful when describing the response of a uniform linear array (ULA). The array
response depends directly on the broadside angle and not on the azimuth and elevation angles. Start
with a ULA and draw a plane orthogonal to the ULA axis as shown in blue in the figure. The broadside
angle, β, is the angle between the plane and the signal direction. To compute the broadside angle,
construct a line from any point on the signal path to the plane, orthogonal to the plane. The angle
between these two lines is the broadside angle and lies in the interval [–90°,90°]. The broadside angle
is positive when measured toward the positive direction of the array axis. Zero degrees indicates a
signal path orthogonal to the array axis. ±90° indicates paths along the array axis. All signal paths
having the same broadside angle form a cone around the ULA axis.

The conversion from azimuth angle, az, and elevation angle, el, to broadside angle, β, is

β = sin−1(sin(az)cos(el))

This equation shows that

• For an elevation angle of zero, the broadside angle equals the azimuth angle.
• Elevation angles equally above and below the xy plane result in identical broadside angles.

You can convert from broadside angle to azimuth angle but you must specify the elevation angle

10 Coordinate Systems and Motion Modeling

10-14

az = sin−1 sinβ
cos(el)

Because the signals paths for a given broadside angle, β, form a cone around the array axis, you
cannot specify the elevation angle arbitrarily. The elevation angle and broadside angle must satisfy

el + β ≤ 90

The following figure depicts a ULA with elements spaced d meters apart along the y-axis. The ULA is
irradiated by a plane wave emitted from a point source in the far field. For convenience, the elevation
angle is zero degrees. In this case, the signal direction lies in the xy-plane. Then, the broadside angle
reduces to the azimuth angle.

Because of the angle of arrival, the array elements are not simultaneously illuminated by the plane
wave. The additional distance the incident wave travels between array elements is d sinβ where d is
the distance between array elements. The constant time delay, τ, between array elements is

τ = dsinβ
c ,

where c is the speed of the wave.

For broadside angles of ±90°, the signal is incident on the array parallel to the array axis and the
time delay between sensors equals ±d/c. For a broadside angle of zero, the plane wave illuminates all
elements of the ULA simultaneously and the time delay between elements is zero.

Phased Array System Toolbox software provides functions az2broadside and broadside2az for
converting between azimuth and broadside angles.

 Spherical Coordinates

10-15

Convert Between Broadside Angles and Azimuth and Elevation
The following examples show how to use the az2broadside and broadside2az functions.

A target is located at an azimuth angle of 45° and at an elevation angle of 60° relative to a ULA.
Determine the corresponding broadside angle.

bsang = az2broadside(45,60)

bsang = 20.7048

Calculate the azimuth for an incident signal arriving at a broadside angle of 45° and an elevation of
20°.

az = broadside2az(45,20)

az = 48.8063

10 Coordinate Systems and Motion Modeling

10-16

Global and Local Coordinate Systems

In this section...
“Global Coordinate System” on page 10-17
“Local Coordinate Systems” on page 10-17
“Converting Between Global and Local Coordinate Systems” on page 10-29
“Convert Local Spherical Coordinates to Global Rectangular Coordinates” on page 10-29
“Convert Global Rectangular Coordinates to Local Spherical Coordinates” on page 10-30

Global Coordinate System
The global coordinate system describes the arena in which your radar or sonar simulation takes
place. Within this arena, you can place radar or sonar transmitters and receivers, and targets. These
objects can be either stationary or moving. You specify the location and motion of these objects in
global coordinates.

You can model the motion of all objects using the phased.Platform System object. This System
object computes the position and speed of objects using constant-velocity or constant-acceleration
models.

You can model the signals that propagate between objects in your scenario. The ray paths that
connect transmitters, targets, and receivers are specified in global coordinates. You can propagate
signals using these System objects: phased.FreeSpace, phased.WidebandFreeSpace,
phased.LOSChannel, or phased.WidebandLOSChannel. If you model two-ray multipath
propagation using twoRayChannel, the boundary plane is set at z = 0 in the global coordinate
system.

Local Coordinate Systems
When signals interact with sensors or targets, the interaction is almost always specified as a function
of the sensor or target local coordinates. Local coordinate systems are fixed to the antennas and
microphones, phased arrays, and targets. They move and rotate with the object. Local coordinates
are commonly adapted to the shape and symmetry of the object.

Because signals propagate in the global coordinate system, you need to be able to convert local
coordinates to the global coordinates. You do this by constructing a 3-by-3 orthonormal matrix of
coordinate axes. The matrix columns represent the three orthogonal direction vectors of the local
coordinates expressed in the global coordinate system. The coordinate axes of a local coordinate
system must be orthonormal, but they need not be parallel to the global coordinate axes.

When you need to compute the range and arrival angles of a signal, you can use the rangeangle
function. When you call this function with the source and receiver position expressed in global
coordinates, the function returns the range and arrival angles, azimuth and elevation, with respect to
the axes of the global system. However, when you pass the orientation matrix as an additional
argument, the azimuth and elevation are now defined with respect to the local coordinate system.

You use local coordinates to specify

 Global and Local Coordinate Systems

10-17

• the location and orientation of antenna or microphone elements of an array. The beam pattern of
an antenna array depends upon the angle of arrival or emission of radiation with respect to the
array local coordinates.

• the reflected energy from a target is a function of the incident and reflection angles with respect
to the target local coordinate axes.

Two examples of local coordinate systems are

• an airplane may have a local coordinate system with the x-axis aligned along the fuselage axis of
the body and the y-axis pointing along the port wing. Choose the z-axis to form a right-handed
coordinate system.

• a vehicle-mounted planar phased array may have a local coordinate system adapted to the array.
The x-axis of the coordinate system may point along the array normal vector.

The following figure illustrates the relationship of local and global coordinate systems in a bistatic
radar scenario. The thick solid lines represent the coordinate axes of the global coordinate system.
There are two phased arrays: a 5-by-5 transmitting uniform rectangular array (URA) and 5-by-5
receiving URA. Each of the phased arrays carries its own local coordinate system. The target,
indicated by the red arrow, also carries a local coordinate system.

The next few sections review the local coordinate systems used by arrays.

Local Coordinate Systems of Arrays

The positions of the elements of any Phased Array System Toolbox array are always defined in a local
coordinate system. When you use any of the System objects that create uniform arrays, the array
element positions are defined automatically with respect to a predefined local coordinate system. The
arrays for which this property holds are the phased.ULA, phased.URA, phased.UCA,
phased.HeterogeneousULA, and phased.HeterogeneousURA System objects. For these System
objects, the arrays are described using a few parameters such as element spacing and number of
elements. The positions of the elements are then defined with respect to the array origin located at
(0,0,0) which is the geometric center of the array. The geometric center is a good approximation to
the array phase center. The phase center of an array is the point from which the radiating waves
appear to emanate when observed in the far field. For example, for a ULA with an odd number of
elements, the elements are located at distances (-2d,-d,0,d,2d) along the array axis.

10 Coordinate Systems and Motion Modeling

10-18

There are array System objects for which you must explicitly specify the element coordinates. You can
use these objects for creating arbitrary array shapes. These objects are the
phased.ConformalArray and phased.HeterogeneousConformalArray System objects. For
these arrays, the phase center of the array need not coincide with the array origin or geometric
center.

Element Boresight Directions

In addition to element positions, you need to specify the element orientations, that is, the directions
in which the elements point. Some elements are highly directional — most of their radiated energy
flows in one direction, called the main response axis (MRA). Others are omnidirectional. Element
orientation is the pointing direction of the MRA. You specify element orientation using azimuth and
elevation in the array local coordinate system. The direction that an antenna or microphone MRA
faces when transmitting or receiving a signal is also called the boresight or look direction. For the
uniform arrays, all boresight directions of all elements are determined by array parameters. For
conformal arrays, you specify the boresight direction of each element independently.

Local Coordinate System of Uniform Linear Array
Array Origin and Phase Center

A uniform linear array (ULA) is an array of antenna or microphone elements that are equidistantly
spaced along a straight line. In the Phased Array System Toolbox, the phased.ULA System object
creates a ULA array. The geometry of the ULA orientation of its elements is determined by three
parameters: the number of elements, the distance between elements, and the ArrayAxis property.
For the ULA, the local coordinate system is adapted to the array — the elements are automatically
assigned positions in the local coordinate system.

The positions of elements in the array are determined by the ArrayAxis property which can take the
values 'x', 'y' or 'z'. The array axis property determines the axis on which all elements are
defined. For example, when the ArrayAxis property is set to 'x', the array elements lie along the x-
axis. The elements are positioned symmetrically with respect to the origin. Therefore, the geometric
center of the array lies at the origin of the coordinate system.

This figure shows a four-element ULA with directional elements in a local right-handed coordinate
system. The elements lie on the y-axis with their boresight axes pointing in the x-direction. In this
case, the ArrayAxis property is set to 'y.

 Global and Local Coordinate Systems

10-19

ULA Element Boresight Direction

In a ULA, the boresight directions of every element point in the same direction. The direction is
orthogonal to the array axis. This direction depends upon the choice of ArrayAxis property.

ArrayAxis Property Value Element Positions and Boresight Directions
'x' Array elements lie on the x-axis. Element

boresight vectors point along the y-axis.
'y' Array elements lie on the y-axis. Element

boresight vectors point along the x-axis.
'z' Array elements lie on the z-axis. Element

boresight vectors point along the x-axis.

Local Coordinates Adapted to Uniform Linear Array

Construct two examples of a uniform linear array and display the coordinates of the elements with
respect to the local coordinate systems defined by the arrays.

First, construct a 4-element ULA with one-half meter element spacing.

sULA = phased.ULA('NumElements',4,'ElementSpacing',0.5);
ElementLocs = getElementPosition(sULA)

ElementLocs = 3×4

 0 0 0 0
 -0.7500 -0.2500 0.2500 0.7500

10 Coordinate Systems and Motion Modeling

10-20

 0 0 0 0

viewArray(sULA)

The origin of the array-centric local coordinate system is set to the phase center of the array. The
phase center is the average value of the array element positions.

disp(mean(ElementLocs'))

 0 0 0

Because the array has an even number of elements, no element of the array actually lies at the phase
center (0,0,0).

Next construct a 5-element ULA with thirty-centimeter element spacing.

sULA1 = phased.ULA('NumElements',5,'ElementSpacing',0.3);
ElementLocs = getElementPosition(sULA1)

ElementLocs = 3×5

 0 0 0 0 0
 -0.6000 -0.3000 0 0.3000 0.6000
 0 0 0 0 0

viewArray(sULA1)

 Global and Local Coordinate Systems

10-21

Because the array has an odd number of elements in each row and column, the center element of the
array lies at the phase center.

Local Coordinate System of Uniform Rectangular Array
Array Origin and Phase Center

A uniform rectangular array (URA) is an array of antenna or microphone elements placed on a
regular two-dimensional grid. The geometry of a URA and the location and orientation of its elements
are determined by several parameters: the dimensions of the array, the distance between elements,
and the ArrayNormal property. For the URA, the local coordinate system is adapted to the array —
the elements are automatically assigned positions in the local coordinate system. The origin of the
local coordinate system is the geometric center of the array. The phase center of the array coincides
with the geometric center. The elements are automatically assigned positions in this local coordinate
system. The positions are determined by the ArrayNormal property which can take the values 'x',
'y' or 'z'. All elements lie in a plane passing through the origin and orthogonal to the axis specified
in this property. For example, when the ArrayNormal property is set to 'x', the array elements lie
in the yz-plane as shown in the figure. The figure shows a 2-by-4 element URA with elements spaced
d meters apart in both the y and z directions.

10 Coordinate Systems and Motion Modeling

10-22

Element Boresight Direction

In a URA, like the ULA, the boresight directions of every element point in the same direction. You
control this direction using the ArrayNormal property. For the URA shown in the preceding figure,
the ArrayNormal property is set to 'x'. Then, element boresights point along the x-axis.

ArrayNormal Property Value Element Positions and Boresight Directions
'x' Array elements lie on the yz-plane. Element

boresight vectors point along the x-axis.
'y' Array elements lie on the zx-plane. Element

boresight vectors point along the y-axis.
'z' Array elements lie on the xy-plane. Element

boresight vectors point along the z-axis.

Local Coordinates Adapted to Uniform Rectangular Array

Construct two examples of uniform rectangular arrays and display the coordinates of the elements
with respect to the local coordinate systems defined by the arrays.

First, construct a 2-by-4 URA with one-half meter element spacing.

 Global and Local Coordinate Systems

10-23

sURA = phased.URA('Size',[2 4],'ElementSpacing',[0.5 0.5]);
ElementLocs = getElementPosition(sURA)

ElementLocs = 3×8

 0 0 0 0 0 0 0 0
 -0.7500 -0.7500 -0.2500 -0.2500 0.2500 0.2500 0.7500 0.7500
 0.2500 -0.2500 0.2500 -0.2500 0.2500 -0.2500 0.2500 -0.2500

viewArray(sURA)

The phase center of the array is the mean value of the array element positions. The origin of the array
local coordinate system is set to the phase center of the array.

disp(mean(ElementLocs'))

 0 0 0

Because the array has an even number of elements in each row and column, no element of the array
actually lies at the phase center (0,0,0).

Next construct a 5-by-3 URA with thirty-centimeter element spacing.

sURA1 = phased.URA([5 3],'ElementSpacing',[0.3 0.3]);
ElementLocs = getElementPosition(sURA1)

ElementLocs = 3×15

10 Coordinate Systems and Motion Modeling

10-24

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 0 0 0 0 0 0.3000 0.3000 0.3000 0.3000 0.3000
 0.6000 0.3000 0 -0.3000 -0.6000 0.6000 0.3000 0 -0.3000 -0.6000 0.6000 0.3000 0 -0.3000 -0.6000

viewArray(sURA1)

Because the array has an odd number of elements in each row and column, the center element of the
array lies at the phase center.

A signal arrives at the array from a point 1000 meters from along the +x-axis of the global coordinate
system. The local URA array is rotated 30 degrees clockwise around the y-axis. Compute the angle of
arrival of the signal in the local array axes.

laxes = roty(30);
[rng,ang] = rangeangle([1000,0,0]',[0,0,0]',laxes)

rng = 1.0000e+03

ang = 2×1

 0
 30.0000

 Global and Local Coordinate Systems

10-25

Local Coordinate System of Uniform Circular Array

Array Origin and Phase Center

A uniform circular array (UCA) is an array of antenna or microphone elements spaced at equal angles
around a circle. The phased.UCA System object creates a special case of a UCA. In this case,
element boresight directions point away from the array origin like spokes of a wheel. The origin of
the local coordinate system is the geometric center of the array. The geometry of the UCA and the
location and orientation of its elements is determined by three parameters: the radius of the array,
the number of elements, and the ArrayNormal property. The elements are automatically assigned
positions in the local coordinate system. The positions are determined by the ArrayNormal property
which can take the values 'x', 'y' or 'z'. All elements lie in a plane passing through the origin and
orthogonal to the axis specified in this property. The phase center of the array coincides with the
geometric center. For example, when the ArrayNormal property is set to 'x', the array elements lie
in the yz-plane as shown in the figure. You can create a more general UCA with arbitrary boresight
directions using the phased.ConformalArray System object.

This figure shows an 8-element UCA with elements lying in the yz plane.

10 Coordinate Systems and Motion Modeling

10-26

Element Boresight Directions

In a UCA defined by a phased.UCA System object, element boresight directions point radially
outward from the array origin. In the UCA shown in the preceding figure, because the ArrayNormal
property is set to 'x', the element boresight directions point radially outward in the yz-plane.

ArrayNormal Property Value Element Positions and Boresight Directions
'x' Array elements lie on the yz-plane. All element

boresight vectors lie in the yz-plane and point
radially-outward from the origin.

'y' Array elements lie on the zx-plane. All element
boresight vectors lie in the zx-plane and point
radially-outward from the origin.

'z' Array elements lie on the xy-plane. All element
boresight vectors lie in the xy-plane and point
radially-outward from the origin.

Local Coordinate System of Conformal Arrays
Array Origin and Phase Center

You can use phased.ConformalArray to create arrays of arbitrary shape. Unlike the case of
uniform arrays, you must specify the element positions explicitly. An N-element array requires the
specification of N 3-D coordinates in the array local coordinate system. The origin of a conformal
array can be located at any arbitrary point. The boresight directions of the elements of a conformal
array need not be parallel. The azimuth and elevation angles defining the boresight directions are
with respect to the local coordinate system. The phase center of the array does not need to coincide
with the geometric center. The same properties apply to the
phased.HeterogeneousConformalArray array.

This illustration shows the positions and orientations of a 4-element conformal array.

 Global and Local Coordinate Systems

10-27

4-Element Conformal Array

Construct a 4-element array using the ConformalArray System object™. Assume the operating
frequency is 900 MHz. Display the array geometry and normal vectors.

fc = 900e6;
c = physconst('LightSpeed');
lam = c/fc;
x = [1.0,-.5,0,.8]*lam/2;
y = [-.4,-1,.5,1.5]*lam/2;
z = [-.3,.3,0.4,0]*lam/2;
sIso = phased.CosineAntennaElement(...
 'FrequencyRange',[0,1e9]);
nv = [-140,-140,90,90;80,80,80,80];
sConformArray = phased.ConformalArray('Element',sIso,...
 'ElementPosition',[x;y;z],...
 'ElementNormal',nv);
pos = getElementPosition(sConformArray)

pos = 3×4

 0.1666 -0.0833 0 0.1332
 -0.0666 -0.1666 0.0833 0.2498
 -0.0500 0.0500 0.0666 0

normvec = getElementNormal(sConformArray)

10 Coordinate Systems and Motion Modeling

10-28

normvec = 2×4

 -140 -140 90 90
 80 80 80 80

viewArray(sConformArray,'ShowIndex','All','ShowNormal',true)

Converting Between Global and Local Coordinate Systems
In many array processing applications, it is necessary to convert between global and local
coordinates. Two utility functions, global2localcoord and local2globalcoord, perform these
conversions.

Convert Local Spherical Coordinates to Global Rectangular
Coordinates
Determine the position of a target in rectangular coordinates in the global coordinate system. First,
specify the local spherical coordinates of a target with respect to a URA. The center of the URA
defines the origin of the local coordinate system. The target location in local spherical coordinates is
30° azimuth, 45° elevation, and 1000 m range. To convert to global rectangular coordinates, specify
the position of the local coordinate system origin in global coordinates. The origin of the local
coordinate system is (1000,500,100) m from the global origin.

 Global and Local Coordinate Systems

10-29

Convert the coordinates of the point to global rectangular coordinates. To convert from local
spherical coordinates to global rectangular coordinates, use the 'sr' option in the call to the
local2globalcoord function.

gCoord = local2globalcoord([30; 45; 1000],'sr',[1000; 500; 100])

gCoord = 3×1
103 ×

 1.6124
 0.8536
 0.8071

The target is located at (1612,854,807) m in the global coordinate system.

Convert Global Rectangular Coordinates to Local Spherical
Coordinates
Determine the position of a target in local spherical coordinates centered at the phase center of a
URA array. The center of the URA defines the origin of the local coordinate system and has the global
rectangular coordinates (5000,3000,50). The local coordinate axes of the URA are (0,1,0), (1,0,0), and
(0,0,-1). Specify the global rectangular coordinates of the target at (1000,500,10).

Convert the coordinates of the target to local spherical rectangular coordinates. To convert from
global rectangular coordinates to local spherical coordinates, use the 'rs' option in the call to the
global2localcoord function.

lCoord = global2localcoord([5000; 3000; 50],'rs',[1000; 500; 100], ...
 [0 1 0; 1 0 0; 0 0 -1])

lCoord = 3×1
103 ×

 0.0580
 0.0006
 4.7173

The output has the form (az,el,rng). The target is located in local spherical coordinates at 58°
azimuth, 0.6° elevation and 4717 m.

10 Coordinate Systems and Motion Modeling

10-30

Global and Local Coordinate Systems Radar Example
This example shows how several different coordinate systems come into play when modeling a typical
radar scenario. The scenario considered here is a bistatic radar system consisting of a transmitting
radar array, a target, and a receiving radar array. The transmitting radar antenna emits radar signals
that propagate to the target, reflect off the target, and then propagate to the receiving radar.

Choose a signal frequency of 1 GHz.

fc = 1e9;
c = physconst('LightSpeed');
lam = c/fc;

Create All Radar System Components

First, set up the transmitting radar array. The transmitting array is a 5-by-5 uniform rectangular
array (URA) composed of isotropic antenna elements. The array is stationary and is located at the
position (50,50,50) meters in the global coordinate system. Although you position arrays in the global
system, array element positions are always defined in the array local coordinate system. The
transmitted signal strength in any direction is a function of the transmitting angle in the local array
coordinate system. Specify the orientation of the array. Without any orientation, local array axes are
aligned with the global coordinate system. Choose an array orientation so that the array normal
vector points approximately in the direction of the target. Do this by rotating the array 90° around
the z-axis. Then, rotate the array slightly by 2° around the y-axis and 1° around the z-axis again.

antenna = phased.IsotropicAntennaElement('BackBaffled',false);
txarray = phased.URA('Element',antenna','Size',[5,5],'ElementSpacing',0.4*lam*[1,1]);
txradarAx = rotz(1)*roty(2)*rotz(90);
txplatform = phased.Platform('InitialPosition',[50;50;50],...
 'Velocity',[0;0;0],'InitialOrientationAxes',txradarAx,...
 'OrientationAxesOutputPort',true);
radiator = phased.Radiator('Sensor',txarray,'PropagationSpeed',c,...
 'WeightsInputPort',true,'OperatingFrequency',fc);
steervec = phased.SteeringVector('SensorArray',txarray,'PropagationSpeed',c,...
 'IncludeElementResponse',true);

Next, position a target approximately 5 km from the transmitter along the global coordinate system y-
axis and moving in the x-direction. Typically, you specify radar cross-section values as functions of the
incident and reflected ray angles with respect to the local target axes. Choose any target orientation
with respect to the global coordinate system.

Simulate a non-fluctuating target, but allow the RCS to change at each call to the target method.
Set up a simple inline function, rcsval, to compute fictitious but reasonable values for RCS at
different ray angles.

tgtAx = rotz(10)*roty(15)*rotx(20);
tgtplatform = phased.Platform('InitialPosition',[100; 10000; 100],...
 'MotionModel','Acceleration','InitialVelocity',[-50;0;0],'Acceleration',[.015;.015;0],...
 'InitialOrientationAxes',tgtAx,'OrientationAxesOutputPort',true);
target = phased.RadarTarget('OperatingFrequency',fc,...
 'Model','Nonfluctuating','MeanRCSSource','Input port');
rcsval = @(az1,el1,az2,el2) 2*abs(cosd((az1+az2)/2 - 90)*cosd((el1+el2)/2));

Finally, set up the receiving radar array. The receiving array is also a 5-by-5 URA composed of
isotropic antenna elements. The array is stationary and is located 150 meters in the z-direction from
the transmitting array. The received signal strength in any direction is a function of the incident angle

 Global and Local Coordinate Systems Radar Example

10-31

of the signal in the local array coordinate system. Specify an orientation of the array. Choose an
orientation so that this array also points approximately in the y-direction towards the target but not
quite aligned with the first array. Do this by rotating the array 92° around the z-axis and then 5°
around the x-axis.

rxradarAx = rotx(5)*rotz(92);
rxradarAx = rotx(-.2)*rotz(92);

rxplatform = phased.Platform('InitialPosition',[50;50;200],...
 'Velocity',[0;0;0],'InitialOrientationAxes',rxradarAx,...
 'OrientationAxesOutputPort',true);
rxarray = phased.URA('Element',antenna','Size',[5,5],'ElementSpacing',0.4*lam*[1,1]);

In summary, four different coordinate systems are needed to describe the radar scenario. These are

1 The global coordinate system.
2 A local radar coordinate system defined by the transmitting radar axes.
3 A local coordinate system defined by the target axes.
4 A second local radar coordinate system defined by the receiving radar axes.

The figure here illustrates the four coordinate systems. It is not to scale and does not accurately
represent the scenario in the example code.

10 Coordinate Systems and Motion Modeling

10-32

Specify Transmitted Waveform and Transmitter Amplification

Use a linear FM waveform as the transmitted signal. Assume a sampling frequency of 1 MHz, a pulse
repetition frequency of 5 kHz, and a pulse length of 100 microseconds. Set the transmitter peak
output power to 1000 W and the gain to 40.0.

tau = 100e-6;
prf = 5000;
fs = 1e6;
waveform = phased.LinearFMWaveform('PulseWidth',tau,...
 'OutputFormat','Pulses','NumPulses',1,'PRF',prf,'SampleRate',fs);
transmitter = phased.Transmitter('PeakPower',1000.0,'Gain',40);

Create a matched filter from the transmitted waveform.

filter = phased.MatchedFilter('Coefficients',getMatchedFilter(waveform));

Specify Propagation Channels

Use free-space models for the propagation of the signal from the transmitting radar to the target and
back to the receiving radar.

channel1 = phased.FreeSpace('OperatingFrequency',fc,...
 'TwoWayPropagation',false);
channel2 = phased.FreeSpace('OperatingFrequency',fc,...
 'TwoWayPropagation',false);

Specify Phaseshift Beamformer

Create a phase-shift beamformer. Point the mainlobe of the beamformer in a specific direction with
respect to the local receiver coordinate system. This direction is chosen to be one through which the
target passes at some time in its motion. This choice lets us demonstrate how the beamformer
response changes as the target passes through the mainlobe.

rxangsteer = [22.2244;-5.0615];
rxangsteer = [10;-.07];
beamformer = phased.PhaseShiftBeamformer('SensorArray',rxarray,...
 'DirectionSource','Property','Direction',rxangsteer,...
 'PropagationSpeed',c,'OperatingFrequency',fc);

Simulation loop

Each iteration of the processing loop performs these operations:

1 Updates positions of the radars and target.
2 Generates the LFM waveform.
3 Amplifies the waveform.
4 Radiates the signal from the transmitting antenna array.
5 Propagates the signal to the target.
6 Reflects the signal from the target.
7 Propagates the signal from the target to the receiving antenna array.
8 Collects the received signal at the receiving antenna.
9 Beamforms the arriving signal at the receiving antenna.

 Global and Local Coordinate Systems Radar Example

10-33

10 Match-filters the beamformed signal and finds its peak value.

Transmit 100 pulses of the waveform. Transmit one pulse every 100 milliseconds.

t = 0;
Npulse = 100;
dt = 1;

Create storage for later plotting.

azes1 = zeros(Npulse,1);
elevs1 = zeros(Npulse,1);
azes2 = zeros(Npulse,1);
elevs2 = zeros(Npulse,1);
rxsig = zeros(Npulse,1);

Enter the simulation loop and generate the transmitted waveform.

for k = 1:Npulse

 t = t + dt;
 wav = waveform();

Update the positions of the radars and targets. All positions and velocities are defined with respect to
the global coordinate system. Because the OrientationAxesOutputPort property of the target
System object™ is set to true, you can obtain the instantaneous local target axes, tgtAx1, from the
target method. These axes are needed to compute the target RCS. The array local axes are fixed so
you do not need to update them.

 [txradarPos,txradarVel] = txplatform(dt);
 [rxradarPos,rxradarVel] = rxplatform(dt);
 [tgtPos,tgtVel,tgtAx1] = tgtplatform(dt);

Compute the instantaneous range and direction of the target from the transmitting radar. The
strength of the transmitted wave depends upon the array gain pattern. This pattern is a function of
direction angles with respect to the local radar axes. You can compute the direction of the target with
respect to the transmitter local axes using the rangeangle function with an optional argument that
specifies the local radar axes, txradarAx. (Without this additional argument, rangeangle returns
the azimuth and elevation angles with respect to the global coordinate system).

 [~,tgtang_tlcs] = rangeangle(tgtPos,txradarPos,txradarAx);

An alternative way to compute the direction angles is to first compute them in the global coordinate
system and then convert them using the global2localcoord function.

Create the transmitted waveform. The transmitted waveform is an amplified version of the generated
waveform.

 txwaveform = transmitter(wav);

Radiate the signal in the instantaneous target direction. Recall that the radiator is not steered in this
direction but in an angle defined by the steering vector, txangsteer. The steering angle is chosen
because the target passes through this direction during its motion. A plot will let us see the
improvement in the response as the target moves into the main lobe of the radar.

 txangsteer = [23.1203;-0.5357];
 txangsteer = [10;-.07];

10 Coordinate Systems and Motion Modeling

10-34

 sv1 = steervec(fc,txangsteer);
 wavrad = radiator(txwaveform,tgtang_tlcs,conj(sv1));

Propagate the signal from the transmitting radar to the target. Propagation coordinates are in the
global coordinate system.

 wavprop1 = channel1(wavrad,txradarPos,tgtPos,txradarVel,tgtVel);

Reflect the waveform from target back to the receiving radar array. Use the simple angle-dependent
RCS model defined previously. Inputs to the rcs-model are azimuth and elevation of the incoming and
reflected rays with respect to the local target coordinate system.

 [~,txang_tgtlcs] = rangeangle(txradarPos,tgtPos,tgtAx1);
 [~,rxang_tgtlcs] = rangeangle(rxradarPos,tgtPos,tgtAx1);
 rcs = rcsval(txang_tgtlcs(1),txang_tgtlcs(2),rxang_tgtlcs(1),rxang_tgtlcs(2));
 wavreflect = target(wavprop1,rcs);
 ns = size(wavreflect,1);
 tm = [0:ns-1]/fs*1e6;

Propagate the signal from the target to the receiving radar. As before, all coordinates for signal
propagation are expressed in the global coordinate system.

 wavprop2 = channel2(wavreflect,tgtPos,rxradarPos,tgtVel,rxradarVel);

Compute the response of the receiving antenna array in the direction from which the radiation is
coming. First, use the rangeangle function to compute the direction of the target with respect to
the receiving array local axes, by specifying the receiver local coordinate system, rxradarAx.

 [tgtrange_rlcs,tgtang_rlcs] = rangeangle(tgtPos,rxradarPos,rxradarAx);

Store the ranges and direction angles for later plotting.

 azes1(k) = tgtang_tlcs(1);
 elevs1(k) = tgtang_tlcs(2);
 azes2(k) = tgtang_rlcs(1);
 elevs2(k) = tgtang_rlcs(2);

Simulate an incoming plane wave at each element from the current direction of the target calculated
in the receiver local coordinate system.

 wavcoll = collectPlaneWave(rxarray,wavprop2,tgtang_rlcs,fc);

Beamform the arriving wave. In this scenario, the receiver beamformer points in the direction,
rxangsteer, specified by the Direction property of the phased.PhaseShiftBeamformer
System object. When the target actually lies in that direction, the response of the array maximized.

 wavbf = beamformer(wavcoll);

Perform match filtering of the beamformed received wave and then find and store the maximum value
of each pulse for display. This value will be plotted after the simulation loop ends.

 y = filter(wavbf);
 rxsig(k) = max(abs(y));

end

Plot the target track in azimuth and elevation with respect to the transmitter local coordinates. The
red circle denotes the direction toward which the transmitter array points.

 Global and Local Coordinate Systems Radar Example

10-35

plot(azes1,elevs1,'.b')
grid
xlabel('Azimuth (degrees)')
ylabel('Elevation (degrees)')
title('Target Track in Transmitter Local Coordinates')
hold on
plot(txangsteer(1),txangsteer(2),'or')
hold off

Plot the target track in azimuth and elevation with respect to the receiver local coordinates. The red
circle denotes the direction toward which the beamformer points.

plot(azes2,elevs2,'.b')
axis([-5.0,25.0,-5.0,5])
grid
xlabel('Azimuth (degrees)')
ylabel('Elevation (degrees)')
title('Target Track in Receiver Local Coordinates')
hold on
plot(rxangsteer(1),rxangsteer(2),'or')
hold off

10 Coordinate Systems and Motion Modeling

10-36

Plot the returned signal amplitude vs azimuth in the receiver local coordinates. The value of the
amplitude depends on several factors.

plot(azes2,rxsig,'.')
grid
xlabel('Azimuth (degrees)')
ylabel('Amplitude')
title('Amplitude vs Azimuth in Receiver Local Coordinates')

 Global and Local Coordinate Systems Radar Example

10-37

10 Coordinate Systems and Motion Modeling

10-38

Motion Modeling in Phased Array Systems
In this section...
“Support for Motion Modeling” on page 10-39
“Platform Motion with Constant Velocity” on page 10-40
“Platform Motion with Changing Velocity” on page 10-40
“Track Range and Angle Changes Between Platforms” on page 10-41

Support for Motion Modeling
A critical component in phased array system applications is the ability to model motion in space. Such
modeling includes the motion of arrays, targets, and sources of interference. For convenience, you
can ignore the distinction between these objects and collectively model the motion of a platform.

Extended bodies can undergo both translational and rotational motion in space. Phased Array System
Toolbox software supports modeling of translational motion.

Modeling translational platform motion requires the specification of a position and velocity vector.
Specification of a position vector implies a coordinate system. In the Phased Array System Toolbox,
platform position and velocity are specified in a “Global Coordinate System” on page 10-17. You can
think of the platform position as the displacement vector from the global origin or as the coordinates
of a point with respect to the global origin.

Let r0 denote the position vector at time 0 and v denote the velocity vector. The position vector of a
platform as a function of time, r(t), is:

r(t) = r0 + vt

The following figure depicts the vector interpretation of translational motion.

When the platform represents a sensor element or array, it is important to know the orientation of the
element or array local coordinate axes. For example, the orientation of the local coordinate axes is
necessary to extract angle information from incident waveforms. See “Global and Local Coordinate

 Motion Modeling in Phased Array Systems

10-39

Systems” on page 10-17 for a description of global and local coordinate systems in the software.
Finally, for platforms with varying velocity, you must be able to update the velocity vector over time.

You can model platform position, velocity, and local axes orientation with the phased.Platform
object.

Platform Motion with Constant Velocity
Beginning with a simple example, model the motion of a platform over ten time steps. To determine
the time step, assume that you have a pulse transmitter with a pulse repetition frequency (PRF) of 1
kilohertz. Accordingly, the time interval between each pulse is 1 millisecond. Set the time step equal
to pulse repetition interval.

PRF = 1e3;
Tstep = 1/PRF;
Nsteps = 10;

Next, construct a platform object specifying the platform initial position and velocity. Assume that the
initial position of the platform is 100 meters from the origin at (60,80,0). Assume the speed is
approximately 30 meters per second (m/s) with the constant velocity vector given by (15,25.98,0) .

platform = phased.Platform('InitialPosition',[60;80;0],'Velocity',[15;25.98;0]);

The orientation of the local coordinate axes of the platform is the value of the
InitialOrientationAxes property. You can view the value of this property by entering
hplat.InitialOrientationAxes at the MATLAB™ command prompt. Because the
InitialOrientationAxes property is not specified in the construction of the phased.Platform
System object™, the property is assigned its default value of [1 0 0;0 1 0;0 0 1]. Use the step
method to simulate the translational motion of the platform.

initialPos = platform.InitialPosition;
for k = 1:Nsteps
 pos = platform(Tstep);
end
finalPos = pos + platform.Velocity*Tstep;
distTravel = norm(finalPos - initialPos)

distTravel = 0.3000

The step method returns the current position of the platform and then updates the platform position
based on the time step and velocity. Equivalently, the first time you invoke the step method, the
output is the position of the platform at t = 0.

Recall that the platform is moving with a constant velocity of approximately 30 m/s. The total time
elapsed is 0.01 seconds. Invoking the step method returns the current position of the platform and
then updates that position. Accordingly, you expect the final position to differ from the initial position
by 0.30 meters. Confirm this difference by examining the value of distTravel.

Platform Motion with Changing Velocity
Most platforms in phased array applications do not move with constant velocity. If the time interval
described by the number of time steps is small with respect to the platform speed, you can often
approximate the velocity as constant. However, there are situations where you must update the

10 Coordinate Systems and Motion Modeling

10-40

platform velocity over time. You can do so with the phased.Platform System Object™ because the
Velocity property is tunable.

This example models a target initially at rest. The initial velocity vector is (0,0,0) . Assume the time
step is 1 millisecond. After 500 milliseconds, the platform begins to move with a speed of
approximately 10 m/s. The velocity vector is (7.07,7.07,0). The platform continues at this velocity for
an additional 500 milliseconds.

Tstep = 1e-3;
Nsteps = 1/Tstep;
platform = phased.Platform('InitialPosition',[100;100;0]);
for k = 1:Nsteps/2
 [tgtpos,tgtvel] = platform(Tstep);
end
platform.Velocity = [7.07; 7.07; 0];
for k = Nsteps/2+1:Nsteps
 [tgtpos,tgtvel] = platform(Tstep);
end

Track Range and Angle Changes Between Platforms
This example uses the phased.Platform System object™ to model the change in range between a
stationary radar and a moving target. The radar is located at (1000,1000,0) and has a velocity of
(0,0,0) . The target has an initial position of (5000,8000,0) and moves with a constant velocity of
(−30,−45,0). The pulse repetition frequency (PRF) is 1 kHz. Assume that the radar emits ten pulses.

PRF = 1e3;
Tstep = 1/PRF;
radar = phased.Platform('InitialPosition',[1000;1000;0]);
target = phased.Platform('InitialPosition',[5000;8000;0],...
 'Velocity',[-30;-45;0]);

Calculate initial target range and angle.

[initRng, initAng] = rangeangle(target.InitialPosition,radar.InitialPosition);

Calculate relative radial speed.

v = radialspeed(target.InitialPosition,target.Velocity,...
 radar.InitialPosition);

Simulate target motion.

Npulses = 10;
for num = 1:Npulses
 tgtpos = target(Tstep);
end

Compute last target position.

tgtpos = tgtpos + target.Velocity*Tstep;

Calculate final target range and angle.

[finalRng,finalAng] = rangeangle(tgtpos,radar.InitialPosition);
deltaRng = finalRng - initRng

 Motion Modeling in Phased Array Systems

10-41

deltaRng = -0.5396

The constant velocity of the target is approximately 54 m/s. The total time elapsed is 0.01 seconds.
The range between the target and the radar should decrease by approximately 54 centimeters.
Compare the initial range of the target, initRng, to the final range, finalRng, to confirm that this
decrease occurs.

See Also

Related Examples
• “Introduction to Space-Time Adaptive Processing” on page 17-233

10 Coordinate Systems and Motion Modeling

10-42

Model Motion of Circling Airplane
Start with an airplane moving at 150 kmph in a circle of radius 10 km and descending at the same
time at a rate of 20 m/sec. Compute the motion of the airplane from its instantaneous acceleration as
an argument to the step method. Set the initial orientation of the platform to the identity, coinciding
with the global coordinate system.

Set up the scenario

Specify the initial position and velocity of the airplane. The airplane has a ground range of 10 km and
an altitude of 20 km.

range = 10000;
alt = 20000;
initPos = [cosd(60)*range;sind(60)*range;alt];
originPos = [1000,1000,0]';
originVel = [0,0,0]';
vs = 150.0;
phi = atan2d(initPos(2)-originPos(2),initPos(1)-originPos(1));
phi1 = phi + 90;
vx = vs*cosd(phi1);
vy = vs*sind(phi1);
initVel = [vx,vy,-20]';
platform = phased.Platform('MotionModel','Acceleration',...
 'AccelerationSource','Input port','InitialPosition',initPos,...
 'InitialVelocity',initVel,'OrientationAxesOutputPort',true,...
 'InitialOrientationAxes',eye(3));
relPos = initPos - originPos;
relVel = initVel - originVel;
rel2Pos = [relPos(1),relPos(2),0]';
rel2Vel = [relVel(1),relVel(2),0]';
r = sqrt(rel2Pos'*rel2Pos);
accelmag = vs^2/r;
unitvec = rel2Pos/r;
accel = -accelmag*unitvec;
T = 0.5;
N = 1000;

Compute the trajectory

Specify the acceleration of an object moving in a circle in the x-y plane. The acceleration is v^2/r
towards the origin.

posmat = zeros(3,N);
r1 = zeros(N);
v = zeros(N);
for n = 1:N
 [pos,vel,oax] = platform(T,accel);
 posmat(:,n) = pos;
 vel2 = vel(1)^2 + vel(2)^2;
 v(n) = sqrt(vel2);
 relPos = pos - originPos;
 rel2Pos = [relPos(1),relPos(2),0]';
 r = sqrt(rel2Pos'*rel2Pos);
 r1(n) = r;
 accelmag = vel2/r;
 accelmag = vs^2/r;

 Model Motion of Circling Airplane

10-43

 unitvec = rel2Pos/r;
 accel = -accelmag*unitvec;
end

Display the final orientation of the local coordinate system.

disp(oax)

 -0.3658 -0.9307 -0.0001
 0.9307 -0.3658 -0.0010
 0.0009 -0.0005 1.0000

Plot the trajectory and the origin position

posmat = posmat/1000;
figure(1)
plot3(posmat(1,:),posmat(2,:),posmat(3,:),'b.')
hold on
plot3(originPos(1)/1000,originPos(2)/1000,originPos(3)/1000,'ro')
xlabel('X (km)')
ylabel('Y (km)')
zlabel('Z (km)')
grid
hold off

10 Coordinate Systems and Motion Modeling

10-44

Visualize Multiplatform Scenario
This example shows how to create and display a multiplatform scenario containing a ground-based
stationary radar, a turning airplane, a constant-velocity airplane, and a moving ground vehicle. The
turning airplane follows a parabolic flight path while descending at a rate of 20 m/s.

Specify the scenario refresh rate at 0.5 Hz. For 150 steps, the time duration of the scenario is 300 s.

updateRate = 0.5;
N = 150;

Set up the turning airplane using the Acceleration model of the phased.Platform System
object™. Specify the initial position of the airplane by range and azimuth from the ground-based
radar and its elevation. The airplane is 10 km from the radar at 60° azimuth and has an altitude of 6
km. The airplane is accelerating at 10 m/s² in the negative x-direction.

airplane1range = 10.0e3;
airplane1Azimuth = 60.0;
airplane1alt = 6.0e3;
airplane1Pos0 = [cosd(airplane1Azimuth)*airplane1range;...
 sind(airplane1Azimuth)*airplane1range;airplane1alt];
airplane1Vel0 = [400.0;-100.0;-20];
airplane1Accel = [-10.0;0.0;0.0];
airplane1platform = phased.Platform('MotionModel','Acceleration',...
 'AccelerationSource','Input port','InitialPosition',airplane1Pos0,...
 'InitialVelocity',airplane1Vel0,'OrientationAxesOutputPort',true,...
 'InitialOrientationAxes',eye(3));

Set up the stationary ground radar at the origin of the global coordinate system. To simulate a
rotating radar, change the ground radar beam steering angle in the processing loop.

groundRadarPos = [0,0,0]';
groundRadarVel = [0,0,0]';
groundradarplatform = phased.Platform('MotionModel','Velocity',...
 'InitialPosition',groundRadarPos,'Velocity',groundRadarVel,...
 'InitialOrientationAxes',eye(3));

Set up the ground vehicle to move at a constant velocity.

groundVehiclePos = [5e3,2e3,0]';
groundVehicleVel = [50,50,0]';
groundvehicleplatform = phased.Platform('MotionModel','Velocity',...
 'InitialPosition',groundVehiclePos,'Velocity',groundVehicleVel,...
 'InitialOrientationAxes',eye(3));

Set up the second airplane to also move at constant velocity.

airplane2Pos = [8.5e3,1e3,6000]';
airplane2Vel = [-300,100,20]';
airplane2platform = phased.Platform('MotionModel','Velocity',...
 'InitialPosition',airplane2Pos,'Velocity',airplane2Vel,...
 'InitialOrientationAxes',eye(3));

Set up the scenario viewer. Specify the radar as having a beam range of 8 km, a vertical beam width
of 30°, and a horizontal beam width of 2°. Annotate the tracks with position, speed, altitude, and
range.

 Visualize Multiplatform Scenario

10-45

BeamSteering = [0;50];
viewer = phased.ScenarioViewer('BeamRange',8.0e3,'BeamWidth',[2;30],'UpdateRate',updateRate,...
 'PlatformNames',{'Ground Radar','Turning Airplane','Vehicle','Airplane 2'},'ShowPosition',true,...
 'ShowSpeed',true,'ShowAltitude',true,'ShowLegend',true,'ShowRange',true,...
 'Title','Multiplatform Scenario','BeamSteering',BeamSteering);

Step through the display processing loop, updating radar and target positions. Rotate the ground-
based radar steering angle by four degrees at each step.

for n = 1:N
 [groundRadarPos,groundRadarVel] = groundradarplatform(updateRate);
 [airplane1Pos,airplane1Vel,airplane1Axes] = airplane1platform(updateRate,airplane1Accel);
 [vehiclePos,vehicleVel] = groundvehicleplatform(updateRate);
 [airplane2Pos,airplane2Vel] = airplane2platform(updateRate);
 viewer(groundRadarPos,groundRadarVel,[airplane1Pos,vehiclePos,airplane2Pos],...
 [airplane1Vel,vehicleVel,airplane2Vel]);
 BeamSteering = viewer.BeamSteering(1);
 BeamSteering = mod(BeamSteering + 4,360.0);
 if BeamSteering > 180.0
 BeamSteering = BeamSteering - 360.0;
 end
 viewer.BeamSteering(1) = BeamSteering;
 pause(0.2);
end

10 Coordinate Systems and Motion Modeling

10-46

 Visualize Multiplatform Scenario

10-47

Doppler Shift and Pulse-Doppler Processing
In this section...
“Support for Pulse-Doppler Processing” on page 10-48
“Convert Speed to Doppler Shift” on page 10-48
“Convert Doppler Shift to Speed” on page 10-48
“Pulse-Doppler Processing of Slow-Time Data” on page 10-49
“Range and Speed Using Pulse-Doppler Processing” on page 10-49

Support for Pulse-Doppler Processing
Relative motion between a signal source and a receiver produces shifts in the frequency of the
received waveform. Measuring this Doppler shift provides an estimate of the relative radial velocity
of a moving target.

For a narrowband signal propagating at the speed of light, the one-way Doppler shift in hertz is:

Δf = ± v
λ

where v is the relative radial speed of the target with respect to the transmitter. For a target
approaching the receiver, the Doppler shift is positive. For a target receding from the transmitter, the
Doppler shift is negative.

You can use speed2dop to convert the relative radial speed to the Doppler shift in hertz. You can use
dop2speed to determine the radial speed of a target relative to a receiver based on the observed
Doppler shift.

Convert Speed to Doppler Shift
Assume a target approaches a stationary receiver with a radial speed of 23.0 m/s. The target reflects
a narrowband electromagnetic wave with a frequency of 1 GHz. Estimate the one-way Doppler shift.

freq = 1e9;
v = 23.0;
lambda = physconst('LightSpeed')/freq;
dopplershift = speed2dop(v,lambda)

dopplershift = 76.7197

The one-way Doppler shift is approximately 76.72 Hz. Because the target approaches the receiver, the
Doppler shift is positive.

Convert Doppler Shift to Speed
Assume you observe a Doppler shift of 400.0 Hz for a waveform with a frequency of 9 GHz.
Determine the radial velocity of the target.

freq = 9e9;
df = 400.0;

10 Coordinate Systems and Motion Modeling

10-48

lambda = physconst('LightSpeed')/freq;
speed = dop2speed(df,lambda)

speed = 13.3241

The target speed is approximately 13.32 m/s.

Pulse-Doppler Processing of Slow-Time Data
A common technique for estimating the radial velocity of a moving target is pulse-Doppler processing.
In pulse-Doppler processing, you take the discrete Fourier transform (DFT) of the slow-time data from
a range bin containing a target. If the pulse repetition frequency is sufficiently high with respect to
the speed of the target, the target is located in the same range bin for a number of pulses.
Accordingly, the slow-time data corresponding to that range bin contain information about the
Doppler shift induced by the moving target, which you can use to estimate the target’s radial velocity.

The slow-time data are sampled at the pulse repetition frequency (PRF) and therefore the DFT of the
slow-time data for a given range bin yields an estimate of the Doppler spectrum from [-PRF/2, PRF/2]
Hz. Because the slow-time data are complex-valued, the DFT magnitudes are not necessarily an even
function of the Doppler frequency. This removes the ambiguity between a Doppler shift corresponding
to an approaching (positive Doppler shift), or receding (negative Doppler shift) target. The resolution
in the Doppler domain is PRF/N where N is the number of slow-time samples. You can pad the
spectral estimate of the slow-time data with zeros to interpolate the DFT frequency grid and improve
peak detection, but this does not improve the Doppler resolution.

The typical workflow in pulse-Doppler processing involves:

• Detecting a target in the range dimension (fast-time samples). This gives the range bin to analyze
in the slow-time dimension.

• Computing the DFT of the slow-time samples corresponding to the specified range bin. Identify
significant peaks in the magnitude spectrum and convert the corresponding Doppler frequencies
to speeds.

Range and Speed Using Pulse-Doppler Processing
This example illustrates pulse-Doppler processing using Phased Array System Toolbox™. Assume that
you have a stationary monostatic radar located at the global origin, (0,0,0). The radar consists of a
single isotropic antenna element. There is a target with a nonfluctuating radar cross section (RCS) of
1 square meter initially located at (1000,1000,0) m and moving at a constant velocity of (-100,-100,0)
m/s. The antenna operates at a frequency of 1 GHz and illuminates the target with 10 rectangular
pulses at a PRF of 10 kHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Define the System objects needed for this example and set their properties. Seed the random number
generator for the phased.ReceiverPreamp System object™ to produce repeatable results.

waveform = phased.RectangularWaveform('SampleRate',5e6,...
 'PulseWidth',6e-7,'OutputFormat','Pulses',...
 'NumPulses',1,'PRF',1e4);

 Doppler Shift and Pulse-Doppler Processing

10-49

target = phased.RadarTarget('Model','Nonfluctuating',...
 'MeanRCS',1,'OperatingFrequency',1e9);
targetpos = phased.Platform('InitialPosition',[1000; 1000; 0],...
 'Velocity',[-100; -100; 0]);
antenna = phased.IsotropicAntennaElement(...
 'FrequencyRange',[5e8 5e9]);
transmitter = phased.Transmitter('PeakPower',5e3,'Gain',20,...
'InUseOutputPort',true);
transpos = phased.Platform('InitialPosition',[0;0;0],...
 'Velocity',[0;0;0]);
radiator = phased.Radiator('OperatingFrequency',1e9,'Sensor',antenna);
collector = phased.Collector('OperatingFrequency',1e9,'Sensor',antenna);
channel = phased.FreeSpace('SampleRate',waveform.SampleRate,...
 'OperatingFrequency',1e9,'TwoWayPropagation',false);
receiver = phased.ReceiverPreamp('Gain',0,'LossFactor',0,...
 'SampleRate',5e6,'NoiseFigure',5,...
 'EnableInputPort',true,'SeedSource','Property','Seed',1e3);

This loop transmits ten successive rectangular pulses toward the target, reflects the pulses off the
target, collects the reflected pulses at the receiver, and updates the target position with the specified
constant velocity.

NumPulses = 10;
sig = waveform(); % get waveform
transpos = transpos.InitialPosition; % get transmitter position
rxsig = zeros(length(sig),NumPulses);
% transmit and receive ten pulses
for n = 1:NumPulses
 % update target position
 [tgtpos,tgtvel] = targetpos(1/waveform.PRF);
 [tgtrng,tgtang] = rangeangle(tgtpos,transpos);
 tpos(n) = tgtrng;
 [txsig,txstatus] = transmitter(sig); % transmit waveform
 txsig = radiator(txsig,tgtang); % radiate waveform toward target
 txsig = channel(txsig,transpos,tgtpos,[0;0;0],tgtvel); % propagate waveform to target
 txsig = target(txsig); % reflect the signal
 % propagate waveform from the target to the transmiter
 txsig = channel(txsig,tgtpos,transpos,tgtvel,[0;0;0]);
 txsig = collector(txsig,tgtang); % collect signal
 rxsig(:,n) = receiver(txsig,~txstatus); % receive the signal
end

The matrix rxsig contains the echo data in a 500-by-10 matrix where the row dimension contains the
fast-time samples and the column dimension contains the slow-time samples. In other words, each
row in the matrix contains the slow-time samples from a specific range bin.

Construct a linearly-spaced grid corresponding to the range bins from the fast-time samples. The
range bins extend from 0 meters to the maximum unambiguous range.

prf = waveform.PRF;
fs = waveform.SampleRate;
fasttime = unigrid(0,1/fs,1/prf,'[)');
rangebins = (physconst('LightSpeed')*fasttime)/2;

Next, detect the range bins which contain targets. In this simple scenario, no matched filtering or
time-varying gain compensation is utilized.

10 Coordinate Systems and Motion Modeling

10-50

In this example, set the false-alarm probability to 10−9. Use noncoherent integration of the ten
rectangular pulses and determine the corresponding threshold for detection in white Gaussian noise.
Because this scenario contains only one target, take the largest peak above the threshold. Display the
estimated target range.

probfa = 1e-9;
NoiseBandwidth = 5e6/2;
npower = noisepow(NoiseBandwidth,...
 receiver.NoiseFigure,receiver.ReferenceTemperature);
thresh = npwgnthresh(probfa,NumPulses,'noncoherent');
thresh = sqrt(npower*db2pow(thresh));
[pks,range_detect] = findpeaks(pulsint(rxsig,'noncoherent'),...
 'MinPeakHeight',thresh,'SortStr','descend');
range_estimate = rangebins(range_detect(1));

Extract the slow-time samples corresponding to the range bin containing the detected target.
Compute the power spectral density estimate of the slow-time samples using periodogram function
and find the peak frequency. Convert the peak Doppler frequency to speed using the dop2speed
function. A positive Doppler shift indicates that the target is approaching the transmitter. A negative
Doppler shift indicates that the target is moving away from the transmitter.

ts = rxsig(range_detect(1),:).';
[Pxx,F] = periodogram(ts,[],256,prf,'centered');
plot(F,10*log10(Pxx))
grid
xlabel('Frequency (kHz)')
ylabel('Power (dB)')
title('Periodogram Spectrum Estimate')

 Doppler Shift and Pulse-Doppler Processing

10-51

[Y,I] = max(Pxx);
lambda = physconst('LightSpeed')/1e9;
tgtspeed = dop2speed(F(I)/2,lambda);
fprintf('Estimated range of the target is %4.2f meters.\n',...
 range_estimate)

Estimated range of the target is 1439.00 meters.

fprintf('Estimated target speed is %3.1f m/sec.\n',tgtspeed)

Estimated target speed is 140.5 m/sec.

if F(I)>0
 fprintf('The target is approaching the radar.\n')
else
 fprintf('The target is moving away from the radar.\n')
end

The target is approaching the radar.

The true radial speed of the target is detected within the Doppler resolution and the range of the
target is detected within the range resolution of the radar.

10 Coordinate Systems and Motion Modeling

10-52

See Also

Related Examples
• “Doppler Estimation” on page 17-292
• “Electronic Scanning Using a Uniform Rectangular Array” on page 17-390

 Doppler Shift and Pulse-Doppler Processing

10-53

Using Polarization

11

Polarized Fields
In this section...
“Introduction to Polarization” on page 11-2
“Linear and Circular Polarization” on page 11-3
“Elliptic Polarization” on page 11-6
“Linear and Circular Polarization Bases” on page 11-9
“Sources of Polarized Fields” on page 11-12
“Scattering Cross-Section Matrix” on page 11-18
“Polarization Loss Due to Field and Receiver Mismatch” on page 11-21
“Model Radar Transmitting Polarized Radiation” on page 11-23

Introduction to Polarization
You can use the Phased Array System Toolbox software to simulate radar systems that transmit,
propagate, reflect, and receive polarized electromagnetic fields. By including this capability, the
toolbox can realistically model the interaction of radar waves with targets and the environment.

It is a basic property of plane waves in free-space that the directions of the electric and magnetic
field vectors are orthogonal to their direction of propagation. The direction of propagation of an
electromagnetic wave is determined by the Poynting vector

S = E × H

In this equation, E represents the electric field and H represents the magnetic field. The quantity, S,
represents the magnitude and direction of the wave’s energy flux. Maxwell’s equations, when applied
to plane waves, produce the result that the electric and magnetic fields are related by

E = − Zs × H

H = 1
Zs × E

The vector s, the unit vector in the S direction, represents the direction of propagation of the wave.
The quantity, Z, is the wave impedanceand is a function of the electric permittivity and the magnetic
permeability of medium in which the wave travels.

After manipulating the two equations, you can see that the electric and magnetic fields are
orthogonal to the direction of propagation

E · s = H · s = 0.

This last result proves that there are really only two independent components of the electric field,
labeled Ex and Ey. Similarly, the magnetic field can be expressed in terms of two independent
components. Because of the orthogonality of the fields, the electric field can be represented in terms
of two unit vectors orthogonal to the direction of propagation.

E = Exex + Eyey

The unit vectors together with the unit vector in direction of propagation

11 Using Polarization

11-2

ex, ey, s .

form a right-handed orthonormal triad. Later, these vectors and the coordinates they define will be
related to the coordinates of a specific radar system. In radar systems, it is common to use the
subscripts, H and V, denoting the horizontal and vertical components, instead of x and y. Because the
electric and magnetic fields are determined by each other, only the properties of the electric field
need be consider.

For a radar system, the electric and magnetic field are actually spherical waves, rather than plane
waves. However, in practice, these fields are usually measured in the far field region or radiation
zone of the radar source and are approximately plane waves. In the far field, the waves are called
quasi-plane waves. A point lies in the far field if its distance, R, from the source satisfies R ≫D2/λ
where D is a typical dimension of the source, whether it is a single antenna or an array of antennas.

Polarization applies to purely sinusoidal signals. The most general expression for a sinusoidal plane-
wave has the form

E = Ex0cos ωt − k · x + ϕx ex + Ey0cos ωt − k · x + ϕy ey = Exex + Eyey

The quantities Ex0 and Ey0 are the real-valued, non-negative, amplitudes of the components of the
electric field and ϕx and ϕy are field’s phases. This expression is the most general one used for a
polarized wave. An electromagnetic wave is polarized if the ratio of the amplitudes of its components
and phase difference between it components do not change with time. The definition of polarization
can be broadened to include narrowband signals, for which the bandwidth is small compared to the
center or carrier frequency of the signal. The amplitude ratio and phases difference vary slowly with
time when compared to the period of the wave and may be thought of as constant over many
oscillations.

You can usually suppress the spatial dependence of the field and write the electric field vector as

E = Ex0cos ωt + ϕx ex + Ey0cos ωt + ϕy ey = Exex + Eyey

Linear and Circular Polarization
The preceding equation for a polarized plane wave shows that the tip of the two-dimensional electric
field vector moves along a path which lies in a plane orthogonal to field’s direction of propagation.
The shape of the path depends upon the magnitudes and phases of the components. For example, if ϕx
= ϕy, you can remove the time dependence and write

Ey =
Ey0
Ex0

Ex

This equation represents a straight line through the origin with positive slope. Conversely, suppose ϕx
= ϕy + π. Then, the tip of the electric field vector follows a straight line through the origin with
negative slope

Ey = −
Ey0
Ex0

Ex

These two polarization cases are named linear polarized because the field always oscillates along a
straight line in the orthogonal plane. If Ex0= 0, the field is vertically polarized, and if Ey0 = 0 the field
is horizontally polarized.

 Polarized Fields

11-3

A different case occurs when the amplitudes are the same, Ex = Ey, but the phases differ by ±π/2

Ex = E0cos(ωt + ϕ)
Ey = E0cos(ωt + ϕ ± π/2) = ∓ E0sin(ωt + ϕ)

By squaring both sides, you can show that the tip of the electric field vector obeys the equation of a
circle

Ex
2 + Ey

2 = E0
2

While this equation gives the path the vector takes, it does not tell you in what direction the electric
field vector travels around the circle. Does it rotate clockwise or counterclockwise? The rotation
direction depends upon the sign of π/2 in the phase. You can see this dependency by examining the
motion of the tip of the vector field. Assume the common phase angle, ϕ = 0. This assumption is
permissible because the common phase only determines starting position of the vector and does not
change the shape of its path. First, look at the +π/2 case for a wave travelling along the s-direction
(out of the page). At t=0, the vector points along the x-axis. One quarter period later, the vector
points along the negative y-axis. After another quarter period, it points along the negative x-axis.

MATLAB uses the IEEE convention to assign the names right-handed or left-handed polarization to
the direction of rotation of the electric vector, rather than clockwise or counterclockwise. When using
this convention, left or right handedness is determined by pointing your left or right thumb along the
direction of propagation of the wave. Then, align the curve of your fingers to the direction of rotation
of the field at a given point in space. If the rotation follows the curve of your left hand, then the wave
is left-handed polarized. If the rotation follows the curve of your right hand, then the wave is right-
handed polarized. In the preceding scenario, the field is left-handed circularly polarized (LHCP). The
phase difference –π/2 corresponds to right-handed circularly polarized wave (RHCP). The following

11 Using Polarization

11-4

figure provides a three-dimensional view of what a LHCP electromagnetic wave looks like as it moves
in the s-direction.

When the terms clockwise or counterclockwise are used they depend upon how you look at the wave.
If you look along the direction of propagation, then the clockwise direction corresponds to right-
handed polarization and counterclockwise corresponds to left-handed polarization. If you look toward
where the wave is coming from, then clockwise corresponds to left-handed polarization and
counterclockwise corresponds to right-handed polarization.

Left-Handed Circular Polarization

The figure below shows the appearance of linear and circularly polarized fields as they move towards
you along the s-direction.

 Polarized Fields

11-5

Linear and Circular Polarization

Elliptic Polarization
Besides the linear and circular states of polarization, a third type of polarization is elliptic
polarization. Elliptic polarization includes linear and circular polarization as special cases.

As with linear or circular polarization, you can remove the time dependence to obtain the locus of
points that the tip of the electric field vector travels

Ex
Ex0

2
+

Ey
Ey0

2
− 2

Ex
Ex0

Ey
Ey0

cosϕ = sin2ϕ

In this case, φ = φy – φx. This equation represents a tilted two-dimensional ellipse. Its size and shape
are determined by the component amplitudes and phase difference. The presence of the cross term

11 Using Polarization

11-6

indicates that the ellipse is tilted. The equation does not, just as in the circularly polarized case,
provide any information about the rotation direction. For example, the following figure shows the
instantaneous state of the electric field but does not indicate the direction in which the field is
rotating.

The size and shape of a two-dimensional ellipse can be defined by three parameters. These
parameters are the lengths of its two axes, the semi-major axis, a, and semi-minor axis, b, and a tilt
angle, τ. The following figure illustrates the three parameters of a tilted ellipse. You can derive them
from the two electric field amplitudes and phase difference.

Polarization Ellipse

Polarization can best be understood in terms of complex signals. The complex representation of a
polarized wave has the form

E = Ex0eiϕxeiωtex + Ey0eiϕyeiωtey = Ex0eiϕxex + Ey0eiϕyey eiωt

Define the complex polarization ratio as the ratio of the complex amplitudes

ρ =
Ey0
Ex0

ei ϕy − ϕx =
Ey0
Ex0

eiϕ

where ϕ = ϕy – ϕx.

It is useful to introduce the polarization vector. For the complex polarized electric field above, the
polarization vector, P, is obtained by normalizing the electric field

 Polarized Fields

11-7

P =
Ex0
Em

ex +
Ey0
Em

ei ϕy − ϕx ey =
Ex0
Em

ex +
Ey0
Em

eiϕey

where Em
2 = Ex0

2 + Ey0
2 is the magnitude of the wave.

The overall size of the polarization ellipse is not important because that can vary as the wave travels
through space, especially through geometric attenuation. What is important is the shape of the
ellipse. Thus, the significant ellipse parameters are the ratio of its axis dimensions, a/b, called the
axial ratio, and the tilt angle, τ. Both of these quantities can be determined from the ratio of the
component amplitudes and the phase difference, or, equivalently, from the polarization ratio. Another
quantity, equivalent to the axial ratio, is the ellipticity angle, ε.

In the Phased Array System Toolbox software, you can use the polratio function to convert the
complex amplitudes fv=[Ey;Ex] to the polarization ratio.

p = polratio(fv)

Tilt Angle

The tilt angle is defined as the positive (counterclockwise) rotation angle from the x-axis to the semi-
major axis of the ellipse. Because of the symmetry properties of the ellipse, the tilt angle, τ, need only
be defined in the range –π/2 ≤ τ ≤ π/2. You can find the tilt angle by determining the rotated
coordinate system in which the semi-major and semi-minor axes align with the rotated coordinate
axes. Then, the ellipse equation has no cross-terms. The solution takes the form

tan2τ =
2Ex0Ey0

Ex0
2 − Ey0

2 cosϕ

where φ = φy – φx. Notice that you can rewrite this equation strictly in terms of the amplitude ratio
and the phase difference.

Axial Ratio and Ellipticity Angle

After solving for the tilt angle, you can determine the semi-major and semi-minor axis lengths.
Conceptually, you rotate the ellipse clockwise by the tilt angle and measure the lengths of the
intersections of the ellipse with the x- and y-axes. The point of intersection with the larger value is
the semi-major axis, a, and the one with the smaller value is the semi-minor axis, b.

The axial ratio is defined as AR = a/b and, by construction, is always greater than or equal to one. The
ellipticity angle is defined by

tanε = ∓ b
a

and always lies in the range–π/4 ≤ τ ≤ π/4.

If you define the auxiliary angle, α, by

tanα =
Ey0
Ex0

then, the ellipticity angle is given by

sin2ε = sin2αsinϕ

11 Using Polarization

11-8

Both the axial ratio and ellipticity angle are defined from the amplitude ratio and phase difference
and are independent of the overall magnitude of the field.

Rotation Sense

For elliptic polarization, just as with circular polarization, you need another parameter to completely
describe the ellipse. This parameter must provide the rotation sense or the direction that the tip of
the electric (or magnetic vector) moves in time. The rate of change of the angle that the field vector
makes with the x-axis is proportion to –sin φ where φ is the phase difference. If sin φ is positive, the
rate of change is negative, indicating that the field has left-handed polarization. If sin φ is negative,
the rate of change is positive or right-handed polarization.

The function polellip lets you find the values of the parameters of the polarization ellipse from
either the field component vector fv=[Ey;Ex] or the polarization ratio, p.

fv=[Ey;Ex];
[tau,epsilon,ar,rs] = polellip(fv);
p = polratio(fv);
[tau,epsilon,ar,rs] = polellip(p);

The variables tau, epsilon, ar and rs represent the tilt angle, ellipticity angle, axial ratio and
rotation sense, respectively. Both syntaxes give the same result.

Polarization Value Summary

This table summaries several different common polarization states and the values of the amplitudes,
phases, and polarization ratio that produce them:

Polarization Amplitudes Phases Polarization Ratio
Linear positive slope Any non-negative real

values for Ex, Ey.
φy = φx Any non-negative real

number
Linear negative slope Any non-negative real

values for Ex, Ey

φy = φx+ π Any negative real
number

Right-Handed Circular Ex=Ey φy= φx– π/2 –i
Left-Handed Circular Ex=Ey φy= φx + π/2 i
Right-Handed Elliptical Any non-negative real

values for Ex, Ey

sin (φy– φx) < 0 sin(arg ρ) < 0

Left-Handed Elliptical Any non-negative real
values for Ex, Ey

sin (φy– φx) >0 sin(arg ρ) > 0

Linear and Circular Polarization Bases
As shown earlier, you can express a polarized electric field as a linear combination of basis vectors
along the x and y directions. For example, the complex electric field vectors for the right-handed
circularly polarized (RHCP) wave and the left-handed circularly polarized (LHCP) wave, take the
form:

E = Re[E0(ex∓ iey)ei(ωt + ϕ)]

In this equation, the positive sign is for the LHCP field and the negative sign is for the RHCP field.
These two special combinations can be given a new name. Define a new basis vector set, called the
circular basis set

 Polarized Fields

11-9

er = 1
2(ex− iey)

el = 1
2(ex + iey)

You can express any polarized field in terms of the circular basis set instead of the linear basis set.
Conversely, you can also write the linear polarization basis in terms of the circular polarization basis

ex = 1
2(er + el)

ey = 1
2i (er − el)

Any general elliptic field can be written as a combination of circular basis vectors

E = Elel + Erer

Jones Vector

The polarized field is orthogonal to the wave’s direction of propagation. Thus, the field can be
completely specified by the two complex components of the electric field vector in the plane of
polarization. The formulation of a polarized wave in terms of two-component vectors is called the
Jones vector formulation. The Jones vector formulation can be expressed in either a linear basis or a
circular basis or any basis. This table shows the representation of common polarizations in a linear
basis and circular basis.

Common Polarizations Jones Vector in Linear Basis Jones Vector in Circular Basis
Vertical [0;1] 1/sqrt(2)*[-1;1]
Horizontal [1;0] 1/sqrt(2)*[1;1]
45° Linear 1/sqrt(2)*[1;1] 1/sqrt(2)*[1-1i;1+1i]
135° Linear 1/sqrt(2)*[1;-1] 1/sqrt(2)*[1+1i;1-1i]
Right Circular 1/sqrt(2)*[1;-1i] [0;1]
Left Circular 1/sqrt(2)*[1;1i] [1;0]

Stokes Parameters and the Poincaré Sphere

The polarization ellipse is an instantaneous representation of a polarized wave. However, its
parameters, the tilt angle and the ellipticity angle, are often not directly measurable, particularly at
very high frequencies such as light frequencies. However, you can determine the polarization from
measurable intensities of the polarized field.

The measurable intensities are the Stokes parameters, S0, S1, S2, and S3. The first Stokes parameter,
S0, describes the total intensity of the field. The second parameter, S1, describes the preponderance
of linear horizontally polarized intensity over linear vertically polarized intensity. The third parameter,
S2, describes the preponderance of linearly +45° polarized intensity over linearly 135° polarized
intensity. Finally, S3 describes the preponderance of right circularly polarized intensity over left
circularly polarized intensity. The Stokes parameters are defined as

11 Using Polarization

11-10

S0 = Ex0
2 + Ey0

2

S1 = Ex0
2 − Ey0

2

S2 = 2Ex0Ey0cosϕ
S3 = 2Ex0Ey0sinϕ

For completely polarized fields, you can show by time averaging the polarization ellipse equation that

S0
2 = S1

2 + S2
2 + S3

2

Thus, there are only three independent Stokes’ parameters.

For partially polarized fields, in contrast, the Stokes parameters satisfy the inequality

S0
2 < S1

2 + S3
2 + S3

2

The Stokes parameters are related to the tilt and ellipticity angles, τ and ε

S1 = S0cos2τcos2ε
S2 = S0sin2τcos2ε
S3 = S0sin2ε

and inversely by

tan2τ =
S2
S1

sin2ε =
S3
S0

After you measure the Stokes’ parameters, the shape of the ellipse is completely determined by the
preceding equations.

The two-dimensional Poincaré sphere can help you visualize the state of a polarized wave. Any point
on or in the sphere represents a state of polarization determined by the four Stokes parameters, S0,
S1, S2, and S3. On the Poincaré sphere, the angle from the S1-S2 plane to a point on the sphere is
twice the ellipticity angle, ε. The angle from the S1- axis to the projection of the point into the S1-S2
plane is twice the tilt angle, τ.

 Polarized Fields

11-11

As an example, solve for the Stokes parameters of a RHCP field, fv=[1,-i], using the stokes
function.

S = stokes(fv)

S =

 2
 0
 0
 -2

Sources of Polarized Fields
Antennas couple propagating electromagnetic radiation to electrical currents in wires,
electromagnetic fields in waveguides or aperture fields. This coupling is a phenomenon common to
both transmitting and receiving antennas. For some transmitting antennas, source currents in a wire
produce electromagnetic waves that carrying power in all directions. Sometimes an antenna provides
a means for a guided electromagnetic wave on a transmission line to transition to free-space waves
such as a waveguide feeding a dish antennas. For receiving antennas, electromagnetic fields can
induce currents in wires to generate signals to be then amplified and passed on to a detector.

For transmitting antennas, the shape of the antenna is chosen to enhance the power projected into a
given direction. For receiving antennas, you choose the shape of the antenna to enhance the power

11 Using Polarization

11-12

received from a particular direction. Often, many transmitting antennas or receiving antennas are
formed into an array. Arrays increase the transmitted power for a transmitting system or the
sensitivity for a receiving system. They improve directivity over a single antenna.

An antenna can be assigned a polarization. The polarization of a transmitting antenna is the
polarization of its radiated wave in the far field. The polarization of a receiving antenna is actually the
polarization of a plane wave, from a given direction, resulting in maximum power at the antenna
terminals. By the reciprocity theorem, all transmitting antennas can serve as receiving antennas and
vice versa.

Each antenna or array has an associated local Cartesian coordinate system (x,y,z) as shown in the
following figure. See “Global and Local Coordinate Systems” on page 10-17 for more information. The
local coordinate system can also be represented by a spherical coordinate system using azimuth,
elevation and range coordinates, az, el, r, or alternately written, (φ,θ,r), as shown. At each point in
the far field, you can create a set of unit spherical basis vectors, eH, eV, r . The basis vectors are
aligned with the (φ,θ,r) directions, respectively. In the far field, the electric field is orthogonal to the
unit vector r . The components of a polarized field with respect to this basis, (EH,EV), are called the
horizontal and vertical components of the polarized field. In radar, it is common to use (H,V) instead
of (x,y) to denote the components of a polarized field. In the far field, the polarized electric field takes
the form

E = F(ϕ, θ)eikr

r = FH(ϕ, θ)eH + FV(ϕ, θ)eV
eikr

r

In this equation, the quantity F(φ,θ) is called the vector radiation pattern of the source and contains
the angular dependence of the field in the far-field region.

Short Dipole Antenna Element

The simplest polarized antenna is the dipole antenna which consist of a split length of wire coupled at
the middle to a coaxial cable. The simplest dipole, from a mathematical perspective, is the Hertzian
dipole, in which the length of wire is much shorter than a wavelength. A diagram of the short dipole
antenna of length L appears in the next figure. This antenna is fed by a coaxial feed which splits into
two equal length wires of length L/2. The current, I, moves along the z-axis and is assumed to be the
same at all points in the wire.

 Polarized Fields

11-13

The electric field in the far field has the form

Er = 0
EH = 0

EV = −
iZ0IL

2λ cosel e−ikr

r

The next example computes the vertical and horizontal polarization components of the field. The
vertical component is a function of elevation angle and is axially symmetric. The horizontal
component vanishes everywhere.

The toolbox lets you model a short dipole antenna using the
phased.ShortDipoleAntennaElement System object.
Short-Dipole Polarization Components

Compute the vertical and horizontal polarization components of the field created by a short-dipole
antenna pointed along the z-direction. Plot the components as a function of elevation angle from 0° to
360°.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create the phased.ShortDipoleAntennaElement System object™.

11 Using Polarization

11-14

antenna = phased.ShortDipoleAntennaElement(...
 'FrequencyRange',[1,2]*1e9,'AxisDirection','Z');

Compute the antenna response. Because the elevation angle argument to antenna is restricted to
±90°, compute the responses for 0° azimuth and then for 180° azimuth. Combine the two responses
in the plot. The operating frequency of the antenna is 1.5 GHz.

el = [-90:90];
az = zeros(size(el));
fc = 1.5e9;
resp = antenna(fc,[az;el]);
az = 180.0*ones(size(el));
resp1 = antenna(fc,[az;el]);

Overlay the responses in the same figure.

figure(1)
subplot(121)
polar(el*pi/180.0,abs(resp.V.'),'b')
hold on
polar((el+180)*pi/180.0,abs(resp1.V.'),'b')
str = sprintf('%s\n%s','Vertical Polarization','vs Elevation Angle');
title(str)
hold off
subplot(122)
polar(el*pi/180.0,abs(resp.H.'),'b')
hold on
polar((el+180)*pi/180.0,abs(resp1.H.'),'b')
str = sprintf('%s\n%s','Horizontal Polarization','vs Elevation Angle');
title(str)
hold off

 Polarized Fields

11-15

The plot shows that the horizontal component vanishes, as expected.

Crossed Dipole Antenna Element

You can use a cross-dipole antenna to generate circularly-polarized radiation. The crossed-dipole
antenna consists of two identical but orthogonal short-dipole antennas that are phased 90° apart. A
diagram of the crossed dipole antenna appears in the following figure. The electric field created by a
crossed-dipole antenna constructed from a y-directed short dipole and a z-directed short dipole has
the form

Er = 0

EH = −
iZ0IL

2λ cosaz e−ikr

r

EV =
iZ0IL

2λ (sinelsinaz + icosel)e−ikr

r

The polarization ratio EV/EH, when evaluated along the x-axis, is just –i which means that the
polarization is exactly RHCP along the x-axis. It is predominantly RHCP when the observation point is
close to the x-axis. Moving away from the x-axis, the field becomes a mixture of LHCP and RHCP
polarizations. Along the –x-axis, the field is LHCP polarized. The figure illustrates, for a point near the
x, that the field is primarily RHCP.

11 Using Polarization

11-16

The toolbox lets you model a crossed-dipole antenna using the
phased.CrossedDipoleAntennaElement System object.

LHCP and RHCP Polarization Components

This example plots the right-hand and left-hand circular polarization components of fields generated
by a crossed-dipole antenna at 1.5 GHz. You can see how the circular polarization changes from pure
RHCP at 0 degrees azimuth angle to pure LHCP at 180 degrees azimuth angle, both at 0 degrees
elevation angle.

Create the phased.CrossedDipoleAntennaElement object.

fc = 1.5e9;
antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[1,2]*1e9);

Compute the left-handed and right-handed circular polarization components from the antenna
response.

az = [-180:180];
el = zeros(size(az));
resp = antenna(fc,[az;el]);
cfv = pol2circpol([resp.H.';resp.V.']);
clhp = cfv(1,:);
crhp = cfv(2,:);

Plot both circular polarization components at 0 degrees elevation.

 Polarized Fields

11-17

polar(az*pi/180.0,abs(clhp))
hold on
polar(az*pi/180.0,abs(crhp))
title('LHCP and RHCP vs Azimuth Angle')
legend('LHCP','RHCP')
hold off

Arrays Supporting Polarization

You can create polarized fields from arrays by using polarized antenna elements as a value of the
Elements property of an array System object. All Phased Array System Toolbox arrays support
polarization.

Scattering Cross-Section Matrix
After a polarized field is created by an antenna system, the field radiates to the far-field region. When
the field propagates into free space, the polarization properties remain unchanged until the field
interacts with a material substance which scatters the field into many directions. In such situations,
the amplitude and polarization of the scattered wave can differ from the incident wave polarization.
The scattered wave polarization may depend upon the direction in which the scattered wave is
observed. The exact way that the polarization changes depends upon the properties of the scattering
object. The quantity describing the response of an object to the incident field is called the radar
scattering cross-section matrix (RSCM), S. You can measure the scattering matrix as follows. When a
unit amplitude horizontally polarized wave is scattered, both a horizontal and a vertical scattered
component are produced. Call these two components SHH and SVH. These components are complex

11 Using Polarization

11-18

numbers containing the amplitude and phase changes from the incident wave. Similarly, when a unit
amplitude vertically polarized wave is scattered, the horizontal and vertical scattered component
produced are SHV and SVV. Because, any incident field can be decomposed into horizontal and vertical
components, you can arrange these quantities into a matrix and write the scattered field in terms of
the incident field

EH
(scat)

EV
(scat)

= 4π
λ2

SHH SVH
SHV SVV

EH
(inc)

EV
(inc)

= 4π
λ2 S

EH
(inc)

EV
(inc)

In general, the scattering cross-section matrix depends upon the angles that the incident and
scattered fields make with the object. When the incident field is scattered back to the transmitting
antenna or, backscattered, the scattering matrix is symmetric.

Polarization Signature

To understand how the scattered wave depends upon the polarization of the incident wave, you need
to examine all possible scattered field polarizations for each incident polarization. Because this
amount of data is difficult to visualize, consider two cases:

• For the copolarization case, the scattered polarization has the same polarization as the incident
field.

• For the cross-polarization case, the scattered polarization has an orthogonal polarization to the
incident field.

You can represent the incident polarizations in terms of the tilt angle-ellipticity angle pair τ, ε . Every
unit incident polarization vector can be expressed as

EH
(inc)

EV
(inc)

=
cosτ −sinτ
sinτ cosτ

cosε
jsinε

while the orthogonal polarization vector is

EH
(inc) ⊥

EV
(inc) ⊥

=
−sinτ −cosτ
cosτ −sinτ

cosε
− jsinε

When you have an RSCM matrix, S, form the copolarization signature by computing

P(co) = EH
(inc) EV

(inc) *S
EH

(inc)

EV
(inc)

where []* denotes complex conjugation. To obtain the cross-polarization signature, compute

P(cross) = EH
(inc) ⊥ EV

(inc) ⊥ *S
EH

(inc)

EV
(inc)

You can compute both the copolarization and cross polarization signatures using the polsignature
function. This function returns the absolute value of the scattered power (normalized by its maximum
value). The next example shows how to plot the polarization signatures for the RSCM matrix

 Polarized Fields

11-19

S =
2i 1

2
1
2 i

for all possible incident polarizations. The range of values of the ellipticity angle and tilt span the
entire possible range of polarizations.

Plot Polarization Signatures

Plot the copolarization and cross-polarization signatures of the scattering matrix

2i 0 . 5
0 . 5 −i

.

Specify the scattering matrix. and specify the range of ellipticity angles and orientation (tilt) angles
that define the polarization states. These angles cover all possible incident polarization states.

rscmat = [1i*2,0.5;0.5,-1i];
el = [-45:45];
tilt = [-90:90];

Plot the copolarization signatures for all incident polarizations.

polsignature(rscmat,'c',el,tilt)

Plot the cross-polarizations signatures for all incident polarizations.

11 Using Polarization

11-20

polsignature(rscmat,'x',el,tilt)

Polarization Loss Due to Field and Receiver Mismatch
An antenna that is used to receive polarized electromagnetic waves achieves its maximum output
power when the antenna polarization is matched to the polarization of the incident electromagnetic
field. Otherwise, there is polarization loss:

• The polarization loss is computed from the projection (or dot product) of the transmitted field’s
electric field vector onto the receiver polarization vector.

• Loss occurs when there is a mismatch in direction of the two vectors, not in their magnitudes.
• The polarization loss factor describes the fraction of incident power that has the correct

polarization for reception.

Using the transmitter’s spherical basis at the receiver’s position, you can represent the incident
electric field, (EiH, EiV), by

E = EiHeH + EiV eV = EmPi

You can represent the receiver’s polarization vector, (PH, PV), in the receiver’s local spherical basis by:

P = PHe′H + PV e′V

The next figure shows the construction of the transmitter and receiver spherical basis vectors.

 Polarized Fields

11-21

The polarization loss is defined by:

ρ =
Ei ⋅ P 2

Ei
2 P 2

and varies between 0 and 1. Because the vectors are defined with respect to different coordinate
systems, they must be converted to the global coordinate system to form the projection. The toolbox
function polloss computes the polarization mismatch between an incident field and a polarized
antenna.

To achieve maximum output power from a receiving antenna, the matched antenna polarization
vector must be the complex conjugate of the incoming field’s polarization vector. As an example, if the
incoming field is RHCP, with polarization vector given by er = 1

2(ex− iey), the optimum receiver

antenna polarization is LHCP. The introduction of the complex conjugate is needed because field
polarizations are described with respect to its direction of propagation, whereas the polarization of a
receive antenna is usually specified in terms of the direction of propagation towards the antenna. The
complex conjugate corrects for the opposite sense of polarization when receiving.

As an example, if the transmitting antenna transmits an RHCP field, the polarization loss factors for
various received antenna polarizations are

Receive Antenna
Polarization

Receive Antenna
Polarization Vector

Polarization Loss
Factor

Polarization Loss
Factor (dB)

Horizontal linear eH 1/2 3 dB
Vertical linear eV 1/2 3
RHCP er = 1

2(ex− iey)
0 ∞

11 Using Polarization

11-22

Receive Antenna
Polarization

Receive Antenna
Polarization Vector

Polarization Loss
Factor

Polarization Loss
Factor (dB)

LHCP el = 1
2(ex + iey) 1 0

Model Radar Transmitting Polarized Radiation
This example models a tracking radar based on a 31-by-31 (961-element) uniform rectangular array
(URA). The radar is designed to follow a moving target. At each time instant, the radar points in the
known direction of the target. The basic radar requirements are the probability of detection, pd, the
probability of false alarm, pfa, the maximum unambiguous range, max_range, and the range
resolution, range_res, (all distance units are in meters). The range_gate parameter limits the
region of interest to a range smaller than the maximum range. The operating frequency is set in fc.
The simulation lasts for numpulses pulses.

Radar Definition

Set up the radar operating parameters. The existing radar design meets the following specifications.

pd = 0.9; % Probability of detection
pfa = 1e-6; % Probability of false alarm
max_range = 1500*1000; % Maximum unambiguous range
range_res = 50.0; % Range resolution
rangegate = 5*1000; % Assume all objects are in this range
numpulses = 200; % Number of pulses to integrate
fc = 8e9; % Center frequency of pulse
c = physconst('LightSpeed');
tmax = 2*rangegate/c; % Time of echo from object at rangegate

Pulse Repetition Interval

Set the pulse repetition interval, PRI, and pulse repetition frequency, PRF, based on the maximum
unambiguous range.

PRI = 2*max_range/c;
PRF = 1/PRI;

Transmitted Signal

Set up the transmitted rectangular waveform using the phased.RectangularWaveform System
object(TM). The waveform pulse width, pulse_width, and pulse bandwidth, pulse_bw, are
determined by the range resolution, range_res, that you select. Specify the sampling rate, fs, to be
twice the pulse bandwidth. The sampling rate must be an integer multiple of the PRF. Therefore,
modify the sampling rate to satisfy the requirement.

pulse_bw = c/(2*range_res); % Pulse bandwidth
pulse_width = 1/pulse_bw; % Pulse width
fs = 2*pulse_bw; % Sampling rate
n = ceil(fs/PRF);
fs = n*PRF;
waveform = phased.RectangularWaveform('PulseWidth',pulse_width,'PRF',PRF,...
 'SampleRate',fs);

 Polarized Fields

11-23

Antennas and URA Array

The array consists of short-dipole antenna elements. Use the
phased.ShortDipoleAntennaElement System object to create a short-dipole antenna oriented
along the z-axis.

antenna = phased.ShortDipoleAntennaElement(...
 'FrequencyRange',[5e9,10e9],'AxisDirection','Z');

Define a 31-by-31 Taylor tapered uniform rectangular array using the phased.URA System object.
Set the size of the array using the number of rows, numRows, and the number of columns, numCols.
The distance between elements, d, is slightly smaller than one-half the wavelength, lambda. Compute
the array taper, tw, using separate Taylor windows for the row and column directions. Obtain the
Taylor weights using the taylorwin function. Plot the 3-D array response using the array pattern
method.

numCols = 31;
numRows = 31;
lambda = c/fc;
d = 0.9*lambda/2; % Nominal spacing
wc = taylorwin(numCols);
wr = taylorwin(numRows);
tw = wr*wc';
array = phased.URA('Element',antenna,'Size',[numCols,numRows],...
 'ElementSpacing',[d,d],'Taper',tw);
pattern(array,fc,-180:180,-90:90,'CoordinateSystem','polar','Type','powerdb',...
 'Polarization','V');

11 Using Polarization

11-24

Radar Platform Motion

Next, set the position and motion of the radar platform in the phased.Platform System object. The
radar is assumed to be stationary and positioned at the origin. Set the Velocity property to
[0,0,0] and the InitialPosition property to [0,0,0]. Set the InitialOrientationAxes
property to the identity matrix to align the radar platform coordinate axes with the global coordinate
system.

radarPlatformAxes = [1 0 0;0 1 0;0 0 1];
radarplatform = phased.Platform('InitialPosition',[0;0;0],...
 'Velocity',[0;0;0],'OrientationAxes',radarPlatformAxes);

Transmitters and Receivers

In radar, the signal propagates in the form of an electromagnetic wave. The signal is radiated and
collected by the antennas used in the radar system. Associate the array with a radiator System object,
phased.Radiator, and two collector System objects, phased.Collector. Set the
WeightsInputPort property of the radiator to true to enable dynamic steering of the transmitted
signal at each execution of the radiator. Creating the two collectors allows for collection of both
horizontal and vertical polarization components.

radiator = phased.Radiator('Sensor',array,'OperatingFrequency',fc,...
 'PropagationSpeed',c,'CombineRadiatedSignals',true,...
 'Polarization','Combined','WeightsInputPort',true);
collector1 = phased.Collector('Sensor',array,'OperatingFrequency',fc,...
 'PropagationSpeed',c,'Wavefront','Plane','Polarization','Combined',...
 'WeightsInputPort',false);
collector2 = phased.Collector('Sensor',array,'OperatingFrequency',fc,...
 'PropagationSpeed',c,'Wavefront','Plane','Polarization','Combined',...
 'WeightsInputPort',false);

Estimate the peak power needed in the phased.Transmitter System object to calculate the
desired radiated power levels. The transmitted peak power is the power required to achieve a
minimum-detection SNR, snr_min. You can determine the minimum SNR from the probability of
detection,|pd|, and the probability of false alarm, pfa, using the albersheim function. Then,
compute the peak power, peak_power, from the radar equation. The peak power depends on the
overall signal gain, which is the sum of the transmitting element gain, TransmitterGain and the
array gain, AG. The peak power also dependson the maximum detection range, rangegate. Finally,
you need to supply a target cross-section value, tgt_rcs. A scalar radar cross section is used in this
code section as an approximation even though the full polarization computation later uses a 2-by-2
radar cross section scattering matrix.

Using the radar equation formula, estimate the total transmitted power to achieve a required
detection SNR using all the pulses.

The SNR has contributions from the transmitting element gain as well as the array gain. Compute
first an estimate of the array gain, then add the array gain to the transmitter gain to get the peak
power which achieves the desired SNR.

• Use an approximate target cross section of 1.0 for the radar equation even though the analysis
calls for the full scattering matrix.

• Set the maximum range to be equal to the value of 'rangegate' since targets outside that range are
of no interest.

• Compute the array gain as 10*log10(number of elements)

 Polarized Fields

11-25

• Assume each element has a gain of 20 dB.

snr_min = albersheim(pd, pfa, numpulses);
AG = 10*log10(numCols*numRows);
tgt_rcs = 1;
TransmitterGain = 20;
tau = waveform.PulseWidth;
Ts = 290;
dbterm = db2pow(snr_min - 2*TransmitterGain + AG);
peak_power = (4*pi)^3*physconst('Boltzmann')*Ts/tau/tgt_rcs/lambda^2*rangegate^4*dbterm

peak_power = 5.1778e+05

transmitter = phased.Transmitter('PeakPower',peak_power,'Gain',TransmitterGain,...
 'LossFactor',0,'InUseOutputPort',true,'CoherentOnTransmit',true);

Define Target

We want to simulate the pulse returns from a target that is rotating so that the scattering cross-
section matrix changes from pulse to pulse. Create a rotating target object and a moving target
platform. The rotating target is represented later as an angle-dependent scattering matrix. Rotation
is in degrees per second.

targetSpeed = 1000;
targetVec = [-1;1;0]/sqrt(2);
target = phased.RadarTarget('EnablePolarization',true,...
 'Mode','Monostatic','ScatteringMatrixSource','Input port',...
 'OperatingFrequency',fc);
targetPlatformAxes = [1 0 0;0 1 0;0 0 1];
targetRotRate = 45;
targetplatform = phased.Platform('InitialPosition',[3500.0; 0; 0],...
 'Velocity', targetSpeed*targetVec);

Other System objects

• Steering vector defined by phased.SteeringVector System object.
• Beamformer defined by phased.PhaseShiftBeamformer System object. The

DirectionSource property is set to 'Input Port' to enable the beamformer to always points
towards the known target direction at each execution.

• Free-space propagator using the phased.FreeSpace System object.
• Receiver preamp model using the phased.ReceiverPreamp system object.

Signal propagation

Because the reflected signals are received by an array, use a beamformer pointing to the steering
direction to obtain the combined signal.

steeringvector = phased.SteeringVector('SensorArray',array,'PropagationSpeed',c,...
 'IncludeElementResponse',false);
beamformer = phased.PhaseShiftBeamformer('SensorArray',array,...
 'OperatingFrequency',fc,'PropagationSpeed',c,...
 'DirectionSource','Input port');
channel = phased.FreeSpace('SampleRate',fs,...
 'TwoWayPropagation',true,'OperatingFrequency',fc);
% Define a receiver with receiver noise
amplifier = phased.ReceiverPreamp('Gain',20,'LossFactor',0,'NoiseFigure',1,...

11 Using Polarization

11-26

 'ReferenceTemperature',290,'SampleRate',fs,'EnableInputPort',true,...
 'PhaseNoiseInputPort',false,'SeedSource','Auto');

For such a large PRI and sampling rate, there will be too many samples per element. This will cause
problems with the collector which has 961 channels. To keep the number of samples manageable, set
a maximum range of 5 km. We know that the target is within this range.

This set of axes specifies the direction of the local coordinate axes with respect to the global
coordinate system. This is the orientation of the target.

Processing Loop

Pre-allocate arrays for collecting data to be plotted.

sig_max_V = zeros(1,numpulses);
sig_max_H = zeros(1,numpulses);
tm_V = zeros(1,numpulses);
tm_H = zeros(1,numpulses);

After all the System objects are created, loop over the number of pulses to create the reflected
signals.

maxsamp = ceil(tmax*fs);
fast_time_grid = (0:(maxsamp-1))/fs;
rotangle = 0.0;
for m = 1:numpulses
 x = waveform(); % Generate pulse
 % Capture only samples within range gated
 x = x(1:maxsamp);
 [s, tx_status] = transmitter(x); % Create transmitted pulse
 % Move the radar platform and target platform.
 [radarPos,radarVel] = radarplatform(1/PRF);
 [targetPos,targetVel] = targetplatform(1/PRF);
 % Compute the known target angle
 [targetRng,targetAng] = rangeangle(targetPos,...
 radarPos,...
 radarPlatformAxes);
 % Compute the radar angle with respect to the target axes.
 [radarRng,radarAng] = rangeangle(radarPos,...
 targetPos,...
 targetPlatformAxes);
 % Calculate the steering vector designed to track the target
 sv = steeringvector(fc,targetAng);
 % Radiate the polarized signal toward the targat
 tsig1 = radiator(s,targetAng,radarPlatformAxes,conj(sv));
 % Compute the two-way propagation loss (4*pi*R/lambda)^2
 tsig2 = channel(tsig1,radarPos,targetPos,radarVel,targetVel);
 % Create a very simple model of a changing scattering matrix
 scatteringMatrix = [cosd(rotangle),0.5*sind(rotangle);...
 0.5*sind(rotangle),cosd(rotangle)];
 rsig1 = target(tsig2,radarAng,targetPlatformAxes,scatteringMatrix); % Reflect off target
 % Collect the vertical component of the radiation.
 rsig3V = collector1(rsig1,targetAng,radarPlatformAxes);
 % Collect the horizontal component of the radiation. This
 % second collector is rotated around the x-axis to be more
 % sensitive to horizontal polarization
 rsig3H = collector2(rsig1,targetAng,rotx(90)*radarPlatformAxes);
 % Add receiver noise to both sets of signals

 Polarized Fields

11-27

 rsig4V = amplifier(rsig3V,~(tx_status>0)); % Receive signal
 rsig4H = amplifier(rsig3H,~(tx_status>0)); % Receive signal
 % Beamform the signal
 rsigV = beamformer(rsig4V,targetAng); % Beamforming
 rsigH = beamformer(rsig4H,targetAng); % Beamforming
 % Find the maximum returns for each pulse and store them in
 % a vector. Store the pulse received time as well.
 [sigmaxV,imaxV] = max(abs(rsigV));
 [sigmaxH,imaxH] = max(abs(rsigH));
 sig_max_V(m) = sigmaxV;
 sig_max_H(m) = sigmaxH;
 tm_V(m) = fast_time_grid(imaxV) + (m-1)*PRI;
 tm_H(m) = fast_time_grid(imaxH) + (m-1)*PRI;

 % Update the orientation of the target platform axes
 targetPlatformAxes = ...
 rotx(PRI*targetRotRate)*targetPlatformAxes;
 rotangle = rotangle + PRI*targetRotRate;
end
% Plot the vertical and horizontal polarization for each pulse as a
% function of time.
plot(tm_V,sig_max_V,'.')
hold on
plot(tm_H,sig_max_H,'r.')
hold off
xlabel('Time (sec)')
ylabel('Amplitude')
title('Vertical and Horizontal Polarization Components')
legend('Vertical','Horizontal')
grid on

11 Using Polarization

11-28

 Polarized Fields

11-29

Antenna and Array Definitions

• “Element and Array Radiation and Response Patterns” on page 12-2
• “Grating Lobe Diagram for Microphone URA” on page 12-8

12

Element and Array Radiation and Response Patterns
In this section...
“Element Response and Radiation Patterns” on page 12-2
“Array Response and Radiation Patterns” on page 12-5

Element Response and Radiation Patterns
Antennas and acoustic transducers create radiated fields which propagate outwards into space or
into the air and water for acoustics. Conversely, antennas and transducers react to impinging fields to
produce output voltages. Transducers are called microphones or speakers in speech acoustics or
projectors or hydrophones in ocean acoustics. The electromagnetic fields created by an antenna, or
the acoustic field created by a transducer, depend upon the distance and direction from the radiator.
The terms response pattern and radiation pattern are often used interchangeably but the term
radiation pattern is mostly used to describe the field radiated by an element and the term response
pattern is mostly used to describe the output of the antenna with respect to impinging wave field as a
function of wave direction. By the principle of reciprocity, these two patterns are identical. When
discussing the generation of the patterns, it is conceptually easier to think in terms of radiation
patterns.

In radar and sonar applications, the interactions between fields and targets take place in the far-field
region, often called the Fraunhofer region. The far-field region is defined as the region for which

r≫L2/λ

where L represents the largest dimension of the source. In the far-field region, the fields take a
special form: they can be written as the product of a function of direction (such as azimuth and
elevation angles) and a geometric fall-off function, 1/r. It is the angular function that is called the
radiation pattern, response pattern, or simply pattern.

Radiation patterns can be viewed as field patterns or as power patterns. The terms “field” or “power”
are often added to be more specific: contrast element field pattern versus element power pattern. The
radiation power pattern describes the radiant intensity of a field, U, as a function of direction.
Radiant intensity units are watts/steradian. Sometimes, radiant intensity is confused with power
density. Power density, I, is the energy passing through a unit area in a unit time. Units for power
density are Watts/square meter. Unfortunately, in some disciplines, power density is sometimes called
intensity. This document always uses radiant intensity instead of intensity to avoid confusion. For a
point source, the radiant intensity is the power density multiplied by the square of the distance from
the source, U = r2I.

Element Field Patterns

The element field response or element field pattern represents the angular distribution of the
electromagnetic field create by an antenna, E(θ,φ), or the scalar acoustic field, p(θ,φ), generated by
an acoustic transducer such as a speaker or hydrophone. Because the far field electromagnetic field
consists of horizontal and vertical components orthogonal, (EH(θ,φ), EV(θ,φ)) there can be different
patterns for each component. Acoustic fields are scalar fields so there is only one pattern. The
general form of any field or field component is

A f (θ, ϕ)e−ikr

r

12 Antenna and Array Definitions

12-2

where A is a nominal field amplitude and f(θ,φ) is the normalized field pattern (normalized to unity).
Because the field patterns are evaluated at some reference distance from the source, the fields
returned by the element step method are represented simply as A f(θ,φ). You can display the nominal
element field pattern by invoking the element pattern method and then choosing the 'Type'
parameter value as 'efield' and setting the 'Normalize' parameter to false.

pattern(elem,'Normalize',false,'Type','efield');

You can view the normalized field pattern by setting the 'Normalize' parameter value to true. For
example, if EH(θ,φ) is the horizontal component of the complex electromagnetic field, the normalized
field pattern has the form |EH(θ,φ)/EH,max|.

pattern(elem,'Polarization','H','Normalize',true,'Type','efield');

Element Power Patterns

The element power response (or element power radiation pattern) is defined as the angular
distribution of the radiant intensity in the far field, Urad(θ,φ). When the elements are used for
reception, the patterns are interpreted as the sensitivity of the element to radiation arriving from
direction (θ,φ) and the power pattern represents the output voltage power of the element as a
function of wave arrival direction.

Physically, the radiant intensity for the electromagnetic field produced by an antenna element is

Urad(θ, ϕ) = r2

2Z0
EH

2 + EV
2

where Z0 is the characteristic impedance of free space. The radiant intensity of an acoustic field is

Urad(θ, ϕ) = r2

2Z p
2

where Z is the characteristic impedance of the acoustic medium. For the fields produced by the
Phased Array System Toolbox element System objects, the radial dependence, the impedances, and
the field magnitudes are all collected in the nominal field amplitudes defined above. Then the radiant
intensity can generally be written

Urad(θ, ϕ) = Af (θ, ϕ) 2

The radiant intensity pattern is the quantity returned by the element pattern method when the
'Normalize' parameter is set to false and the 'Type' parameter is set to 'power' (or
'powerdb' for decibels).

pattern(elem,'Normalize',false,'Type','power');

The normalized power pattern is defined as the radiant intensity divided by its maximum value

Unorm(θ, ϕ) =
Urad(θ, ϕ)
Urad, max

= f (θ, ϕ)
2

The pattern method returns a normalized power pattern when the 'Normalize' parameter is set
to true and the 'Type' parameter is set to 'power' (or 'powerdb' for decibels).

pattern(elem,'Normalize',true,'Type','power');

 Element and Array Radiation and Response Patterns

12-3

Element Directivity

Element directivity measures the capability of an antenna or acoustic transducer to radiate or receive
power preferentially in a particular direction. Sometimes it is referred to as directive gain. Directivity
is measured by comparing the transmitted radiant intensity in a given direction to the transmitted
radiant intensity of an isotropic radiator having the same total transmitted power. An isotropic
radiator radiates equal power in all directions. The radiant intensity of an isotropic radiator is just the
total transmitted power divided by the solid angle of a sphere, 4π,

Urad
iso (θ, ϕ) =

Ptotal
4π

The element directivity is defined to be

D(θ, ϕ) =
Urad(θ, ϕ)

Urad
iso = 4π

Urad(θ, ϕ)
Ptotal

By this definition, the integral of the directivity over a sphere surrounding the element is exactly 4π.
Directivity is related to the effective beamwidth of an element. Start with an ideal antenna that has a
uniform radiation field over a small solid angle (its beamwidth), ΔΩ, in a particular direction, and zero
outside that angle. The directivity is

D(θ, ϕ) = 4π
Urad(θ, ϕ)

Ptotal
= 4π

ΔΩ

The greater the directivity, the smaller the beamwidth.

The radiant intensity can be expressed in terms of the directivity and the total power

Urad(θ, ϕ) = 1
4πD(θ, ϕ)Ptotal

As an example, the directivity of the electric field of a z-oriented short-dipole antenna element is

D(θ, ϕ) = 3
2cos2θ

with a peak value of 1.5. Often, the largest value of D(θ,φ) is specified as an antenna operating
parameter. The direction in which D(θ,φ) is largest is the direction of maximum power radiation. This
direction is often called the boresight direction. In some of the literature, the maximum value itself is
called the directivity, reserving the phrase directive gain for what is called here directivity. For the
short-dipole antenna, the maximum value of directivity occurs at θ = 0, independent of φ, and attains
a value of 3/2. The concept of directivity applies to receiving antennas as well. It describes the output
power as a function of the arrival direction of a plane wave impinging upon the antenna. By
reciprocity, the directivity of a receiving antenna is the same as the directivity when used as a
transmitting antenna. A quantity closely related to directivity is element gain. The definition of
directivity assumes that all the power fed to the element is radiated to space. In reality, system losses
reduce the radiant intensity by some factor, the element efficiency, η. The term Ptotal becomes the
power supplied to the antenna and Prad becomes the power radiated into space. Then, Prad = ηPtotal.
The element gain is

G(θ, ϕ) = 4π
Urad(θ, ϕ)

Ptotal
= 4πη

Urad(θ, ϕ)
Prad

= ηD(θ, ϕ)

12 Antenna and Array Definitions

12-4

and represents the power radiated away from the element compared to the total power supplied to
the element.

Using the element pattern method, you can plot the directivity of an element by setting the 'Type'
parameter to 'directivity',

pattern(elem,'Type','directivity');

Array Response and Radiation Patterns
Array Magnitude and Power Patterns

When individual antenna elements are aggregated into arrays of elements, new response/radiation
patterns are created which depend upon both the element patterns and the geometry of the array.
These patterns are called beampatterns to reflect the fact that the pattern can be constructed to have
a narrow angular distribution, that is, a beam. This term is used for an array in transmitting or
receiving modes. Most often, but not always, the array consists of identical antennas. The identical
antenna case is interesting because it lets us partition the radiation pattern into two components: one
component describes the element radiation pattern and the second describes the array radiation
pattern.

Just as an array of transmitting elements has a radiation pattern, an array of receiving elements has a
response pattern which describes how the output voltage of the array changes with the direction of
arrival of a plane incident wave. By reciprocity, the response pattern is identical to the radiation
pattern.

For transmitting arrays, the voltage driving the elements can be phase-adjusted to allow the
maximum radiant intensity to be transmitted in a particular direction. For receiving arrays, the
arriving signals can be phase-adjusted to maximize the sensitivity in a particular direction.

Start with a simple model of the radiation field produced by a single antenna which is given by

y(θ, ϕ, r) = Af (θ, ϕ)e−ikr

r

where A is the field amplitude and f((θ,φ) is the normalized element field pattern. This field can
represent any of the components of the electric field, a scalar field, or an acoustic field. For an array
of identical elements, the output of the array is the weighted sum of the individual elements, using
the complex weights, wm

z(θ, ϕ, r) = A ∑
m = 0

M − 1
wm* f (θ, ϕ)e−ikrm

rm

where rm is the distance from the mth element source point to the field point. In the far-field region,
this equation takes the form

z(θ, ϕ, r) = Ae−ikr

r f (θ, ϕ) ∑
m = 0

M − 1
wm* e−iku · xm

where xm are the vector positions of the array elements with respect to the array origin. u is the unit
vector from the array origin to the field point. This equation can be written compactly is the form

z(θ, ϕ, r) = Ae−ikr

r f (θ, ϕ)wHs

 Element and Array Radiation and Response Patterns

12-5

The term wHs is called the array factor, Farray(θ,φ). The vector s is the steering vector (or array
manifold vector) for directions of propagation for transmit arrays or directions of arrival for receiving
arrays

s(θ, ϕ) = …, eiku · xm, …

The total array pattern consists of an amplitude term, an element pattern, f(θ,φ), and an array factor,
Farray(θ,φ). The total angular behavior of the array pattern, B(θ,φ), is called the beampattern of the
array

z(θ, ϕ, r) = Ae−ikr

r f (θ, ϕ)wHs = Ae−ikr

r f (θ, ϕ)Farray(θ, ϕ) = Ae−ikr

r B(θ, ϕ)

When evaluated at the reference distance, the array field pattern has the form

Af (θ, ϕ)wHs = Af (θ, ϕ)Farray(θ, ϕ) = AB(θ, ϕ)

The pattern method, when the 'Normalize' parameter is set to false and the 'Type' parameter
is set to 'efield', returns the magnitude of the array field pattern at the reference distance.

pattern(array,'Normalize',false,'Type','efield');

When the 'Normalize' parameter is set to true, the pattern method returns a pattern normalized
to unity.

pattern(array,'Normalize',true,'Type','efield');

The array power pattern is given by

Af (θ, ϕ)wHs 2 = Af (θ, ϕ)Farray(θ, ϕ) 2 = AB(θ, ϕ) 2

The pattern method, when the 'Normalize' parameter is set to false and the 'Type' parameter
is set to 'power' or 'powerdb', returns the array power pattern at the reference distance.

pattern(array,'Normalize',false,'Type','power');

When the 'Normalize' parameter is set to true, the pattern method returns the power pattern
normalized to unity.

pattern(array,'Normalize',true,'Type','power');

For the conventional beamformer, the weights are chosen to maximize the power transmitted towards
a particular direction, or in the case of receiving arrays, to maximize the response of the array for a
particular arrival direction. If u0 is the desired pointing direction, then the weights which maximize
the power and response in this direction have the general form

w = wm e−iku0 · xm

For these weights, the array factor becomes

Farray(θ, ϕ) = ∑
m = 0

M − 1
wm e−ik(u− u0) · xm

which has a maximum at u = u0.

12 Antenna and Array Definitions

12-6

Array Directivity

Array directivity is defined the same way as element directivity: the radiant intensity in a specific
direction divided by the isotropic radiant intensity. The isotropic radiant intensity is the array total
radiated power divided by 4π. In terms of the arrays weights and steering vectors, the directivity can
be written as

D(θ, ϕ) = 4π
Af (θ, ϕ)wHs 2

Ptotal

where Ptotal is the total radiated power from the array. In a discrete implementation, the total radiated
power can be computed by summing radiant intensity values over a uniform grid of angles that
covers the full sphere surrounding the array

Ptotal = 2π2

MN ∑
m = 0

M − 1
∑

n = 0

N − 1
Af (θm, ϕn)wHs(θm, ϕn)

2
cosθm

where M is the number of elevation grid points and N is the number of azimuth grid points.

Because the radiant intensity is proportional to the beampattern, B(θ,φ), the directivity can also be
written in terms of the beampattern

D(θ, ϕ) = 4π B(θ, ϕ) 2

∫ B(θ, ϕ)
2
cosθdθdϕ

You can plot the directivity of an array by setting the 'Type' parameter of the pattern methods to
'directivity',

pattern(array,'Type','directivity');

Array Gain

In the Phased Array System Toolbox, array gain is defined to be the array SNR gain. Array gain
measures the improvement in SNR of a receiving array over the SNR for a single element. Because
an array is a spatial filter, the array SNR depends upon the spatial properties of the noise field. When
the noise is spatially isotropic, the array gain takes a simple form

G =
SNRarray

SNRelement
=

wHs 2

wHw

In addition, for an array with uniform weights, the array gain for an N-element array has a maximum
value at boresight of N (or 10logN in db).

 Element and Array Radiation and Response Patterns

12-7

Grating Lobe Diagram for Microphone URA
Plot the grating lobe diagram for an 11-by-9-element uniform rectangular array having element
spacing equal to one-half wavelength.

Assume the operating frequency of the array is 10 kHz. All elements are omnidirectional microphone
elements. Steer the array in the direction 20 degrees in azimuth and 30 degrees in elevation. The
speed of sound in air is 344.21 m/s at 21 deg C.

cair = 344.21;
f = 10.0e3;
lambda = cair/f;
microphone = phased.OmnidirectionalMicrophoneElement(...
 'FrequencyRange',[20 20000]);
array = phased.URA('Element',microphone,'Size',[11,9],...
 'ElementSpacing',0.5*lambda*[1,1]);
plotGratingLobeDiagram(array,f,[20;30],cair);

Plot the grating lobes. The main lobe of the array is indicated by a filled black circle. The grating
lobes in visible and nonvisible regions are indicated by unfilled black circles. The visible region is the
region in u-v coordinates for which u2 + v2 ≤ 1. The visible region is shown as a unit circle centered
at the origin. Because the array spacing is less than one-half wavelength, there are no grating lobes
in the visible region of space. There are an infinite number of grating lobes in the nonvisible regions,
but only those in the range [-3,3] are shown.

12 Antenna and Array Definitions

12-8

The grating-lobe free region, shown in green, is the range of directions of the main lobe for which
there are no grating lobes in the visible region. In this case, it coincides with the visible region.

The white areas of the diagram indicate a region where no grating lobes are possible.

 Grating Lobe Diagram for Microphone URA

12-9

Sonar System Models

• “Sonar Equation” on page 13-2
• “Doppler Effect for Sound” on page 13-6

13

Sonar Equation
The sonar equation is used in underwater signal processing to relate received signal power to
transmitted signal power for one-way or two-way sound propagation. The equation computes the
received signal-to-noise ratio (SNR) from the transmitted signal level, taking into account
transmission loss, noise level, sensor directivity, and target strength. The sonar equation serves the
same purpose in sonar as the radar equation does in radar. The sonar equation has different forms for
passive sonar and active sonar.

Passive Sonar Equation
In a passive sonar system, sound propagates directly from a source to a receiver. The passive sonar
equation is

SNR = SL− TL− (NL− DI)

where SNR is the received signal-to-noise ratio in dB.

Source Level (SL)

The source level (SL) is the ratio of the transmitted intensity from the source to a reference intensity,
converted to dB:

SL = 10log
Is

Iref

where Is is the intensity of the transmitted signal measured at 1 m distance from the source. The
reference intensity, Iref, is the intensity of a sound wave having a root mean square (rms) pressure of
1 μPa. Source level is sometimes written in dB// 1 μPa, but actually is referenced to the intensity of a
1 μPa signal. The relation between intensity and pressure is

I =
prms

2

ρc

where ρ is the density of seawater, (approximately 1000 kg/m3), c is the speed of sound
(approximately 1500 m/s). 1 μPa is equivalent to an intensity of Iref = 6.667 ✕ 10-19 W/m2

Sometimes, it is useful to compute the source level from the transmitted power, P. Assuming a
nondirectional (isotropic) source, the intensity at one meter from the source is

I = P
4π

Then, the source level as a function of transmitted power is

SL = 10log10
I

Iref
= 10log10

P
4πIref

= 10log10P − 10log104πIref = 10log10P + 170.8

When source level is defined at one yard instead of one meter, the final constant in this equation is
171.5.

When the source is directional, the source level becomes

SL = 10log10
I

Iref
= 10log10P + 170.8 + DIsrc

13 Sonar System Models

13-2

where DIsrc is the directivity of the source. Source directivity is not explicitly included in the sonar
equation.

Receiver Directivity Index (DI)

The sonar equation includes the directivity index of the receiver (DI). Directivity is the ratio of the
total noise power at the array to the noise received by the array along its main response axis.
Directivity improves the signal-to-noise ratio by reducing the total noise. See “Element and Array
Radiation and Response Patterns” on page 12-2 for discussions of directivity.

Transmission Loss (TL)

Transmission loss is the attenuation of sound intensity as the sound propagates through the
underwater channel. Transmission loss (TL) is defined as the ratio of sound intensity at 1 m from a
source to the sound intensity at distance R.

TL = 10log
Is

I(R)

There are two major contributions to transmission loss. The larger contribution is geometrical
spreading of the sound wavefront. The second contribution is absorption of the sound as it
propagates. There are several absorption mechanisms.

In an infinite medium, the wavefront expands spherically with distance, and attenuation follows a
1/R2 law, where R is the propagation distance. However, the ocean channel has a surface and a
bottom. Because of this, the wavefronts expand cylindrically when they are far from the source and
follow a 1/R law. Near the source, the wavefronts still expand spherically. There must be a transition
region where the spreading changes from spherical to cylindrical. In Phased Array System Toolbox
sonar models, the transition region as a single range and ensures that the transmission loss is
continuous at that range. Authors define the transition range differently. Here, the transition range,
Rtrans, is one-half the depth, D, of the channel. The geometric transmission loss for ranges less than
the transition range is

TLgeom = 20log10R

For ranges greater than the transition depth, the geometric transmission loss is

TLgeom = 10log10R + 10log10Rtrans

In Phased Array System Toolbox, the transition range is one-half the channel depth, H/2.

The absorption loss model has three components: viscous absorption, the boric acid relaxation
process, and the magnesium sulfate relaxation process. All absorption components are modeled by
linear dependence on range, αR.

Viscous absorption describes the loss of intensity due to molecular motion being converted to heat.
Viscous absorption applies primarily to higher frequencies. The viscous absorption coefficient is a
function of frequency, f, temperature in Celsius, T, and depth, D:

αvis = 4.9 × 10−4f 2e−(T /27 + D/17)

in dB/km. This is the dominant absorption mechanism above 1 MHz. Viscous absorption increases
with temperature and depth.

 Sonar Equation

13-3

The second mechanism for absorption is the relaxation process of boric acid. Absorption depends
upon the frequency in kHz, f, the salinity in parts per thousand (ppt), S, and temperature in Celsius,T.
The absorption coefficient (measured in dB/km) is

αB = 0.106
f1f 2

f1
2 + f 2e−(pH − 8)/0.56

f1 = 0.78 S/35eT /26

in dB/km. f1 is the relaxation frequency of boric acid and is about 1.1 kHz at T = 10 °C and S = 35
ppt.

The third mechanism is the relaxation process of magnesium sulfate. Here, the absorption coefficient
is

αM = 0.52 1 + T
43

S
35

f2f 2

f2
2 + f 2e−D/6

f2 = 42eT /17

in dB/km. f2 is the relaxation frequency of magnesium sulfate and is about 75.6 kHz at T = 10°C and
S = 35 ppt.

The total transmission loss modeled in the toolbox is

TL = TLgeom(R) + (αvis + αB + αM)R

where R is the range in km. In Phased Array System Toolbox, all absorption models parameters are
fixed at T = 10, S = 35, and pH = 8. The model is implemented in range2tl. Because TL is a
monotonically increasing function of R, you can use the Newton-Raphson method to solve for R in
terms of TL. This calculation is performed in tl2range.

Noise Level (NL)

Noise level (NL) is the ratio of the noise intensity at the receiver to the same reference intensity used
for source level.

Active Sonar Equation
The active sonar equation describes a scenario where sound is transmitted from a source, reflects off
a target, and returns to a receiver. When the receiver is collocated with the source, this sonar system
is called monostatic. Otherwise, it is bistatic. Phased Array System Toolbox models monostatic sonar
systems. The active sonar equation is

SNR = SL− 2TL− (NL− DI) + TS

where 2TL is the two-way transmission loss (in dB) and TS is the target strength (in dB). The
transmission loss is calculated by computing the outbound and inbound transmission losses (in dB)
and adding them. In this toolbox, two-way transmission loss is twice the one-way transmission loss.

Target Strength (TS)

Target strength is the sonar analog of radar cross section. Target strength is the ratio of the intensity
of a reflected signal at 1 m from a target to the incident intensity, converted to dB. Using the

13 Sonar System Models

13-4

conservation of energy or, equivalently, power, the incident power on a target equals the reflected
power. The incident power is the incident signal intensity multiplied by an effective cross-sectional
area, σ. The reflected power is the reflected signal intensity multiplied by the area of a sphere of
radius R centered on the target. The ratio of the reflected power to the incident power is

Iincσ = Irefl4πR2

Irefl
Iinc

= σ
4πR2 .

The reflected intensity is evaluated on a sphere of 1 m radius. The target strength coefficient (σ) is
referenced to an area 1 m2.

TS = 10log10
Irefl(1 meter)

Iinc
= 10log10

σ
4π

References
[1] Ainslie M. A. and J.G. McColm. "A simplified formula for viscous and chemical absorption in sea

water." Journal of the Acoustical Society of America. Vol. 103, Number 3, 1998, pp.
1671--1672.

[2] Urick, Robert J. Principles of Underwater Sound, 3rd ed. Los Altos, CA: Peninsula Publishing,
1983.

 Sonar Equation

13-5

Doppler Effect for Sound
The Doppler effect is the change in the observed frequency of a source due to the motion of either the
source or receiver or both. Only the component of motion along the line connecting the source and
receiver contributes to the Doppler effect. Any arbitrary motion can be replaced by motion along the
source-receiver axis with velocities consisting of the projections of the velocities along that axis.
Therefore, without loss of generality, assume that the source and receiver move along the x-axis and
that the receiver is positioned further out along the x-axis. The source emits a continuous tone of
frequency, f0, equally in all directions. First examine two important cases. The first case is where the
source is stationary and the receiver is moving toward or away from the source. A receiver moving
away from the source will have positive velocity. A receiver moving toward the source will have
negative velocity. If the receiver moves towards the source, it will encounter wave crests more
frequently and the received frequency will increase according to

f ′ = f0
c− vr

c

Frequency will increase because vr is negative. If the receiver is moving away from the source, the vr
is positive and the frequency decreases. A similar situation occurs when the source is moving and the
receiver is stationary. Then the frequency at the receiver is

f ′ = f0
c

c− vs

The frequency increases when vs is positive as the source moves toward the receiver. When vs is
negative, the frequency decreases. Both effects can be combined into

f ′ = f0
c− vr

c
c

c− vs
= f0

c− vr
c− vs

= f0
1− vr c
1− vs c

.

There is a difference in the Doppler formulas for sound versus electromagnetic waves. For sound, the
Doppler shift depends on both the source and receiver velocities. For electromagnetic waves, the
Doppler shift depends on the difference between the source and receiver velocities.

References
[1] Halliday, David, R. Resnick, and J. Walker, Fundamentals of Physics, 10th ed. Wiley, New York,

2013.

13 Sonar System Models

13-6

Code Generation

• “Code Generation” on page 14-2
• “Generate MEX Function to Estimate Directions of Arrival” on page 14-10
• “Generate MEX Function Containing Persistent System Objects” on page 14-12

14

Code Generation
In this section...
“Code Generation Use and Benefits” on page 14-2
“Limitations Specific to Phased Array System Toolbox” on page 14-3
“General Limitations” on page 14-5
“Limitations for System Objects that Require Dynamic Memory Allocation” on page 14-9

Code Generation Use and Benefits
You can use the Phased Array System Toolbox software together with the MATLAB Coder™ product to
create C/C++ code that implements your MATLAB functions and models. With this software, you can

• Create a MEX file to speed up your own MATLAB application.
• Generate a stand-alone executable that runs independently of MATLAB on your own computer or

another platform.
• Include System objects in the same way as any other element.

In general, the code you generate using the toolbox is portable ANSI® C code. In order to use code
generation, you need a MATLAB Coder license. Using Phased Array System Toolbox software requires
licenses for both the DSP System Toolbox™ and the Signal Processing Toolbox™. See the “Get
Started with MATLAB Coder” (MATLAB Coder) page for more information.

Creating a MATLAB Coder MEX-file can lead to substantial acceleration of your MATLAB algorithms.
It is also a convenient first step in a workflow that ultimately leads to completely standalone code.
When you create a MEX-file, it runs in the MATLAB environment. Its inputs and outputs are available
for inspection just like any other MATLAB variable. You can use MATLAB visualization and other tools
for verification and analysis.

Within your code, you can run specific commands either as generated C code or by running using the
MATLAB engine. In cases where an isolated command does not yet have code generation support,
you can use the coder.extrinsic command to embed the command in your code. This means that
the generated code reenters the MATLAB environment when it needs to run that particular
command. This also useful if you wish to embed certain commands that cannot generate code (such
as plotting functions).

The simplest way to generate MEX-files from your MATLAB code is by using the codegen function at
the command line. Often, generating a MEX-files involves nothing more than invoking the coder
command on one of your existing functions. For example, if you have an existing function,
myfunction.m, you can type the commands at the command line to compile and run the MEX
function. codegen adds a platform-specific extension to this name. In this case, the "mex" suffix is
added.

codegen myfunction.m
myfunction_mex;

You can generate standalone executables that run independently of the MATLAB environment. You
can do this by creating a MATLAB Coder project inside the MATLAB Coder Integrated Development
Environment (IDE). Alternatively, you can issue the codegen command in the command line
environment with appropriate configuration parameters. To create a standalone executable, you must

14 Code Generation

14-2

write your own main.c or main.cpp function. See “Generating Standalone C/C++ Executables from
MATLAB Code” (MATLAB Coder) for more information.

Set Up Your Compiler

Before using codegen to compile your code, you must set up your C/C++ compiler. For 32-bit
Windows platforms, MathWorks® supplies a default compiler with MATLAB. If your installation does
not include a default compiler, you can supply your own compiler. For the current list of supported
compilers, see Supported and Compatible Compilers on the MathWorks Web site. Install a compiler
that is suitable for your platform. Then, read “Setting Up the C or C++ Compiler” (MATLAB Coder).
After installation, at the MATLAB command prompt, run mex -setup. You can then use the codegen
function to compile your code.

Functions and System Objects That Support Code Generation

Almost all Phased Array System Toolbox functions and System objects are supported for code
generation. For a list of supported functions and System objects, see Function List (C/C++ Code
Generation).

Limitations Specific to Phased Array System Toolbox
Code Generation has the following limitations when used with the Phased Array System Toolbox
software:

• When you employ antennas and arrays that produce polarized fields, the EnablePolarization
parameter for these System objects must be set to true:

• phased.Collector
• phased.Radiator
• phased.WidebandCollector
• phased.WidebandRadiator
• phased.RadarTarget
• phased.BackscatterRadarTarget
• phased.WidebandBackscatterRadarTarget
• phased.ArrayResponse
• phased.SteeringVector

This requirement differs from regular MATLAB usage where you can set EnablePolarization
property to false even when you use a polarization-enabled antenna. For example, this code uses
a polarized antenna, which requires that EnablePolarization property of the
phased.Radiator System object be set to true.

function [y] = codegen_radiator()
sSD = phased.ShortDipoleAntennaElement(...
 'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
c = physconst('LightSpeed');
fc = 200e6;
lambda = c/fc;
d = lambda/2;
sURA = phased.URA('Element',sSD,...
 'Size',[3,3],...
 'ElementSpacing',[d,d]);

 Code Generation

14-3

https://www.mathworks.com/support/requirements/supported-compilers.html

sRad = phased.Radiator('Sensor',sURA,...
 'OperatingFrequency',150e6,...
 'CombineRadiatedSignals',true,...
 'EnablePolarization',true);
x = [1;2;1];
radiatingAngle = [10;0]; % One angle for one antenna
y = step(sRad,x,radiatingAngle,eye(3,3));

• Visualization methods for Phased Array System Toolbox System objects are not supported. These
methods are pattern, patternAzimuth, patternElevation, plot, plotResponse, and
viewArray.

• When a System object contains another System object as a property value, you must set the
contained System object in the constructor. You cannot use Object Property notation to set the
property. For example

antenna = phased.ShortDipoleAntennaElement(...
 'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
array = phased.URA('Element',antenna,'Size',[3,3], ...
 'ElementSpacing',[0.75,0.75]);

is valid for codegen but

antenna = phased.ShortDipoleAntennaElement(...
 'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
array = phased.URA('Size',[3,3],'ElementSpacing',[0.75,0.75]);
array.Element = antenna;

is not.
• Code generation of Phased Array System Toolbox arrays that contain Antenna Toolbox antennas is

not supported.
• A list of the limitations on Phased Array System Toolbox functions and System objects is presented

here:

Function or System Object Limitation
plotResponse This System object method is not supported.
pattern This System object method is not supported.
patternAzimuth This System object method is not supported.
patternElevation This System object method is not supported.
plot This System object method is not supported.
viewArray This System object method is not supported.
ambgfun Supported only when output arguments are

specified.
pambgfun Supported only when output arguments are

specified.
polsignature Supported only when output arguments are

specified.
rocpfa • Supported only when output arguments

are specified.
• The NonfluctuatingNoncoherent

signal type is not supported.

14 Code Generation

14-4

Function or System Object Limitation
rocsnr • Supported only when output arguments

are specified.
• The NonfluctuatingNoncoherent

signal type is not supported.
stokes Supported only when output arguments are

specified.
phased.ArrayGain This System object cannot be used with arrays

that contain antenna elements that create
polarized signals, that is,
phased.ShortDipoleAntennaElement or
phased.CrossedDipoleAntennaElement

phased.IntensityScope This System object is not supported.
phased.MatchedFilter The CustomSpectrumWindow property is not

supported.
phased.RangeDopplerResponse The CustomRangeWindow and the

CustomDopplerWindow properties are not
supported.

phased.ScenarioViewer This System object is not supported.

General Limitations
Code Generation has some general limitations not specifically related to the Phased Array System
Toolbox software. For a more complete discussion, see “System Objects in MATLAB Code Generation”
(MATLAB Coder).

• The data type and complexity (i.e., real or complex) of any input argument to a function or System
object must always remain the same.

• You cannot pass a System object to any method or function that you made extrinsic using
coder.extrinsic.

• You cannot load a MAT-file using coder.load when it contains a System object. For example, if
you construct a System object in the MATLAB environment and save it to a MAT-file

sSD = phased.ShortDipoleAntennaElement(...
 'FrequencyRange',[0.9e8,2e9],'AxisDirection','Y');
save x.mat sSD;
clear sSD;

then you cannot load the System object in your compiled MEX-file:

function codegen_load1()
W = coder.load('x.mat');
sSD = W.sSD;

The compilation

codegen codegen_load1

will produced an error message: 'Found unsupported class for variable using
function 'coder.load'. MATLAB class 'phased.ShortDipoleAntennaElement'
found at 'W.sSD' is unsupported.'

 Code Generation

14-5

To avoid this problem, you can save the object's properties to a MAT-file, then, use coder.load to
load the object properties and re-create the object. For example, create and save a System
object’s properties in the MATLAB environment

sSD = phased.ShortDipoleAntennaElement(...
 'FrequencyRange',[0.9e8,2e9],'AxisDirection','Y');
FrequencyRange = sSD.FrequencyRange;
AxisDirection = sSD.AxisDirection;
save x.mat FrequencyRange AxisDirection;

Then, write a function codegen_load2 to load the properties and create a System object.

function codegen_load2()
W = coder.load('x.mat');
sSD = phased.ShortDipoleAntennaElement(...
 'FrequencyRange',W.FrequencyRange,...
 'AxisDirection',W.AxisDirection);

Then, issue the commands to create and execute the MEX-file, codegen_load2_mex.

codegen codegen_load2;
codegen_load2_mex

• System object properties are either tunable or nontunable. Unless otherwise specified, System
object properties are nontunable. Nontunable properties must be constant. A constant is a value
that can be evaluated at compile-time. You can change tunable properties even if the object is
locked. Refer to the object's reference page to determine whether an individual property is
tunable or not. If you try to set a nontunable System object property and the compiler determines
that it is not constant, you will get an error. For example, the phased.URA System object has a
nontunable property, ElementSpacing, which sets the distance between elements. You may want
to create an array that is tuned to a frequency. You cannot pass in the frequency as an input
argument because the frequency must be a constant.

function [resp] = codegen_const1(fc)
sSD = phased.ShortDipoleAntennaElement(...
 'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
c = physconst('LightSpeed');
lambda = c/fc;
d = lambda/2;
sURA = phased.URA('Element',sSD,...
 'Size',[3,3],...
 'ElementSpacing',[d,d]);
ang = [30;0];
resp = step(sURA,fc,ang);

When you codegen this function

fc = 200e6;
codegen codegen_const1 -args {fc}

the compiler responds that the value of the 'ElementSpacing' property, d, is not constant and
generates the error message: "Failed to compute constant value for nontunable
property 'ElementSpacing'. In code generation, nontunable properties can
only be assigned constant values." It is not constant because it depends upon a non-
constant variable, fc.

To correct this problem, set fc to a constant within the function:

14 Code Generation

14-6

function [resp] = codegen_const2()
sSD = phased.ShortDipoleAntennaElement(...
 'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
c = physconst('LightSpeed');
fc = 200e6;
lambda = c/fc;
d = lambda/2;
sURA = phased.URA('Element',sSD,...
 'Size',[3,3],...
 'ElementSpacing',[d,d]);
ang = [30;0];
resp = step(sURA,fc,ang);

and then compile

codegen codegen_const2
• You can assign a nontunable System object property value only once before a step method is

executed. This requirement differs from MATLAB usage where you can initialize these properties
multiple times before the step method is executed.

This example sets the Size property twice.

function codegen_property
sSD = phased.ShortDipoleAntennaElement(...
 'FrequencyRange',[0.9e8,2e9],'AxisDirection','Y');
sURA = phased.URA('Element',sSD,...
 'Size',[3,3],...
 'ElementSpacing',[0.15,0.15]);
sURA.Size = [4,4];

When you issue the command

codegen codegen_property

the following error message is produced: "A nontunable property may only be assigned
once."

• In certain cases, the compiler cannot determine the values of nontunable properties at compile
time or the code may not even compile. Consider the following example that reads in the x,y,z-
coordinates of a 5-element array from a file and then, creates a conformal array System object.
The text file, elempos.txt, contains the element coordinates

-0.5000 -0.2588 0 0.2588 0.5000
-0.8660 -0.9659 -1.0000 -0.9659 -0.8660
 0 0 0 0 0

The file collectWave.m contains reads the element coordinates and creates the object.

function y = collectWave(angle)
elPos = calcElPos;
cArr = phased.ConformalArray('ElementPosition',elPos);
y = collectPlaneWave(cArr,randn(4,2),angle,1e8);
end

function elPos = calcElPos
fid = fopen('elempos.txt','r');
el = textscan(fid, '%f');
n = length(el{1});

 Code Generation

14-7

nelem = n/3;
fclose(fid);
elPos = reshape(el{1},nelem,3).';
end

Attempting to compile

codegen collectWave -args {[10 30]}

produces the error "Permissions 'r' and 'r+' are not supported".

The following example is a work-around that uses coder.extrinsic and coder.const to insure
that the value for the nontunable property, 'ElementPosition', is a compile time constant. The
function in the file, collectWave1.m, creates the object using the calcElPos function. This
function runs inside the MATLAB interpreter at compile time.

function y = collectWave1(angle)
coder.extrinsic('calcElPos')
elPos = coder.const(calcElPos);
cArr = phased.ConformalArray('ElementPosition',elPos);
y = collectPlaneWave(cArr,randn(4,2),angle,1e8);
end

The file calcElPos.m loads the element positions from the text file

function elPos = calcElPos
fid = fopen('elempos.txt','r');
el = textscan(fid, '%f');
n = length(el{1});
nelem = n/3;
fclose(fid);
elPos = reshape(el{1},nelem,3).';

Only the collectWave1.m file is compiled with codegen. Compiling and running

codegen collectWave1 -args {[10 30]}
collectWave1_mex([10,30])

will succeed.

An alternate work-around uses coder.load to insure that the value of the nontunable property
'ElementPosition' is compile-time constant. In the MATLAB environment, run calcElPos2 to
save the array coordinates contained in elempos.txt to a MAT-file. Then, load the contents of the
MAT-file within the compiled code.

function calcElPos2
fid = fopen('elempos.txt');
el = textscan(fid, '%f');
fclose(fid);
elPos = reshape(el{1},[],3).';
save('positions', 'elPos');
end

The file collectWave2.m loads the coordinate positions and creates the conformal array object

function y = collectWave2(angle)
var = coder.load('positions');
cArr = phased.ConformalArray('ElementPosition',var.elPos);

14 Code Generation

14-8

y = collectPlaneWave(cArr,randn(4,2),angle,1e8);
end

Only the collectWave2.m file is compiled with codegen. Compiling and running
collectWave2.m

codegen collectWave2 -args {[10 30]}
collectWave2_mex([10,30])

will succeed. This second approach is more general than the first since a MAT-file can contain any
variables, except System objects.

• The System object clone method is not supported.

Limitations for System Objects that Require Dynamic Memory
Allocation
System objects that require dynamic memory allocation cannot be used for code generation in the
following cases:

Inside a MATLAB Function block in a Simulink® model.
Inside a MATLAB function in a Stateflow® chart.
When using MATLAB as the action language in a Stateflow chart.
Inside a Truth Table block in a Simulink model.
Inside a MATLAB System block (except for normal mode).
When using Simulink Coder for code generation.
When using MATLAB Coder for code generation and dynamic memory allocation is disabled.

 Code Generation

14-9

Generate MEX Function to Estimate Directions of Arrival
Compile, using codegen, the function EstimateDOA.m. This function estimates the directions-of-
arrival (DOA’s) of two signals with added noise that are received by a standard 10-element Uniform
Line Array (ULA). The antenna operating frequency is 150 MHz and the array elements are spaced
one-half wavelength apart. The actual direction of arrival of the first signal is 10° azimuth, 20°
elevation. The direction of arrival of the second signal is 45° azimuth, 60° elevation. Signals and noise
are generated using the sensorsig function.

function [az] = EstimateDOA()
% Example:
% Estimate the DOAs of two signals received by a standard
% 10-element ULA with element spacing one half-wavelength apart.
% The antenna operating frequency is 150 MHz.
% The actual direction of the first signal is 10 degrees in
% azimuth and 20 degrees in elevation. The direction of the
% second signal is 45 degrees in azimuth and 60 degrees in
% elevation.
c = physconst('LightSpeed');
fc = 150e6;
lambda = c/fc;
fs = 8000;
nsamp = 8000;
sigma = 0.1;
ang = [10 20; 45 60]';
antenna = phased.IsotropicAntennaElement(...
 'FrequencyRange',[100e6,300e6]);
array = phased.ULA('Element',antenna,'NumElements',10, ...
 'ElementSpacing',lambda/2);
pos = getElementPosition(array)/lambda;
sig = sensorsig(pos,nsamp,ang,sigma^2);
estimator = phased.RootMUSICEstimator('SensorArray',array,...
 'OperatingFrequency',fc,...
 'NumSignalsSource','Property','NumSignals',2);
doas = estimator(sig);
az = broadside2az(sort(doas),[20,60]);
end

Run codegen at the command line to generate the mex function, EstimateDOA_mex, and then run
the mex function:

codegen EstimateDOA.m
EstimateDOA_mex

The estimated arrival angles are:

az =

 10.0036 45.0030

The program contains a fixed value for the noise variance. If you wanted to reuse the same code for
different noise levels, you can pass the noise variance as an argument into the function. This is done
in the function EstimateDOA1.m, shown here, which has the input argument sigma.

function [az] = EstimateDOA1(sigma)
% Example:
% Estimate the DOAs of two signals received by a standard

14 Code Generation

14-10

% 10-element ULA with element spacing one half-wavelength apart.
% The antenna operating frequency is 150 MHz.
% The actual direction of the first signal is 10 degrees in
% azimuth and 20 degrees in elevation. The direction of the
% second signal is 45 degrees in azimuth and 60 degrees in
% elevation.
c = physconst('LightSpeed');
fc = 150e6;
lambda = c/fc;
fs = 8000;
nsamp = 8000;
ang = [10 20; 45 60]';
antenna = phased.IsotropicAntennaElement(...
 'FrequencyRange',[100e6,300e6]);
array = phased.ULA('Element',antenna,'NumElements',10, ...
 'ElementSpacing',lambda/2);
pos = getElementPosition(array)/lambda;
sig = sensorsig(pos,nsamp,ang,sigma^2);
estimator = phased.RootMUSICEstimator('SensorArray',array, ...
 'OperatingFrequency',fc, ...
 'NumSignalsSource','Property','NumSignals',2);
doas = estimator(sig);
az = broadside2az(sort(doas),[20,60]);
end

Run codegen at the command line to generate the mex function, EstimateDOA1_mex, using the -
args option to specify the type of input argument. Then run the mex function with several different
input parameters:

codegen EstimateDOA1.m -args {1}
EstimateDOA1_mex(1)
az =
 10.0130 45.0613
EstimateDOA1_mex(10)
az =
 10.1882 44.3327
EstimateDOA1_mex(15)
az =
 8.1620 46.2440

Increasing the value of sigma degrades the estimates of the azimuth angles.

 Generate MEX Function to Estimate Directions of Arrival

14-11

Generate MEX Function Containing Persistent System Objects
Sometimes, it is convenient to put System objects inside a function that is to be called many times.
This eliminates the overhead in creating new instances of a System object each time the function is
called. You can write logic which creates the System object just once and declares it to be
persistent. For example, suppose you require the response of an 11-element ULA for several
different arrival angles and want to plot that response versus angle.

function plot_ULA_response
azangles = [-90:90];
elangles = zeros(size(azangles));
fc = 100e9;
c = physconst('LightSpeed');
N = size(azangles,2);
lambda = c/fc;
d = 0.4*lambda;
numelements = 11;
resp = zeros(1,N);
sIso = phased.IsotropicAntennaElement(...
 'FrequencyRange',[1,200]*1e9,...
 'BackBaffled',false);
sULA = phased.ULA('Element',sIso,...
 'NumElements',numelements,...
 'ElementSpacing',d,...
 'Taper',taylorwin(numelements).');
for n = 1:N
 x = get_ULA_response(sULA,fc,azangles(n),elangles(n));
 resp(n) = abs(x);
end
plot(azangles,20*log10(resp));
title('ULA Response');
xlabel('Angle (deg)');
ylabel('Response (db)');
grid;
end

function resp = get_ULA_response(sULA,fc,az,el)
persistent sAR;
c = physconst('LightSpeed');
if isempty(sAR)
 sAR = phased.ArrayResponse('SensorArray',sULA,...
 'PropagationSpeed',c,...
 'WeightsInputPort',false,...
 'EnablePolarization',false);
end
resp = step(sAR,fc,[az;el]);
end

To create the code, run codegento create the MEX-file plot_ULA_response_mex, and execute the
mex-file at the command line:

codegen plot_ULA_response
plot_ULA_response_mex;

which yields the plot

14 Code Generation

14-12

 Generate MEX Function Containing Persistent System Objects

14-13

Simulink Examples

15

Convert Azimuth and Elevation to Broadside Angle
Convert a direction with an azimuth angle of 45 degrees and an elevation angle of 30 degrees into a
broadside angle.

model = 'AzEl2Broadside1';
open_system(model);
sim(model);

close_system(model);

15 Simulink Examples

15-2

Phase-Shift Beamforming of Plane Wave Signal
Beamform a plane wave arriving at a 10 element ULA of isotropic antenna elements. All the signals
are delayed by 100 samples. The operating frequency of the array is 100 MHz.

model = 'PhaseShiftBeamformer1Example';
open_system(model);
sim(model);

 Phase-Shift Beamforming of Plane Wave Signal

15-3

15 Simulink Examples

15-4

RF Propagation

16

Access TIREM Software
The Terrain Integrated Rough Earth Model™ (TIREM™) is a propagation model for computing the
path loss for irregular terrain and seawater scenarios. TIREM is developed, trademarked, and
licensed by Alion Science. To use TIREM, you need to acquire it from Alion Science.

TIREM is designed to calculate the reference basic median propagation loss (path loss) based on the
terrain profile along the great circle path between two antennas for example using digital terrain
elevation data (DTED). You can use TIREM model to calculate the point-to-point path loss between
sites over irregular terrain. The model combines physics with empirical data to provide path loss
estimates. The TIREM propagation model can predict path loss at frequencies between 1 MHz and 1
THz.

Use tiremSetup to enable TIREM access from within MATLAB. The TIREM library folder contains
the tirem3 shared library. The full library name is platform dependent:

Platform Shared library name
Windows libtirem3.dll or tirem3.dll
Linux libtirem3.so
Mac libtirem3.dylib

16 RF Propagation

16-2

https://www.alionscience.com/terrain-integrated-rough-earth-model-tirem/

Featured Examples

17

Antenna Array Analysis with Custom Radiation Pattern
This example shows how to create an antenna array with a custom antenna radiation pattern and
then how to analyze the array's response pattern. Such a pattern can be obtained either from
measurements or from simulations.

Import the Radiation Pattern

Depending on the application, practical phased antenna arrays sometimes use specially designed
antenna elements whose radiation pattern cannot be represented by a closed-form equation. Even
when the element pattern is well understood, as is the case with a dipole antenna, the mutual
coupling among the elements can significantly change the individual element pattern when the
element is put into an array. This makes the closed-form pattern less accurate. Therefore, for high
fidelity pattern analysis, you often need to use a custom radiation pattern obtained from
measurements or simulations.

There is no standard convention for the coordinate system used to specify the radiation pattern, so
the result from one simulation package often cannot not be directly used in another software
package. For example, in Phased Array System Toolbox™ (PST), the radiation pattern is expressed
using azimuth (az) and elevation (el) angles, as depicted in Figure 1. It is assumed that the main
beam of the antenna points toward azimuth and elevation, that is, the x-axis. The value of az lies
between and and the value of el lies between and . See “Spherical Coordinates”
on page 10-10.

17 Featured Examples

17-2

Figure 1: Spherical coordinate system convention used in Phased Array System Toolbox.

A frequently-used full-wave modeling tool for simulating antenna radiation patterns is HFSS™. In this
tool, individual elements are modeled as if they were part of an infinite array. The simulated radiation
pattern is represented as an M-by-3 matrix where the first column represents the azimuth angle ,
the second column represents the elevation angle , and the third column represents the radiation
pattern in dB. The coordinate system and the definitions of and used in HFSS is shown in Figure
2. In this convention, the main beam of the antenna points along the z-axis which usually points
vertically. The value of is between and and the value of is between and .

 Antenna Array Analysis with Custom Radiation Pattern

17-3

Figure 2: Spherical coordinate system convention used in HFSS.

Note that the HFSS coordinate system is not exactly the same as the coordinate system used in
Phased Array System Toolbox™. In HFSS, the beam mainlobe points along the z-axis and the plane
orthogonal to the beam is formed from the x- and y axes. One possible approach to import a custom
pattern in convention without any coordinate axes rotation is shown below.

17 Featured Examples

17-4

For example, a cardioid-shaped antenna pattern is simulated in the - convention and is saved in
a .csv file. The helper function helperPatternImport reads the .csv file and reformats its
contents into a two-dimensional matrix in and .

[pattern_phitheta,phi,theta] = helperPatternImport;

The phi-theta pattern can now be used to form a custom antenna element. Assume that this antenna
operates between 1 and 1.25 GHz.

freqVector = [1 1.25].*1e9; % Frequency range for element pattern
antenna = phased.CustomAntennaElement('FrequencyVector',freqVector, ...
 'PatternCoordinateSystem','phi-theta',...
 'PhiAngles',phi,...
 'ThetaAngles',theta,...
 'MagnitudePattern',pattern_phitheta,...
 'PhasePattern',zeros(size(pattern_phitheta)));

To verify that the pattern has been correctly imported, plot the response of the custom antenna
element. Notice that the main beam points to azimuth and elevation, the custom pattern with
main beam along z-axis is imported without any rotation.

fmax = freqVector(end);
pattern(antenna,fmax,'Type','powerdb')

 Antenna Array Analysis with Custom Radiation Pattern

17-5

Construct Antenna Array

Consider a 100-element antenna array whose elements reside on a 10-by-10 rectangular grid, as
shown in Figure 3. To ensure that no grating lobes appear, elements are spaced at one-half
wavelength at the highest operating frequency. This rectangular array can be created using the
following commands.

Figure 3: A 10-by-10 URA.

c = physconst('LightSpeed');
lambda = c/fmax;
array = phased.URA('Element',antenna,'Size',10,'ElementSpacing',lambda/2)

array =

 phased.URA with properties:

 Element: [1x1 phased.CustomAntennaElement]
 Size: [10 10]
 ElementSpacing: [0.1199 0.1199]
 Lattice: 'Rectangular'
 ArrayNormal: 'x'
 Taper: 1

The total radiation pattern of the resulting antenna array is plotted below in u-v space. The pattern is
a combination of both the element pattern and the array factor.

pattern(array,fmax,'PropagationSpeed',c,'Type','powerdb',...
 'CoordinateSystem','UV');

17 Featured Examples

17-6

One can also easily examine the u-cut of the pattern as shown below.

pattern(array,fmax,-1:0.01:1,0,'PropagationSpeed',c, ...
 'CoordinateSystem','UV','Type','powerdb')
axis([-1 1 -50 0]);

 Antenna Array Analysis with Custom Radiation Pattern

17-7

Steer the Beam in Azimuth

This section illustrates the idea of phase steering an array. An advantage of phased arrays over a
single antenna element is that the main beam can be electronically steered to a given direction.
Steering is accomplished by adjusting the weights assigned to each element. The set of weights is
also called the steering vector. Each weight is a complex number whose magnitude controls the
sidelobe characteristics of the array and whose phase steers the beam.

The example scans the main beam of the array from azimuth to azimuth, with the elevation
angle fixed at during the scan.

helperPatternScan(array)

17 Featured Examples

17-8

clear helperPatternScan

Summary

This example shows how to construct and analyze an antenna array using a custom antenna pattern.
The pattern can be generated using full-wave modeling simulation software with the - convention.
The pattern can then be used to form a custom antenna element. The resulting array is scanned from

 to in the azimuth direction to illustrate the phase steering concept.

 Antenna Array Analysis with Custom Radiation Pattern

17-9

Array Pattern Synthesis Part I: Nulling, Windowing, and
Thinning

This example shows how to use Phased Array System Toolbox™ to solve some array synthesis
problems.

In phased array design applications, it is often necessary to find a way to taper element responses so
that the resulting array pattern satisfies certain performance criteria. Typical performance criteria
include the mainlobe location, null location(s) and sidelobe levels.

Interference Removal Using Sidelobe Canceller

A common requirement when synthesizing beam patterns is pointing a null towards a given arrival
direction. This helps suppress interference from that direction and improves the signal-to-
interference ratio. The interference is not always malicious- an airport radar system may need to
suppress interference from a nearby radio station. In this case, the position of the radio station is
known and a sidelobe cancellation algorithm can be used to remove the interference.

Sidelobe cancellation is useful for suppressing interference that enters through the array's sidelobes.
In this case, because the interference direction is known, the algorithm is simple. Form a beam that
points towards the interference direction, then scale the beam weights and subtract scaled weights
from the weights for the beam patterns that point towards any other look direction. This process
always places a strong null in the interference direction.

The following example shows how to design the weights of the radar so that it scans between -30 and
30 degrees yet always keeps a null at 40 degrees. Assume that the radar uses a 10-element ULA that
is parallel to the ground and that the known radio interference arrives from 40 degrees azimuth.

c = 3e8; % signal propagation speed
fc = 1e9; % signal carrier frequency
lambda = c/fc; % wavelength

thetaad = -30:5:30; % look directions
thetaan = 40; % interference direction

ula = phased.ULA(10,lambda/2);
ula.Element.BackBaffled = true;

% Calculate the steering vector for null directions
wn = steervec(getElementPosition(ula)/lambda,thetaan);

% Calculate the steering vectors for lookout directions
wd = steervec(getElementPosition(ula)/lambda,thetaad);

% Compute the response of desired steering at null direction
rn = wn'*wd/(wn'*wn);

% Sidelobe canceler - remove the response at null direction
w = wd-wn*rn;

% Plot the pattern
pattern(ula,fc,-180:180,0,'PropagationSpeed',c,'Type','powerdb',...
 'CoordinateSystem','rectangular','Weights',w);
hold on; legend off;
plot([40 40],[-100 0],'r--','LineWidth',2)

17 Featured Examples

17-10

text(40.5,-5,'\leftarrow Interference Direction','Interpreter','tex',...
 'Color','r','FontSize',10)

The figure above shows the resulting beam patterns for look directions from -30 degrees azimuth to
30 degrees azimuth, in 5 degrees increment. It is clear from the zoomed figure below that no matter
where the look direction is, the radar beam pattern has a strong null at the interference direction.

% Zoom
xlim([30 50])
legend(arrayfun(@(k)sprintf('%d degrees',k),thetaad,...
 'UniformOutput',false),'Location','SouthEast');

 Array Pattern Synthesis Part I: Nulling, Windowing, and Thinning

17-11

Pattern Synthesis Using Windowing Function

Another frequent problem when designing a phased array is matching a desired beam pattern to a
specification that is handed to you. Often, the requirements are expressed in terms of beamwidth and
sidelobe level.

The process of addressing such a problem often includes these steps:

1 Observe the desired pattern and decide an array geometry;
2 Choose an array size based on the desired beamwidth;
3 Design tapers based on the desired sidelobe level;
4 Iterate on adjusting the parameter obtained step 2 and 3 to get a best match.

The following example illustrates these four steps. First, observe the desired pattern shown in the
following figure.

load desiredSynthesizedAntenna;

clf;
pattern(mysteryAntenna,fc,'CoordinateSystem','polar','Type','powerdb');
view(50,20);
ax = gca;
ax.Position = [-0.15 0.1 0.9 0.8];
camva(4.5);
campos([520 -250 200]);

17 Featured Examples

17-12

The 3D radiation patterns exhibits some symmetries in both azimuth and elevation cuts. Therefore,
the pattern may be best obtained using a uniform rectangular array (URA). It is also clear from the
plot that there is no energy radiated toward back of the array.

Next, determine the size of the array. To avoid grating lobes, the element spacing is set to half
wavelength. For a URA, the sizes along the azimuth and elevation directions can be derived from the
required beamwidths along azimuth and elevation directions, respectively. In the case of half
wavelength spacing, the number of elements along a certain direction can be approximated by

where is the beamwidth along that direction. Hence, the aperture size of the URA can be computed
as

[azpat,elpat,az,el] = helperExtractSynthesisPattern(mysteryAntenna,fc,c);

% Azimuth direction
idx = find(azpat>pow2db(1/2));
azco = [az(idx(1)) az(idx(end))]; % azimuth cutoff
N_col = round(2/sind(diff(azco)))

% Elevation direction
idx = find(elpat>pow2db(1/2));
elco = [el(idx(1)) el(idx(end))]; % elevation cutoff
N_row = round(2/sind(diff(elco)))

 Array Pattern Synthesis Part I: Nulling, Windowing, and Thinning

17-13

N_col =

 19

N_row =

 14

The estimation suggests to start with a 14x19 URA.

% Form the URA
ura = phased.URA([N_row N_col],[lambda/2 lambda/2]);
ura.Element.BackBaffled = true;

helperArraySynthesisComparison(ura,mysteryAntenna,fc,c)

The figure shows that the synthesized array exceeds the beamwidth requirement of the desired
pattern. However, the sidelobes are much larger than the desired pattern. You can reduce the
sidelobes by applying a windowing operation to the array. Because the URA can be considered to be
the combination of two separable uniform linear arrays (ULA), the window can be designed
independently along both the azimuth and elevation directions using familiar filter design methods.

The code below shows how to obtain the windows for azimuth and elevation directions.

17 Featured Examples

17-14

AzSidelobe = 20;
Ap = 0.1; % Passband ripples
AzWeights = designfilt('lowpassfir','FilterOrder',N_col-1,...
 'CutoffFrequency',azco(2)/90,'PassbandRipple',0.1,...
 'StopBandAttenuation',AzSidelobe);
azw = AzWeights.Coefficients;

ElSidelobe = 30;
ElWeights = designfilt('lowpassfir','FilterOrder',N_row-1,...
 'CutoffFrequency',elco(2)/90,'PassbandRipple',0.1,...
 'StopBandAttenuation',ElSidelobe);
elw = ElWeights.Coefficients;

% Assign the weights to the array
ura.Taper = elw(:)*azw(:).';

% Compare the pattern
helperArraySynthesisComparison(ura,mysteryAntenna,fc,c)

The figure shows that the resulting sidelobe level is lower compared to the previous design but still
does not satisfy the requirement. By some trials and errors, the following parameters are used to
create the final design:

N_row = N_row+2; % trial and error
N_col = N_col-3; % trial and error
AzSidelobe = 26;
ElSidelobe = 35;

 Array Pattern Synthesis Part I: Nulling, Windowing, and Thinning

17-15

AzWeights = designfilt('lowpassfir','FilterOrder',N_col-1,...
 'CutoffFrequency',azco(2)/90,'PassbandRipple',0.1,...
 'StopBandAttenuation',AzSidelobe);
azw = AzWeights.Coefficients;

ElWeights = designfilt('lowpassfir','FilterOrder',N_row-1,...
 'CutoffFrequency',elco(2)/90,'PassbandRipple',0.1,...
 'StopBandAttenuation',ElSidelobe);
elw = ElWeights.Coefficients;

ura = phased.URA([N_row N_col],[lambda/2 lambda/2]);
ura.Element.BackBaffled = true;

ura.Taper = elw(:)*azw(:).';

helperArraySynthesisComparison(ura,mysteryAntenna,fc,c)

The figure shows that the beamwidth and sidelobe levels of the synthesized pattern match the desired
specifications. The following figures show the desired 3D pattern, the synthesized 3D pattern, the
resulting array geometry, and the taper.

helperArraySynthesisComparison(ura,mysteryAntenna,fc,c,'3d')

17 Featured Examples

17-16

Array Thinning Using Genetic Algorithm

Many array synthesis problems can be treated as optimization problems, especially for arrays with
large apertures or complex geometries. In those situations, a closed form solution often does not exist
and the solution space is very large. For example, for a large array, it is often necessary to thin the
array to control the sidelobe levels to avoid wasting power delivered to each antenna element. In this
case, an element can be turned on or off. If you were to try all possible solutions in a 400-element
array, you would need to try combinations, which is unrealistic, and a 400-element array is not
considered to be a big aperture at all. Optimization techniques are often adopted in this situation.

A frequently used optimization technique is the genetic algorithm. A genetic algorithm achieves the
optimal solution by simulating the natural selection process. It starts with randomly selected
candidates as the first generation. At each evolution cycle, the algorithm sorts the generation
according to a predetermined performance measure (in the thinned array example, the performance
measure would be the ratio of peak-to-sidelobe level), and then discards the ones with lower
performance scores. The algorithm then mutates the remaining candidates to generate a newer
generation and repeats the process, until it reaches a stop condition, such as the maximum number of
generations.

The following example shows how to use a genetic algorithm to thin a 40x40 URA. The goal is to
achieve maximum sidelobe suppression in both azimuth and elevation cut. The beam pattern of the
full array is shown first.

Nside = 40;
geneticArray = phased.URA(Nside,lambda/2);
geneticArray.Element.BackBaffled = true;

 Array Pattern Synthesis Part I: Nulling, Windowing, and Thinning

17-17

clf;
wplot = helperThinnedArrayComparison(geneticArray,fc,c);

The sidelobe level can be computed as

% Compute beam pattern
[azpat,elpat,az,el] = helperExtractSynthesisPattern(geneticArray,fc,c);

% Compute relative sidelobe level
pks_az = findpeaks(azpat,'NPeaks',2,'SortStr','descend');
pks_el = findpeaks(elpat,'NPeaks',2,'SortStr','descend');

% Find the smaller sidelobe level between two cuts
sllopt = min(pks_az(1)-pks_az(2),pks_el(1)-pks_el(2))

sllopt =

 13.2981

As expected, the sidelobe level is about 13dB.

Now apply the genetic algorithm. Notice that the URA has symmetry in both rows and columns, thus
one can take advantage of this symmetry so that each thinning coefficients candidate applies to only a
quarter of the array. This reduces the search space of the algorithm.

17 Featured Examples

17-18

% Set random seed
prvS = rng(2013);

% Initial generation with 200 candidates. Initially, the elements toward
% the center are active and the dummy elements are toward the edge
w0 = double(rand(Nside/2,Nside/2,200)>0.5);
w0(1:14,1:14,:) = 1;

% Pick one candidate, plot the beam pattern, and compute the sidelobe
% level
wtemp = w0(:,:,100);
wo = [fliplr(wtemp) wtemp;rot90(wtemp,2) flipud(wtemp)];
wplot = helperThinnedArrayComparison(geneticArray,fc,c,[wplot wo(:)],...
 {'Full','Initial'});

The figure shows the beam pattern resulted from one typical first generation candidate. The sidelobe
level is lower in azimuth direction but higher in elevation direction compared to the full array. The
exact sidelobe level and the fill rate of the array can be computed as

[azpat,elpat] = helperExtractSynthesisPattern(geneticArray,fc,c,wo(:));

% Compute relative sidelobe level
pks_az = findpeaks(azpat,'NPeaks',2,'SortStr','descend');
pks_el = findpeaks(elpat,'NPeaks',2,'SortStr','descend');
sllopt = min(pks_az(1)-pks_az(2),pks_el(1)-pks_el(2))

fillrate = sum(wo(:))/Nside^2*100

 Array Pattern Synthesis Part I: Nulling, Windowing, and Thinning

17-19

sllopt =

 8.7013

fillrate =

 71.7500

This means that 71.75% of the array elements (1148 of them) are active and the sidelobe level is
about 9 dB. It needs to be suppressed further. The code below applies genetic algorithm with 30
generations.

% Max number of generations
Niter = 30;

% Number of candidates in each generation
numGene = size(w0,3);

w = w0;
pos = getElementPosition(geneticArray)/lambda;
angspan = -90:90;
for m = 1:Niter
 % Compute the beam pattern for the entire generation
 [azpat,elpat] = helperArraySynthesisBeamPattern(pos,angspan,w);

 % Compute the sidelobe level for each candidate
 sll = helperArraySynthesisRelativeSidelobeLevel(azpat,elpat);

 % Sort the resulting sidelobe level
 [~,idx] = sort(sll,2,'descend');

 % Discard half of the generation that gets the lower score
 w = w(:,:,[idx(1:numGene/2) idx(1:numGene/2)]);

 % Mutate rows and columns in the newly generated candidates
 mutIdx_row = randi(Nside/2,1,1);
 mutIdx_col = randi(Nside/2,1,1);
 w(mutIdx_row:end,:,numGene/2+1:numGene) = flipud(...
 w(mutIdx_row:end,:,numGene/2+1:numGene));
 w(mutIdx_col:end,:,numGene/2+1:numGene) = fliplr(...
 w(mutIdx_col:end,:,numGene/2+1:numGene));
end
wopt = w(:,:,1);

rng(prvS);

wo = [fliplr(wopt) wopt;rot90(wopt,2) flipud(wopt)];
wplot = helperThinnedArrayComparison(geneticArray,fc,c,[wplot wo(:)],...
 {'Full','Initial','Synthesized'});

17 Featured Examples

17-20

sllopt = sll(idx(1))

fillrate = sum(wo(:))/Nside^2*100

sllopt =

 17.5380

fillrate =

 76.5000

The figure shows the resulting beam pattern. It can be seen that the sidelobe level has been further
improved to about 17.5 dB with a fill rate of 76.5% (1224 active elements). Compared to the first
generation candidate, it uses 5% more active elements while achieving an additional 9 dB sidelobe
suppression. Compared to the full array, the resulting thinned array can save the cost of
implementing T/R switches behind dummy elements, which in turn leads to a roughly 25% saving on
the consumed power. Also note that even though the thinned array uses less elements, the beamwidth
is close to what could be achieved with a full array.

The final thinned array is shown below with black circles represents the dummy elements.

 Array Pattern Synthesis Part I: Nulling, Windowing, and Thinning

17-21

clf;
geneticArray.Taper = wo;
viewArray(geneticArray,'ShowTaper',true);

It is worth noting that the genetic algorithm does not always land on the same solution in each trial.
However, in general the resulting beam patterns share a similar sidelobe level.

The script above shows a very simple genetic algorithm applied to the array synthesis problem. In
real applications, the genetic algorithm is likely to be more complex. There are also other
optimization algorithms used in array synthesis, such as the simulated annealing algorithm.
Interested readers can find both genetic algorithm and simulated annealing algorithm solvers in the
Global Optimization Toolbox.

Summary

This example shows several approaches to perform array synthesis on a phased array. In practice,
one needs to choose the appropriate synthesis method according to the specific constraint of the
application, such as the size of the array aperture, the shape of the array geometry, etc.

Reference

[1] Randy L. Haupt, Thinned Arrays Using Genetic Algorithms, IEEE Transactions on Antennas and
Propagation, Vol 42, No 7, 1994

[2] Randy L. Haupt, An Introduction to Genetic Algorithms for Electromagnetics, IEEE antennas and
Propagation Magazine, Vol 37, No 2, 1995

17 Featured Examples

17-22

[3] Harry L. Van Trees, Optimum Array Processing, Wiley-Interscience, 2002

 Array Pattern Synthesis Part I: Nulling, Windowing, and Thinning

17-23

Array Pattern Synthesis Part II: Optimization
This example shows how to use optimization techniques to perform pattern synthesis. Using minimum
variance beamforming as an illustration, this example covers how to set up the pattern synthesis as
an optimization problem and then solve it using optimization solvers.

Pattern synthesis can be achieved using a variety of techniques. The “Array Pattern Synthesis Part I:
Nulling, Windowing, and Thinning” on page 17-10 example introduced nulling and windowing
techniques.

This example requires Optimization Toolbox™.

Minimum Variance Beamforming

Compared to a single element, a major benefit of a phased array is the capability of forming beams.
In general, an N-element phased array provides N degrees of freedom when synthesizing a pattern,
meaning that one can adjust N weights, one for each element, to control the shape of the beam to
satisfy some pre-defined constraints.

Many popular beamforming techniques can be expressed as a optimization problem. For example, the
popular minimum variance distortionless response (MVDR) beamformer is used to minimize the total
noise output while preserving the signal from a given direction. Mathematically, the MVDR
beamforming weights can be found by solving the following optimization problem

wo = minw wHR w
s . t . B θ0, w = 1

where R is the covariance matrix, B θ0, w is the beam response towards the direction θ0 with the
weights vector w, and wo is the vector containing the optimal weights. Because the beam pattern can
be written as

B θ , w = wHv θ

where v θ is the steering vector corresponding to the angle θ , the constraints have a linear relation
in the complex domain.

The distortionless constraint at θ0 only takes 1 degree of freedom in the design space. Since an N-
element array can handle N-1 constraints, the MVDR beamformer can be extended to include more
constraints, which results in a linear constraints minimum variance (LCMV) beamformer. The extra
constraints in an LCMV beamformer are often used to null out interferences from given directions.
Therefore, such an LCMV beamformer is a solution to the following optimization problem

wo = minw wHR w
s . t . B θ0, w = 1

B θk, w = 0 k = 1, 2, …, K

where θk represents the kth nulling direction and there are K nulling directions in total. Because all
constraints are linear in the complex domain, the LCMV beamforing weights can be derived
analytically using the Lagrange multiplier method.

Next, a 32-element ULA with half wavelength spacing is used to demonstrate how to perform array
synthesis using the LCMV approach. Note that even though this example uses a linear array, the

17 Featured Examples

17-24

technique applies to any array geometry. Assume that the signal of interest is at 0 degrees azimuth
and the interferences are at -70, -40, and -20 degrees azimuth. The noise power is assumed to be at
40 dB below signal. The closed form solution for LCMV weights can be computed using the
lcmvweights function.

N = 32;
pos = (0:N-1)*0.5; % position of elements
ang_i = [-70 -40 -20]; % interference angles
ang_d = 0; % desired angle

Rn = sensorcov(pos,ang_i,db2pow(-40)); % Noise covariance matrix
sv_c = steervec(pos,[ang_d ang_i]); % Linear constraints
r_c = [1 zeros(size(ang_i))]'; % Desired response
w_lcmv = lcmvweights(sv_c,r_c,Rn); % LCMV weights

ang_plot = -90:0.1:90;
sv_plot = steervec(pos,ang_plot);
plcmv = plot(ang_plot,mag2db(abs(w_lcmv'*sv_plot)),'b');
hold on;
plot([ang_i;ang_i],repmat([-100;0],1,size(ang_i,2)),'k--','LineWidth',1.5);
hold off;
ylim([-100 0]); grid on;
legend(plcmv,'LCMV - analytical');
xlabel('Azimuth Angle (deg)');
ylabel('Beam Pattern (dB)');

The figure shows that the computed weights satisfy all constraints.

 Array Pattern Synthesis Part II: Optimization

17-25

LCMV Beamforming Using Quadratic Programming

Since LCMV beamforming can be described as an optimization problem, it would be useful to see how
the problem can be solved using optimization techniques. When a closed form solution is not
available, for example when constraints include inequalities, such workflow becomes important.

When using optimization techniques to perform pattern synthesis tasks, the first step is to pick a
solver. Since solvers are often developed to address a particular problem formulation, it is of utmost
importance to make the right choice.

The quadratic programming (QP) solver is often used to solve a quadratic objective function with
linear constraints. The formulation is given by

wo = minw
1
2wTH w + f Tw

s . t . A ⋅w ≤ b
Aeq ⋅w = beq
wlb ≤ w ≤ wub

where A and Aeq are matrices specifying the inequality and equality constraints, respectively; b and
beq are vectors specifying the desired bounds for inequality and equality constraints, respectively;
and wlb and w indicate lower and upper bounds for elements in w, respectively.

At first sight, the problem formulation of quadratic programming seems to be a perfect match for
LCM beamforming since we know that the beam pattern can be written as B θ , w = wHv θ .
Unfortunately, this is not true because although the beam pattern is linear in complex domain, it is
not so in real domain. On the other hand, most optimization solvers, including quadratic
programming, work in real domain as the solution space becomes really complicated in complex
domain. In addition, the inequality is not well defined in complex domain either. Thus, the question is
if the LCMV beamforming problem can be formulated into real domain and still obtain the quadratic
programming form.

Start with the objective function wHR w. Note that R is a covariance matrix in this context, thus
wHR w is real. Therefore, the goal is really to minimize the real part of wHR w, which can be written
in the following form:

ℜ wHR w = ℜ w T ℑ w T ℜ R − ℑ R
ℑ R ℜ R

ℜ w
ℑ w

= w‾ T R‾ w‾

where w‾ =
ℜ w
ℑ w

 and R‾ =
ℜ R − ℑ R
ℑ R ℜ R

.

Next, look at the constraints. The fact that the constraints in LCMV beamforming are equalities
makes the conversion a bit easier since one complex linear equality constraint can just be divided into
two corresponding real linear equality constraints, one for the real part and the other for the
imaginary part. For example, the following constraint

wHv = rH

can be rewritten as

17 Featured Examples

17-26

vHw = r
ℜ v ℑ v
ℑ v − ℜ v

ℜ w
ℑ w

=
ℜ v ℑ v
ℑ v − ℜ v

w‾ =
ℜ r
ℑ r

With these relations, quadratic programming can then be used to obtain LCMV beamforming weights.

% Objective function
H = [real(Rn) -imag(Rn);imag(Rn) real(Rn)];
f = [];

% Equality constraints
Aeq = [real(sv_c).' imag(sv_c).';imag(sv_c).' -real(sv_c).'];
beq = [real(r_c);imag(r_c)];

% Compute weights
x_opt = quadprog(H,f,[],[],Aeq,beq);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

w_opt = x_opt(1:numel(x_opt)/2)+x_opt(numel(x_opt)/2+1:end)*1i;

% Plot
hold on;
plcmvq = plot(ang_plot,mag2db(abs(w_opt'*sv_plot)),'r--','LineWidth',2);
hold off;
legend([plcmv plcmvq],{'LCMV - Lagrange','LCMV - QP'})

 Array Pattern Synthesis Part II: Optimization

17-27

The figure shows that the QP technique can obtain the same LCMV beamforming weights.

Minimum Variance Beamforming Using Quadratic Programming

Another common requirement for pattern synthesis is to ensure the response is below a certain
threshold for a set of given angles. These are inequality requirements and the overall optimization
problem becomes

wo = minw wHR w
s . t . B θ0, w = 1

B θk, w = 0 k = 1, 2, …, K
|B w, θl | ≤ rl l = 1, 2, …, L

where θl is the lth angle at which the sidelobe level should be less than the threshold rl. There are L
inequality requirements in total.

As an example, add the following requirements to our sample problem:

1 The sidelobe should be below -40 dB between -30 and -10 degrees in azimuth.
2 Everywhere outside of the mainlobe, the sidelobe should be below -20 dB.

The following code plots the mask of the desired pattern. It also returns the inequality constraints.

[rc,angc,sv_cineq,r_ineq]=generatePatternMask(pos,r_c,[ang_d ang_i]);

17 Featured Examples

17-28

cla;
pdp = plot(angc,rc,'k--','LineWidth',1.5);
ylim([-100 0]);
grid on;
xlabel('Azimuth Angle (deg)');
ylabel('Beam Pattern (dB)');

With the introduction of the new inequality constraint, the problem no longer has a closed-form
solution. In addition, due to the presence of the norm operation, the aforementioned trick to translate
complex constraints to real domain no longer works. Therefore, a new way to translate the complex
inequality is needed in order to use the QP solver for this set of constraints,

Given a constraint of |B θ , w | < r, one possible way to convert this is to assume that both real and
imaginary part contribute equally to the norm. In that case, the single complex inequality constraint
can be divided into two real inequality as

− r
2 ≤ ℜ B θ , w ≤ r

2

− r
2 ≤ ℑ B θ , w ≤ r

2

i.e.,

 Array Pattern Synthesis Part II: Optimization

17-29

ℜ B θ , w ≤ r
2

ℑ B θ , w ≤ r
2

− ℜ B θ , w ≤ r
2

− ℑ B θ , w ≤ r
2

The real and imaginary part of the constraints can be extracted as described in the previous section.
Hence, the following code sets up the constraints and solves the pattern synthesis task.

% Map complex inequality constraints to real constraints
sv_c_real = [real(sv_cineq).' imag(sv_cineq).'];
sv_c_imag = [imag(sv_cineq).' -real(sv_cineq).'];
A_ineq = [sv_c_real;sv_c_imag];
A_ineq = [A_ineq;-A_ineq];
b_ineq = [r_ineq;r_ineq]/sqrt(2);
b_ineq = [b_ineq;b_ineq];

% Compute weights
x_opt = quadprog(H,f,A_ineq,b_ineq,Aeq,beq);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

% Reassemble complex weights from real and imaginary parts
w_opt = x_opt(1:numel(x_opt)/2)+x_opt(numel(x_opt)/2+1:end)*1i;

% Plot
hold on;
pqp=plot(ang_plot,mag2db(abs(w_opt'*sv_plot)),'b','LineWidth',2);
hold off;
legend(pqp,'Pattern - QP')

17 Featured Examples

17-30

The resulting pattern satisfies the requirements.

Minimum Variance Beamforming Using Second Order Cone Programming

Even though the QP solver solves the minimum variance beamforming problem successfully, the
conversion of the inequality constraints from complex to real is not ideal. For example, there is no
reason that real and imaginary parts should always equally contribute to the norm. However, there is
really no easy way to handle a constraint with norm in a QP problem setup.

Luckily, there is another optimization solver that can be used in this case, called Second order cone
programming (SOCP). SOCP is developed to efficiently solve the following optimization problem:

wo = minw f Tw

s . t . Asc ⋅w− bsc ≤ dTw− γ
A ⋅w ≤ b
Aeq ⋅w = beq
wlb ≤ w ≤ wub

where Asc is a matrix, bscand d are vectors, and γ is a scalar. Asc, bsc, d, and γ together define a
second order cone constraint, which is a natural choice to specify a constraint on norms. The solver
can handle multiple second order cone constraints simultaneously.

Comparing to the problem formulation for QP, SOCP can not only handle second order constraints,
but also handle all constraints specified in QP. However, the objective function is quite different.

 Array Pattern Synthesis Part II: Optimization

17-31

Instead of minimizing a variance, SOCP minimize a linear function of the optimization variable, w.
Fortunately, there is a way to convert the minimum variance objective function to fit into this SOCP
framework. The trick is to define an auxiliary variable, t, and ensure that the variance is bounded by
t. This way, the problem becomes to minimize t while the original quadratic objective becomes a cone
constraint bounded by t.

Following this thought, amend t to the bottom of w‾ . Now the optimization search space is defined by

w∼ =
w‾
t

. Since the goal is to minimize t, f is defined as f T = 0, …, 0 1 .

f = [zeros(2*N,1);1];

Next, explore how to convert the quadratic constraint to a second order cone constraint. Since the
idea is to constraint the variance as

w‾ T R‾ w‾ ≤ t

it is equivalent to say

R‾ 0 . 5 w‾
2
≤ t + 1

4

Thus,

R‾ 0 . 5 0
0 1

w‾
t

2
≈ R‾ 0 . 5 w‾

2
+ t2 ≤ t2 + t + 1

4 = t + 1
2

2

and the second cone constraint becomes

R‾ 0 . 5 0
0 1

w∼ ≤ t + 1
2

% The cone constraints are defined as ||A_c*u-b_c||<=d_c^T*u-gamma_c
Ac = [sqrtm(H) zeros(2*N,1);zeros(1,2*N) 1];
bc = zeros(2*N+1,1);
dc = [zeros(2*N,1);1];
gammac = -1/2;

M = numel(r_ineq);
socConstraints(M+1) = secondordercone(Ac,bc,dc,gammac);

The remaining second cone constraints are from the original inequality constraints and are fairly
straightforward to be converted. Each inequality constraint in the form of

B θ , w ≤ r

can be writtedn as a second order cone constraint as

ℜ B θ , w 0
ℑ B θ , w 0

0 0
w∼ ≤ r

for m = 1:M
 Ac = [A_ineq([m m+M],:) zeros(2,1);zeros(1,2*N) 0];

17 Featured Examples

17-32

 bc = zeros(3,1);
 dc = zeros(2*N+1,1);
 gammac = -r_ineq(m);
 socConstraints(m) = secondordercone(Ac,bc,dc,gammac);
end

The equality constraints also need to be augmented to accommodate the auxiliary variable, t.

% patch Aeq and beq
Aeqc = [Aeq zeros(size(Aeq,1),1);zeros(1,2*N) 0];
beqc = [beq;0];

The array weights can now be computed using the SOCP solver. Since the inequality constraints are
more natural to be represented in cone constraints, naively one would expect that in this example,
the resulting pattern from SOCP would be better compared to the pattern from QP.

[u_op,feval,exitflag] = coneprog(f,socConstraints,[],[],Aeqc,beqc);

Optimal solution found.

% Reassemble complex weights from real and imaginary parts
% The last entry in the optimized vector corresponds to the variable t
w_op = u_op(1:N)+u_op(N+1:2*N)*1i;
hold on;
pqp.LineStyle = '-.';
psocp = plot(ang_plot,mag2db(abs(w_op'*sv_plot)),'r-','LineWidth',2);
hold off;
legend([pqp psocp],{'Pattern - QP','Pattern - SOCP'})

 Array Pattern Synthesis Part II: Optimization

17-33

Indeed, the plot shows that the pattern obtained via SOCP has better sidelobe suppression compared
to the pattern obtained using QP.

Summary

This example shows how to use optimization techniques to perform pattern synthesis. The example
started with the familiar LCMV problem and extended the desired pattern to include inequality
constraints. Compared to the closed-form solution, optimization techniques are more flexible and can
be applied to address more complex constraints. The example also showed how to address inequality
constraints using either quadratic programming or second order cone programming.

Reference

[1] Herve Lebret and Stephen Boyd, Antenna Array Pattern Synthesis via Convex Optimization, IEEE
Trans. on Signal Processing, Vol. 45, No. 3, March 1997

function [rcplot,angc,svcineq,rineq]=generatePatternMask(pos,rcexist,angexist)
% generatePatternMask Generate mask for pattern synthesis

ang_c1 = [-30:-21 -19:-10];
ang_c2 = [-90:-71 -69:-41 -39:-31 -9:-5 5:90];
% Note the main beam is between -10 and 10 degrees
sv_c1 = steervec(pos,ang_c1);
sv_c2 = steervec(pos,ang_c2);

r1 = db2mag(-40)*ones(size(sv_c1,2),1);
r2 = db2mag(-20)*ones(size(sv_c2,2),1);

[angc,cidx] = sort([ang_c1 ang_c2 angexist]);
rc = [r1;r2;rcexist];
rcplot = mag2db(rc(cidx));
rcplot(rcplot<-100) = -100;

% Inequality constraints
sv_c1 = steervec(pos,ang_c1);
sv_c2 = steervec(pos,ang_c2);
svcineq = [sv_c1 sv_c2];
rineq = [r1;r2];

end

17 Featured Examples

17-34

Modeling and Analyzing Polarization
This example introduces the basic concept of polarization. It shows how to analyze the polarized field
and model the signal transmission between polarized antennas and targets using Phased Array
System Toolbox™.

Polarization of an Electromagnetic Field

The electromagnetic field generated by an antenna is orthogonal to the propagation direction in the
far field. The field can be pointing to any direction in this plane, and therefore can be decomposed
into two orthogonal components. Theoretically, there are an infinite number of ways to define these
two components, but most often, one uses either (H,V) set or (L,R) set. (H,V) stands for horizontal and
vertical, which can be easily pictured as x and y component; while (L,R) stands for left and right
circular. It may be difficult to imagine that a vector in space can have a circular component in it, the
secret lies in the fact that each component can be a complex number, which greatly increases the
complexity of the trace of such a vector.

Let's look at several simple examples. The time varying field can be written as

where

are the two components in phasor representation. and are the unit vector of h and v axes,
respectively.

The simplest case is probably a linear polarization, which happens when the two components are
always in phase. Assume

,

the field can be represented by a vector of [1;1]. The polarization for such a field looks like

fv = [1;1];
helperPolarizationView(fv)

 Modeling and Analyzing Polarization

17-35

From the figure, it is clear that the combined polarization is along the 45 degrees diagonal.

The plot in the upper right portion of the figure is often referred to as the polarization ellipse. It is the
projection of the combined field trace on the H-V plane. The polarization ellipse is often characterized
by two angles, the tilt angle (also known as orientation angle) and the ellipticity angle . In this
case, the tilt angle is 45 degrees and the ellipticity angle is 0. The dot on the ellipse shows how the
combined field moves along the trace on the H-V plane while time passes.

A polarized field can also be represented by Stokes vector, which is a length-4 vector. The
corresponding Stokes vector of the linear polarization, [1;1], is given by

s = stokes(fv)

s =

 2
 0
 2
 0

Note that all 4 entries in the vector are real numbers. In fact, all these entries are measurable. In
addition, it can be shown that the four quantities always satisfy the following equation

.

17 Featured Examples

17-36

Therefore, each set of Stokes can be considered as a point on a sphere. Such a sphere is referred to
as a Poincare sphere. The Poincare sphere for the above field is shown in the bottom right portion of
the figure.

Next is a circular polarized field, where

fv = [1;1i];
helperPolarizationView(fv)

The figure shows that the trace of the combined field is a circle. Both the polarization ellipse and the
Poincare sphere shows that the field is left circularly polarized.

In general, the trace of a field is an ellipse, as shown below

fv = [2+1i;1-1i];
helperPolarizationView(fv)

 Modeling and Analyzing Polarization

17-37

Polarization of an Antenna

The polarization of an antenna is defined as the polarization of the field transmitted by the antenna
regardless whether it's in the transmitting or receiving mode. However, as mentioned earlier, the
polarization is defined in the plane that is orthogonal to the propagation direction. Therefore, it is
defined in the local coordinate system of each propagation direction, as shown in the following
diagram.

17 Featured Examples

17-38

Some antennas have a structure that determines its polarization, such as a dipole. The dipole antenna
has a polarization that is parallel to its orientation. Assuming the frequency is 300 MHz, for a vertical
short dipole, the polarization response at boresight, i.e., 0 degrees azimuth and 0 degrees elevation,
is given by

antenna = phased.ShortDipoleAntennaElement('AxisDirection','Z');

fc = 3e8;
resp = antenna(fc,[0;0])

resp =

 struct with fields:

 H: 0
 V: -1.2247

Note that the horizontal component is 0. If we change the orientation of the dipole antenna to
horizontal, the vertical component becomes 0.

antenna = phased.ShortDipoleAntennaElement('AxisDirection','Y');
resp = antenna(fc,[0;0])

resp =

 struct with fields:

 H: -1.2247
 V: 0

Polarization Loss

When two antennas form a transmit/receive pair, their polarizations could affect the received signal
power. Therefore, to collect a signal with maximum power possible, the receive antenna's polarization
has to match the transmit antenna's polarization. The polarization matching factor can be measured
as

where and represent the normalized polarization states of the transmit and receive antenna,
respectively.

Assume both transmit and receive antennas are short dipoles. The transmit antenna sits at the origin
and the receive antenna at location (100,0,0). First, consider the case where both antennas are along
Y axis and face each other. This is the scenario where the two antennas are matched in polarization.

pos_r = [100;0;0];
lclaxes_t = azelaxes(0,0); % transmitter coordinate system
lclaxes_r = azelaxes(180,0); % receiver faces transmitter
ang_t = [0;0]; % receiver at transmitter's boresight
ang_r = [0;0]; % transmitter at receiver's boresight

txAntenna = phased.ShortDipoleAntennaElement('AxisDirection','Z');

 Modeling and Analyzing Polarization

17-39

resp_t = txAntenna(fc,ang_t);
rxAntenna = phased.ShortDipoleAntennaElement('AxisDirection','Z');
resp_r = rxAntenna(fc,ang_r);

ploss = polloss([resp_t.H;resp_t.V],[resp_r.H;resp_r.V],pos_r,lclaxes_r)

ploss =

 0

The loss is 0dB, indicating that there is no loss due to polarization mismatch. The section below
shows the effect with a simulated signal.

% Signal simulation
[x,t] = helperPolarizationSignal;

% Create radiator and collector
radiator = phased.Radiator('Sensor',txAntenna,'Polarization','Combined',...
 'OperatingFrequency',fc,'PropagationSpeed',3e8);
collector = ...
 phased.Collector('Sensor',rxAntenna,'Polarization','Combined',...
 'OperatingFrequency',fc,'PropagationSpeed',3e8);

% Signal transmission and reception
xt = radiator(x,ang_t,lclaxes_t);
y = collector(xt,ang_r,lclaxes_r);

helperPolarizationSignalPlot(t,x,y,'vertically')

17 Featured Examples

17-40

The figure shows that the signal is received with no loss. Each short dipole antenna provides a gain of
1.76 dB, so the received signal is 1.5 times stronger than the transmitted signal.

If instead a horizontally polarized antenna is used to receive the signal, the two antennas are now
orthogonal in polarization and as a result, no power will be delivered to the received antenna. The
polarization loss can be found by

rxAntenna = phased.ShortDipoleAntennaElement('AxisDirection','Y');
resp_r = rxAntenna(fc,ang_r);

ploss = polloss([resp_t.H;resp_t.V],[resp_r.H;resp_r.V],pos_r,lclaxes_r)

ploss =

 Inf

This process can be better understood using the following diagram.

 Modeling and Analyzing Polarization

17-41

As the diagram shows, the polarization of an antenna can be seen as a filter blocking out any
polarized wave that is orthogonal to the antenna's own polarization state.

As expected, the signal simulation shows that the received signal is 0.

collector = ...
 phased.Collector('Sensor',rxAntenna,'Polarization','Combined',...
 'OperatingFrequency',fc,'PropagationSpeed',3e8);

% Signal transmission and reception
xt = radiator(x,ang_t,lclaxes_t);
y = collector(xt,ang_r,lclaxes_r);

helperPolarizationSignalPlot(t,x,y,'horizontally')

17 Featured Examples

17-42

One can rotate the receive antenna to get a partial match in polarization. For instance, assume the
receiving antenna in the previous example is rotated 45 degrees around x axis, then the received
signal is no longer 0, although not as strong as when the polarizations are matched.

% Rotate axes
lclaxes_r = rotx(45)*azelaxes(180,0);

% Signal transmission and reception
xt = radiator(x,ang_t,lclaxes_t);
y = collector(xt,ang_r,lclaxes_r);

helperPolarizationSignalPlot(t,x,y,'45 degree')

The corresponding polarization loss is

ploss = polloss([resp_t.H;resp_t.V],[resp_r.H;resp_r.V],pos_r,lclaxes_r)

% measured in dB.

ploss =

 3.0103

 Modeling and Analyzing Polarization

17-43

Target Polarization Signature

When an electromagnetic wave hits the target, the wave will be scattered off the target and some
energy will be transferred between two orthogonal polarization components. Therefore, the target
scattering mechanism is often modeled by a 2x2 radar cross section (RCS) matrix (also known as
scattering matrix), whose diagonal terms specify how the target scatters the energy into the original
H and V polarization component and off diagonal terms specify how the target scatters the energy
into the opposite polarization component.

Because the transmit and receive antennas can have any combination of polarizations, it is often of
interest to look at the polarization signature for a target for different polarization configurations. The
signature plots the received power under different polarizations as a function of the tilt angle and the
ellipticity angle of the transmit polarization ellipse. This can also be seen as a measure of the
effective RCS. Two most widely used polarization signatures (also known as polarization responses),
are co-polarization (co-pol) response and cross polarization (cross-pol) response. Co-pol response
uses the same polarization for both transmit and receive while the cross-pol response uses the
orthogonal polarization to receive.

The simplest target is a sphere, whose RCS matrix is given by [1 0;0 1], meaning that the reflected
polarization is the same as the incident polarization. The polarization signature for a sphere is given
by

s = eye(2);
subplot(211); polsignature(s,'c');
subplot(212); polsignature(s,'x');

17 Featured Examples

17-44

From the plot, it can be seen that for such a target, a linear polarization, where the ellipticity angle is
0, generates the maximum return in a co-pol setting while a circular polarization, where the ellipticity
angle is either 45 or -45 degrees, generates the maximum return in a cross-pol configuration.

A more complicated target is a dihedral, which is essentially a corner that reflects the wave twice, as
shown in left side of the following sketch:

The right side of the above figure shows how the polarization field changes along the two reflections.
After the two reflections, the horizontal polarization component remains the same while the vertical
polarization component is reversed. Hence, its cross section matrix and polarization signature are
give by

s = [1 0;0 -1];
subplot(211); polsignature(s,'c')
subplot(212); polsignature(s,'x')

 Modeling and Analyzing Polarization

17-45

The signature shows that the circular polarization works best in a co-pol setting while 45-degree
linear polarization works best in a cross-pol situation.

Simulation of Polarized Signal Propagation Using Antenna and Target

Putting everything together, the polarized signal is first transmitted by an antenna, then bounces off a
target, and finally gets received at the receive antenna. Next is a simulation for this signal flow.

The simulation assumes a vertical dipole as the transmit antenna, a horizontal dipole as the receive
antenna, and a target whose RCS matrix is [0 1;1 0], which flips the signal's polarization. For the
illustration purpose, the propagation in free space is ignored because it does not affect the
polarization. It is also assumed that the transmit antenna, the target, and the receive antenna are on
a line along the transmit antenna's boresight. The local coordinate system is the same for the
transmit antenna and the target. The receive antenna is facing the transmit antenna.

% Define transmit and antenna
txAntenna = phased.ShortDipoleAntennaElement('AxisDirection','Z');
rxAntenna = phased.ShortDipoleAntennaElement('AxisDirection','Y');
radiator = phased.Radiator('Sensor',txAntenna,'Polarization','Combined');
collector = phased.Collector('Sensor',rxAntenna,'Polarization','Combined');

% Simulate signal
[x,t] = helperPolarizationSignal;

% Incident and arriving angles
ang_tx = [0;0];
ang_tgt_in = [180;0];

17 Featured Examples

17-46

ang_tgt_out = [0;0];
ang_rx = [0;0];

% Local coordinate system
lclaxes_tx = azelaxes(0,0);
lclaxes_tgt = lclaxes_tx;
lclaxes_rx = azelaxes(180,0);

% Define target
target = phased.RadarTarget('EnablePolarization',true,...
 'Mode','Bistatic','ScatteringMatrix',[0 1;1 0]);

% Simulate received signal
xt = radiator(x,ang_tx,lclaxes_tx); % radiate
xr = target(xt,ang_tgt_in,ang_tgt_out,lclaxes_tgt); % reflect
y = collector(xr,ang_rx,lclaxes_rx); % collect

helperPolarizationSignalPlot(t,x,y,'horizontally');

Note that because the target flips the polarization components, the horizontally polarized antenna is
able to receive the signal sent with a vertically polarized antenna.

Summary

This example reviews the basic concepts of polarization and introduces how to analyze and model
polarized antennas and targets using Phased Array System Toolbox.

 Modeling and Analyzing Polarization

17-47

Modeling Mutual Coupling in Large Arrays Using Embedded
Element Pattern

The pattern multiplication principle states that the radiation pattern of an array can be considered as
the multiplication of the element pattern and the array factor. However, when an antenna gets
deployed into an array, its radiation pattern is modified by its neighboring elements. This effect is
often referred to as mutual coupling. Thus, to improve the fidelity of the analysis, one should use the
element pattern with mutual coupling effect in the pattern multiplication instead of the isolated
element (an element located in space by itself) pattern.

Unfortunately it is often very difficult to model the exact mutual coupling effect among elements. This
example shows one possible approach to model the mutual coupling effects via an embedded pattern,
which refers to the pattern of a single element embedded in a finite array. The element of choice is in
general at the center of the array. The embedded pattern is calculated or measured by transmitting
through the element itself while terminating all other elements in the array with a reference
impedance [1]-[3]. This approach works well when the array is large so the edge effects may be
ignored.

The example models two arrays: first using the pattern of the isolated element, second with the
embedded element pattern and compare the results of the two with the full-wave Method of Moments
(MoM) based solution of the array. The array performance for scanning at broadside, and for
scanning off broadside is established. Finally, the array spacing is adjusted to investigate the
occurrence of scan blindness and compare against reference results [3].

This example requires Antenna Toolbox™.

Model an Array of Dipoles Using Isolated Element Pattern

First, we design an array with isolated element. For this example we choose the center of the X-band
as our design frequency.

freq = 10e9;
vp = physconst('lightspeed');
lambda = vp/freq;

In [4], it was discussed that the central element of a 5 X 5 array, where is the wavelength, starts
to behave like it is in an infinite array. Such an aperture would correspond to a 10 X 10 array of half-
wavelength spaced radiators. We choose to slightly exceed this limit and consider a 11 X 11 array of
dipoles.

Nrow = 11;
Ncol = 11;
drow = 0.5*lambda;
dcol = 0.5*lambda;

The dipole of choice has a length slightly lower than and a radius of approximately .

mydipole = dipole;
mydipole.Length = 0.47*lambda;
mydipole.Width = cylinder2strip(0.191e-3);
figure('Color','w');
show(mydipole);

17 Featured Examples

17-48

Now create an 11 X 11 URA and assign the isolated dipole as its element. Adjust the element spacing
to be half-wavelength at 10 GHz. The dipole tilt is set to zero so its orientation matches the array
geometry in the Y-Z plane.

isolatedURA = phased.URA;
isolatedURA.Element = mydipole;
isolatedURA.Size = [Nrow Ncol];
isolatedURA.ElementSpacing = [drow dcol];
viewArray(isolatedURA);
myFigure = gcf;
myFigure.Color = 'w';

 Modeling Mutual Coupling in Large Arrays Using Embedded Element Pattern

17-49

Model Array of Dipoles Using Embedded Element Pattern

To compute the embedded pattern of the center dipole element, we first create a full-wave model of
the previous array. Since the default orientation of the dipole element in the library is along z-axis, we
tilt it so that the array is formed in the X-Y plane.

fullWaveArray = rectangularArray(...
 'Size',[Nrow Ncol],...
 'RowSpacing',drow,...
 'ColumnSpacing',dcol);
fullWaveArray.Element = mydipole;
fullWaveArray.Element.Tilt = 90;
fullWaveArray.Element.TiltAxis = [0 1 0];
show(fullWaveArray)
title('Rectangular 11 X 11 Array of Dipole Antennas')

17 Featured Examples

17-50

To calculate the embedded element pattern, use the pattern function and pass in additional input
parameters of the element number (index of the center element) and termination resistance. The scan
resistance and scan reactance for an infinite array of resonant dipoles spaced apart is provided in
[3] and we choose the resistance at broadside as the termination for all elements.

Zinf = 76 + 1i*31;
ElemCenter = (prod(fullWaveArray.Size)-1)/2 + 1;
az = -180:2:180;
el = -90:2:90;
EmbElFieldPatCenter = pattern(fullWaveArray,freq,az,el,...
 'ElementNumber',ElemCenter,'Termination',real(Zinf),'Type','efield');

Import this embedded element pattern into a custom antenna element and create the same
rectangular array using that element. Since the array will be in the Y-Z plane, rotate the pattern to
match the scan planes.

embpattern = helperRotatePattern(az,el,EmbElFieldPatCenter,[0 1 0],90);
embpattern = mag2db(embpattern);
fmin = freq - 0.1*freq;
fmax = freq + 0.1*freq;
freqVector = [fmin fmax];
embantenna = phased.CustomAntennaElement('FrequencyVector',freqVector,...
 'AzimuthAngles',az,'ElevationAngles',el,...
 'MagnitudePattern',embpattern,'PhasePattern',zeros(size(embpattern)));

embeddedURA = phased.URA;
embeddedURA.Element = embantenna;

 Modeling Mutual Coupling in Large Arrays Using Embedded Element Pattern

17-51

embeddedURA.Size = [Nrow Ncol];
embeddedURA.ElementSpacing = [drow dcol];

Compare Array Pattern in Elevation and Azimuth Plane

Next, calculate and compare the patterns in different planes for the three arrays: the one using the
isolated element pattern, the one using the embedded element pattern, and the full-wave model (used
as the ground truth).

First, the pattern in the elevation plane (specified by azimuth = 0 deg and also called the E-plane)

Eplane_embedded = pattern(embeddedURA,freq,0,el);
Eplane_isolated = pattern(isolatedURA,freq,0,el);
[Eplane_fullwave,~,el3e] = pattern(fullWaveArray,freq,0,0:1:180);
el3e = el3e'-90;

helperATXPatternCompare([el(:) el(:) el3e(1:2:end)],...
 [Eplane_isolated Eplane_embedded Eplane_fullwave(1:2:end)],...
 'Elevation Angle (deg.)','Directivity (dBi)',...
 'E-plane Array Directivity Comparison',...
 {'With Isolated Pattern','With Embedded Pattern',...
 'Full Wave Solution'},[-60 30]);

Now, the pattern in the azimuth plane (specified by elevation = 0 deg and called the H-plane).

Hplane_embedded = pattern(embeddedURA,freq,az/2,0);
Hplane_isolated = pattern(isolatedURA,freq,az/2,0);
Hplane_fullwave = pattern(fullWaveArray,freq,90,0:1:180);

17 Featured Examples

17-52

helperATXPatternCompare([az(:)/2 az(:)/2 el3e],...
 [Hplane_isolated Hplane_embedded Hplane_fullwave],...
 'Azimuth Angle (deg.)','Directivity (dBi)',...
 'H-plane Array Directivity Comparison',...
 {'With Isolated Pattern','With Embedded Pattern',...
 'Full Wave Solution'},[-60 30]);

The array directivity is approximately 23 dBi. This result is close to the theoretical calculation for the
peak directivity [5] after taking into account the absence of a reflector, D = 4 / ,

.

The pattern comparison suggests that the main beam and the first sidelobes are aligned for all three
cases. Moving away from the main beam shows the increasing effect of coupling on the sidelobe level.
As expected, the embedded element pattern approach suggests a coupling level in between the full-
wave simulation model and the isolated element pattern approach.

Increase Array Size

The behavior of the array pattern is intimately linked to the embedded element pattern. To
understand how our choice of an 11 X 11 array impacts the center element behavior, we increase the
array size to a 25 X 25 array (12.5 X 12.5 aperture size). Note that the triangular mesh size for
the full wave Method of Moments (MoM) analysis with 625 elements increases to 25000 triangles (40
triangles per dipole) and the computation for the embedded element pattern takes approximately 12
minutes on a 2.4 GHz machine with 32 GB memory. This time can be reduced by lowering the mesh
size per element by meshing manually using a maximum edge length of .

 Modeling Mutual Coupling in Large Arrays Using Embedded Element Pattern

17-53

Below is the pattern plot for the E-plane,

load atexdipolearray
embpattern = helperRotatePattern(...
 DipoleArrayPatData.AzAngles,DipoleArrayPatData.ElAngles,...
 DipoleArrayPatData.ElemPat(:,:,3),[0 1 0],90);
embpattern = mag2db(embpattern);

embantenna2 = clone(embantenna);
embantenna2.AzimuthAngles = DipoleArrayPatData.AzAngles;
embantenna2.ElevationAngles = DipoleArrayPatData.ElAngles;
embantenna2.MagnitudePattern = embpattern;
embantenna2.PhasePattern = zeros(size(embpattern));

Eplane_embedded = pattern(embantenna2,freq,0,el);
Eplane_embedded = Eplane_embedded - max(Eplane_embedded); % normalize
Eplane_isolated = pattern(mydipole,freq,0,el);
Eplane_isolated = Eplane_isolated - max(Eplane_isolated); % normalize
embpatE = pattern(embantenna,freq,0,el);
embpatE = embpatE-max(embpatE); % normalize

helperATXPatternCompare([el(:) el(:) el(:)],...
 [Eplane_isolated embpatE Eplane_embedded],...
 'Elevation Angle (deg.)','Directivity (dBi)',...
 'Normalized E-plane Element Directivity Comparison',...
 {'Isolated Pattern','Embedded Pattern - 11 X 11',...
 'Embedded Pattern - 25 X 25'},[-50 5]);

17 Featured Examples

17-54

and the H-plane.

Hplane_embedded = pattern(embantenna2,freq,0,az/2);
Hplane_embedded = Hplane_embedded - max(Hplane_embedded); % normalize
Hplane_isolated = pattern(mydipole,freq,0,az/2);
Hplane_isolated = Hplane_isolated - max(Hplane_isolated); % normalize
embpatH = pattern(embantenna,freq,az/2,0);
embpatH = embpatH-max(embpatH); % normalize

helperATXPatternCompare([az(:)/2 az(:)/2 az(:)/2],...
 [Hplane_isolated embpatH Hplane_embedded],...
 'Azimuth Angle (deg.)','Directivity (dBi)',...
 'Normalized H-plane Element Directivity Comparison',...
 {'Isolated Pattern','Embedded Pattern - 11 X 11',...
 'Embedded Pattern - 25 X 25'},[-50 5]);

The plot above reveals that the difference between embedded element patterns of the 11 X 11 and
the 25 X 25 array, respectively, is less than 0.5 dB, in the E-plane. However, the H-plane shows more
variation for the 11 X 11 array as compared with the 25 X 25 array.

Scan Behavior and Embedded Element Pattern

This section scans the array based on the embedded element pattern in the elevation plane defined
by azimuth = 0 deg and plot the normalized directivity. In addition, the normalized embedded
element pattern is also plotted. Note the overall shape of the normalized array pattern approximately
follows the normalized embedded element pattern, just as predicted by the pattern multiplication
principle.

 Modeling Mutual Coupling in Large Arrays Using Embedded Element Pattern

17-55

eplane_indx = find(az==0);
scan_el1 = -30:10:30;
scan_az1 = zeros(1,numel(scan_el1));
scanEplane = [scan_az1;scan_el1];

% compute array scanning weights
steeringvec = phased.SteeringVector('SensorArray',embeddedURA,...
 'IncludeElementResponse',true);
weights = steeringvec(freq,scanEplane);

% array scanning
legend_string1 = cell(1,numel(scan_el1));
scanEPat = nan(numel(el),numel(scan_el1));
for i = 1:numel(scan_el1)
 scanEPat(:,i) = pattern(embeddedURA,freq,scan_az1(i),el,...
 'Weights',weights(:,i));
 legend_string1{i} = strcat('scan = ',num2str(scan_el1(i)));
end
scanEPat = scanEPat - max(max(scanEPat)); % normalize

helperATXPatternCompare(el(:),scanEPat,...
 'Elevation Angle (deg.)','Directivity (dBi)',...
 'E-plane Scan Comparison',legend_string1(1:end-1),[-50 5]);
hold on;
plot(el(:),embpatE,'-.','LineWidth',1.5);
legend([legend_string1,{'Embedded element'}],'location','best')
hold off;

17 Featured Examples

17-56

Scan Blindness

In large arrays, the array directivity can reduce drastically at certain scan angles under certain
situations. At these scan angles, referred to as the blind angles, the array does not radiate the power
supplied at its input terminals [3]. Two common mechanisms under which blindness conditions occur
are

• Surface Wave Excitation
• Grating Lobe Excitation

It is possible to detect scan blindness in large finite arrays by studying the embedded element pattern
(also known as array element pattern in the infinite array analysis). The array being investigated in
this example does not have a dielectric substrate/ground plane, and therefore the surface waves are
eliminated. However we can investigate the second mechanism, i.e. the grating lobe excitation. To do
so, let us increase the spacing across rows and columns of the array to be 0.7 . Since this spacing is
greater than the half-wavelength limit we should expect grating lobes in the visible space beyond a
specific scan angle. As pointed out in [3], to accurately predict the depth of grating lobe blind angles
in the finite array of dipoles, we need to have an array of the size 41 X 41 or higher. We will compare
3 cases, namely the 11 X 11, 25 X 25 and the 41 X 41 size arrays and check if the existence of blind
angles can at least be observed in the 11 X 11 array. As mentioned earlier, the results were
precomputed in Antenna Toolbox and saved in a MAT file. To reduce the computational time, the
elements were meshed with maximum edge length of .

load atexdipolearrayblindness.mat

The normalized E-plane embedded element pattern for arrays of three sizes

 Modeling Mutual Coupling in Large Arrays Using Embedded Element Pattern

17-57

The normalized H-plane embedded element pattern for arrays of three sizes. Notice the
blind angle around -62 and -64 deg.

Conclusion

The embedded element pattern approach is one possible way to perform the analysis of large finite
arrays. They need to be large enough so that the edge effects can be ignored. The approach replaces
the isolated element pattern with the embedded element pattern since the latter includes the effect of
mutual coupling.

Reference

[1] R. J. Mailloux, 'Phased Array Antenna Handbook', Artech House,2nd edition, 2005

[2] W. Stutzman, G. Thiele, 'Antenna Theory and Design', John Wiley & Sons Inc., 3rd Edition, 2013.

[3] R. C. Hansen, Phased Array Antennas, Chapter 7 and 8, John Wiley & Sons Inc.,2nd Edition, 1998.

[4] H. Holter, H. Steyskal, "On the size requirement for finite phased-array models," IEEE
Transactions on Antennas and Propagation, vol.50, no.6, pp.836-840, Jun 2002.

[5] P. W. Hannan, "The Element-Gain Paradox for a Phased-Array Antenna," IEEE Transactions on
Antennas Propagation, vol. 12, no. 4, July 1964, pp. 423-433.

17 Featured Examples

17-58

Modeling Mutual Coupling in Large Arrays Using Infinite Array
Analysis

This example uses infinite array analysis to model large finite arrays. The infinite array analysis on
the unit cell reveals the scan impedance behavior at a particular frequency. This information is used
with the knowledge of the isolated element pattern and impedance to calculate the scan element
pattern. The large finite array is then modeled using the assumption that every element in the array
possesses the same scan element pattern.

This example requires Antenna Toolbox™.

Define Individual Element

For this example we choose the center of the X-band as our design frequency.

freq = 10e9;
vp = physconst('lightspeed');
lambda = vp/freq;
ucdx = 0.5*lambda;
ucdy = 0.5*lambda;

Create a thin dipole of length slightly less than and assign it as the exciter to a infinitely large
reflector.

d = dipole;
d.Length = 0.495*lambda;
d.Width = lambda/160;
d.Tilt = 90;
d.TiltAxis = [0 1 0];

r = reflector;
r.Exciter = d;
r.Spacing = lambda/4;
r.GroundPlaneLength = inf;
r.GroundPlaneWidth = inf;
figure;
show(r);

 Modeling Mutual Coupling in Large Arrays Using Infinite Array Analysis

17-59

Calculate the isolated element pattern and the impedance of the above antenna. These results will be
used to calculate the Scan Element Pattern(SEP). This term is also known as Array Element
Pattern(AEP) or Embedded Element Pattern(EEP).

%Define az and el vectors
az = 0:2:360;
el = 90:-2:-90;

% Calculate power pattern
giso = pattern(r,freq,az,el,'Type','power');

% Calculated impedance
Ziso = impedance(r,freq);

Calculate Infinite Array Scan Element Pattern

Unit Cell In the infinite array analysis the term unit cell refers to a single element in an infinite array.
The unit cell element needs a ground plane. Antennas that don't have a ground plane need to be
backed by a reflector. A representative example for each case would be dipole backed by a reflector
and a microstrip patch antenna. This example will use the dipole backed by a reflector and analyze
the impedance behavior at 10 GHz as a function of scan angle. The unit cell will have a x
cross-section.

r.GroundPlaneLength = ucdx;
r.GroundPlaneWidth = ucdy;
infArray = infiniteArray;
infArray.Element = r;

17 Featured Examples

17-60

infArray.ScanAzimuth = 30;
infArray.ScanElevation = 45;
figure;
show(infArray);

Scan impedance The scan impedance at a single frequency and single scan angle is shown below.

scanZ = impedance(infArray,freq)

scanZ =

 1.1077e+02 + 3.0037e+01i

For this example the scan impedance for the full volume of scan is calculated using 50 terms in the
double summation for the periodic Greens function to improve convergence behavior.

Scan Element Pattern /Array Element Pattern /Embedded Element Pattern The scan element
pattern (SEP) is calculated from the infinite array scan impedance, the isolated element pattern and
the isolated element impedance. The expression used is shown here[1],[2]:

load atexInfArrayScanZData
scanZ = scanZ.';

 Modeling Mutual Coupling in Large Arrays Using Infinite Array Analysis

17-61

Rg = 185;
Xg = 0;
Zg = Rg + 1i*Xg;
gs = nan(numel(el),numel(az));
for i = 1:numel(el)
 for j = 1:numel(az)
 gs(i,j) = 4*Rg*real(Ziso).*giso(i,j)./(abs(scanZ(i,j) + Zg)).^2;
 end
end

Build Custom Antenna Element

The scan element pattern which represents a power pattern is used to build a custom antenna
element.

fieldpattern = sqrt(gs);
bandwidth = 500e6;
customAntennaInf = helperATXBuildCustomAntenna(...
 fieldpattern,freq,bandwidth,az,el);
figure;
pattern(customAntennaInf,freq);

Build 21 X 21 URA

Create a uniform rectangular array (URA), with the custom antenna element, which has the scan
element pattern.

17 Featured Examples

17-62

N = 441;
Nrow = sqrt(N);
Ncol = sqrt(N);
drow = ucdx;
dcol = ucdy;
myURA1 = phased.URA;
myURA1.Element = customAntennaInf;
myURA1.Size = [Nrow Ncol];
myURA1.ElementSpacing = [drow dcol];

Plot Slices in E and H Planes

Calculate the pattern in the elevation plane (specified by azimuth = 0 deg and also called the E-plane)
and azimuth plane (specified by elevation = 0 deg and called the H-plane) for the array built using
infinite array analysis.

azang_plot = -90:0.5:90;
elang_plot = -90:0.5:90;
% E-plane
Darray1_E = pattern(myURA1,freq,0,elang_plot);
Darray1_Enormlz = Darray1_E - max(Darray1_E);
% H-plane
Darray1_H = pattern(myURA1,freq,azang_plot,0);
Darray1_Hnormlz = Darray1_H - max(Darray1_H);
% Scan element pattern in both planes
DSEP1_E = pattern(customAntennaInf,freq,0,elang_plot);
DSEP1_Enormlz = DSEP1_E - max(DSEP1_E);
DSEP1_H = pattern(customAntennaInf,freq,azang_plot,0);
DSEP1_Hnormlz = DSEP1_H - max(DSEP1_H);

figure
subplot(211)
plot(elang_plot,Darray1_Enormlz,elang_plot,DSEP1_Enormlz,'LineWidth',2)
grid on
axis([min(azang_plot) max(azang_plot) -40 0]);
legend('Array Pattern, az = 0 deg','Element Pattern')
xlabel('Elevation (deg)')
ylabel('Directivity (dB)')
title('Normalized Directivity')
subplot(212)
plot(azang_plot,Darray1_Hnormlz,azang_plot,DSEP1_Hnormlz,'LineWidth',2)
grid on
axis([min(azang_plot) max(azang_plot) -40 0]);
legend('Array Pattern, el = 0 deg','Element Pattern')
xlabel('Azimuth (deg)')
ylabel('Directivity (dB)')

 Modeling Mutual Coupling in Large Arrays Using Infinite Array Analysis

17-63

Comparison with a Full Wave Finite Array Analysis

To understand the effect of the finite size of the array, we execute a full wave analysis of a 21 X 21
dipole array backed by an infinite reflector. The full wave array pattern slices in the E and H planes
as well as the center element embedded element pattern is also calculated. This data is loaded from a
MAT file. This analysis took approximately 630 seconds on a 2.4 GHz machine with 32 GB memory.

Load Full Wave Data and Build Custom Antenna Load the finite array analysis data, and use the
embedded element pattern to build a custom antenna element. Note that the pattern from the full-
wave analysis needs to be rotated by 90 degrees so that it lines up with the URA model built on the
YZ plane.

load atexInfArrayDipoleRefArray
elemfieldpatternfinite = sqrt(FiniteArrayPatData.ElemPat);
arraypatternfinite = FiniteArrayPatData.ArrayPat;
bandwidth = 500e6;
customAntennaFinite = helperATXBuildCustomAntenna(...
 elemfieldpatternfinite,freq,bandwidth,az,el);
figure
pattern(customAntennaFinite,freq)

17 Featured Examples

17-64

Create Uniform Rectangular Array with Embedded Element Pattern As done before create a
uniform rectangular array with the custom antenna element.

myURA2 = phased.URA;
myURA2.Element = customAntennaFinite;
myURA2.Size = [Nrow Ncol];
myURA2.ElementSpacing = [drow dcol];

E and H Plane Slice - Array With Embedded Element Pattern Calculate the pattern slices in two
orthogonal planes - E and H for the array with the embedded element pattern and the embedded
element pattern itself. In addition since the full wave data for the array pattern is also available use
this to compare results. E-plane

Darray2_E = pattern(myURA2,freq,0,elang_plot);
Darray2_Enormlz = Darray2_E - max(Darray2_E);
% H-plane
Darray2_H = pattern(myURA2,freq,azang_plot,0);
Darray2_Hnormlz = Darray2_H - max(Darray2_H);

E and H Plane Slice - Embedded Element Pattern from Finite Array

DSEP2_E = pattern(customAntennaFinite,freq,0,elang_plot);
DSEP2_Enormlz = DSEP2_E - max(DSEP2_E);
DSEP2_H = pattern(customAntennaFinite,freq,azang_plot,0);
DSEP2_Hnormlz = DSEP2_H - max(DSEP2_H);

E and H Plane Slice - Full Wave Analysis of Finite Array

 Modeling Mutual Coupling in Large Arrays Using Infinite Array Analysis

17-65

azang_plot1 = -90:2:90;
elang_plot1 = -90:2:90;

Darray3_E = FiniteArrayPatData.EPlane;
Darray3_Enormlz = Darray3_E - max(Darray3_E);

Darray3_H = FiniteArrayPatData.HPlane;
Darray3_Hnormlz = Darray3_H - max(Darray3_H);

Comparison of Array Patterns The array patterns in the two orthogonal planes are plotted here.

figure
subplot(211)
plot(elang_plot,Darray1_Enormlz,elang_plot,Darray2_Enormlz,...
 elang_plot1,Darray3_Enormlz,'LineWidth',2)
grid on
axis([min(elang_plot) max(elang_plot) -40 0]);
legend('Infinite','Finite','Finite Full wave','location','best')
xlabel('Elevation (deg)')
ylabel('Directivity (dB)')
title('E-plane (az=0 deg) Normalized Array Directivity')
subplot(212)
plot(azang_plot,Darray1_Hnormlz,azang_plot,Darray2_Hnormlz,...
 azang_plot1,Darray3_Hnormlz,'LineWidth',2)
grid on
axis([min(azang_plot) max(azang_plot) -40 0]);
legend('Infinite','Finite','Finite Full wave','location','best')
xlabel('Azimuth (deg)')
ylabel('Directivity (dB)')
title('H-Plane (el = 0 deg) Normalized Array Directivity')

17 Featured Examples

17-66

The pattern plots in the two planes reveals that all three analysis approaches suggest similar
behavior out to +/-40 degree from boresight. Beyond this range, it appears that using the scan
element pattern for all elements in a URA underestimates the sidelobe level compared to the full
wave analysis of a finite array. The one possible reason for this could be the edge effect from the
finite size array.

Comparison of Element Patterns The element patterns from the infinite array analysis and the
finite array analysis are compared here.

figure
subplot(211)
plot(elang_plot,DSEP1_Enormlz,elang_plot,DSEP2_Enormlz,'LineWidth',2)
grid on
axis([min(azang_plot) max(azang_plot) -40 0]);
legend('Infinite','Finite','location','best')
xlabel('Elevation (deg)')
ylabel('Directivity (dB)')
title('E-plane (az=0 deg) Normalized Element Directivity')
subplot(212)
plot(azang_plot,DSEP1_Hnormlz,azang_plot,DSEP2_Hnormlz,'LineWidth',2)
grid on
axis([min(azang_plot) max(azang_plot) -40 0]);
legend('Infinite','Finite','location','best')
xlabel('Azimuth (deg)')
ylabel('Directivity (dB)')
title('H-Plane (el = 0 deg) Normalized Element Directivity')

 Modeling Mutual Coupling in Large Arrays Using Infinite Array Analysis

17-67

Scan Behavior with Infinite Array Scan Element Pattern

Scan the array based on the infinite array scan element pattern in the elevation plane defined by
azimuth = 0 deg and plot the normalized directivity. Also, overlay the normalized scan element
pattern.

helperATXScanURA(myURA1,freq,azang_plot,elang_plot,...
 DSEP1_Enormlz,DSEP1_Hnormlz);

17 Featured Examples

17-68

Note the overall shape of the normalized array pattern approximately follows the normalized scan
element pattern. This is also predicted by the pattern multiplication principle.

Conclusion

The infinite array analysis is one of the tools deployed to analyze and design large finite arrays. The
analysis assumes that all elements are identical, that edge effects can be ignored and have uniform
excitation amplitude The isolated element pattern is replaced with the scan element pattern which
includes the effect of mutual coupling.

Reference

[1] J. Allen, "Gain and impedance variation in scanned dipole arrays," IRE Transactions on Antennas
and Propagation, vol.10, no.5, pp.566-572, September 1962.

[2] R. C. Hansen, Phased Array Antennas, Chapter 7 and 8, John Wiley & Sons Inc.,2nd Edition, 1998.

 Modeling Mutual Coupling in Large Arrays Using Infinite Array Analysis

17-69

Modeling Perturbations and Element Failures in a Sensor Array
This example shows how to model amplitude, phase, position and pattern perturbations as well as
element failures in a sensor array.

Amplitude Perturbation

This section shows how to add gain or amplitude perturbations on a uniform linear array (ULA) of 10
elements. Consider the perturbations to be statistically independent zero-mean Gaussian random
variables with standard deviation of 0.1.

Create a ULA antenna of 10 elements.

N = 10;
ula = phased.ULA(N);

Create amplitude or gain perturbations by generating normally distributed random numbers with
mean of 1.

rs = rng(7);
pertStDev = 0.1;

% Clone the ideal ULA
perturbedULA = clone(ula);
perturbedULA.Taper = 1+randn(1,N)*pertStDev;

Compare the response of the perturbed to the ideal array.

% Overlay responses
c = 3e8; freq = c;

subplot(2,1,1);
helperCompareResponses(perturbedULA,ula,'Amplitude Perturbation', ...
 {'Perturbed','Ideal'});

% Show the corresponding tapers
subplot(2,1,2);
stem(perturbedULA.Taper)
title('Amplitude Tapers');xlabel('Sensor');ylabel('Gain');

17 Featured Examples

17-70

Phase Perturbation

This section shows how to add phase perturbations to the ULA antenna used in the previous section.
Consider the perturbations distribution to be similar to the previous section.

Release the System object and set the tapers. The tapers have a magnitude of 1 and random phase
shifts with 0 mean.

release(perturbedULA);
perturbedULA.Taper = exp(1i*randn(1,N)*pertStDev);

Compare the response of the perturbed to the ideal array.

% Overlay responses
subplot(2,1,1);
helperCompareResponses(perturbedULA,ula,'Phase Perturbation', ...
 {'Perturbed','Ideal'});

% Show the corresponding tapers
subplot(2,1,2);
stem(angle(perturbedULA.Taper))
title('Phase Tapers');xlabel('Sensor');ylabel('Phase (rad)');

 Modeling Perturbations and Element Failures in a Sensor Array

17-71

Notice how the perturbed response has shallower nulls.

Position Perturbation

This section shows how to perturb the positions of the ULA sensor along the three axes.

% Get positions of ideal ULA
ulaPos = getElementPosition(ula);
% Add perturbations in all dimensions
ulaPosPert = ulaPos + randn(size(ulaPos))*pertStDev;

Create the perturbed array.

perturbedULA = phased.ConformalArray('ElementPosition',ulaPosPert,...
 'ElementNormal',zeros(2,N));

Compare the response of the perturbed to the ideal array.

% Overlay responses
clf;
helperCompareResponses(perturbedULA,phased.ULA(N), ...
 'Position Perturbation', {'Perturbed','Ideal'});

17 Featured Examples

17-72

View the array.

viewArray(perturbedULA);
title('Element Positions');

 Modeling Perturbations and Element Failures in a Sensor Array

17-73

Pattern Perturbation

This section will replace the isotropic antenna elements with perturbed patterns.

First create 10 custom antenna elements with perturbed isotropic patterns.

antenna = phased.CustomAntennaElement;
radpat = antenna.MagnitudePattern;
element = cell(1,N);
for i = 1:N
 perturbedAntenna = clone(antenna);
 perturbedAntenna.MagnitudePattern = ...
 pow2db(1+randn(size(radpat))*pertStDev);
 element{i} = perturbedAntenna;
end

Here, map the 10 patterns in the cell array 'element' to the 10 sensors using the ElementIndices
property.

perturbedULA = phased.HeterogeneousULA('ElementSet',element, ...
 'ElementIndices',1:N);

Compare the response of the perturbed to the ideal array.

% Overlay responses
clf;
subplot(2,2,[1 2]);
helperCompareResponses(perturbedULA,phased.ULA(N),...

17 Featured Examples

17-74

 'Pattern Perturbation', ...
 {'Perturbed','Ideal'});

% Show the perturbed pattern response next to the ideal isotropic pattern
subplot(2,2,3);
pattern(ula.Element,freq,'CoordinateSystem','polar','Type','power')
title('Isotropic pattern');
subplot(2,2,4);
pattern(element{1},freq,'CoordinateSystem','polar','Type','power')
title('Perturbed pattern');

Element Failures

This section will model element failures on an 8 by 10 uniformly rectangular array. Each element has
10 percent probability of failing.

Create a URA antenna of 8 by 10 elements.

ura = phased.URA([8 10]);

Failures can be modeled by setting the gain on the corresponding sensor to 0. Here a matrix is
created in which each element has a 10 percent probability of being 0.

ura.Taper = double(rand(8,10) > .1);

Compare the response of the array with failed elements to the ideal array.

% Overlay responses
clf;

 Modeling Perturbations and Element Failures in a Sensor Array

17-75

helperCompareResponses(ura,phased.ULA(N),'Element Failures', ...
 {'Failures','No Failures'});

Notice how deep nulls are hard to attain in the response of the array with failed elements.

View the failed elements.

viewArray(ura,'ShowTaper',true);
title('Failed Elements');

% reset the random seed
rng(rs)

17 Featured Examples

17-76

Summary

This example showed how to model different kind of perturbations as well as element failures. It also
demonstrated the effect on the array response for all the cases.

 Modeling Perturbations and Element Failures in a Sensor Array

17-77

Patch Antenna Array for FMCW Radar
This example shows how to model a 77 GHz 2x4 antenna array for Frequency-Modulated Continuous-
Wave (FMCW) radar applications. The presence of antennas and antenna arrays in and around
vehicles has become commonplace with the introduction of wireless collision detection, collision
avoidance, and lane departure warning systems. The two frequency bands considered for such
systems are centered around 24 GHz and 77 GHz, respectively. In this example, we will investigate
the microstrip patch antenna as a phased array radiator. The dielectric substrate is air.

This example requires the Antenna Toolbox™.

Antenna Array Design

The FMCW antenna array is intended for a forward radar system designed to look for and prevent a
collision. Therefore, a cosine antenna pattern is an appropriate choice for the initial design since it
does not radiate any energy backwards. Assume that the radar system operates at 77 GHz with a 700
MHz bandwidth.

fc = 77e9;
fmin = 73e9;
fmax = 80e9;
vp = physconst('lightspeed');
lambda = vp/fc;

cosineantenna = phased.CosineAntennaElement;
cosineantenna.FrequencyRange = [fmin fmax];
pattern(cosineantenna,fc)

17 Featured Examples

17-78

The array itself needs to be mounted on or around the front bumper. The array configuration we
investigate is a 2 X 4 rectangular array, similar to what is mentioned in [1]. Such a design has bigger
aperture along azimuth direction thus providing better azimuth resolution.

Nrow = 2;
Ncol = 4;
fmcwCosineArray = phased.URA;
fmcwCosineArray.Element = cosineantenna;
fmcwCosineArray.Size = [Nrow Ncol];
fmcwCosineArray.ElementSpacing = [0.5*lambda 0.5*lambda];
pattern(fmcwCosineArray,fc)

 Patch Antenna Array for FMCW Radar

17-79

Design Realistic Patch Antenna

The Antenna Toolbox has several antenna elements that could provide hemispherical coverage and
resemble a pattern of cosine shape. Choose a patch antenna element with typical radiator
dimensions. The patch length is approximately half-wavelength at 77 GHz and the width is 1.5 times
the length to improving the bandwidth. The ground plane is on each side and the feed offset from
center in the direction of the patch length is about a quarter of the length.

patchElement = design(patchMicrostrip,fc);

Because the default patch antenna geometry has its maximum radiation directed towards zenith,
rotate the patch antenna by 90 degrees about the y-axis so that the maximum would now occur along
the x-axis.

patchElement.Tilt = 90;
patchElement.TiltAxis = [0 1 0];

Isolated Patch Antenna 3D Pattern and Resonance

Plot the pattern of the patch antenna at 77 GHz. The patch is a medium gain antenna with the peak
directivity around 6-9 dBi.

myFigure = gcf;
myFigure.Color = 'w';
pattern(patchElement,fc)

17 Featured Examples

17-80

The patch is radiating in the correct mode with a pattern maximum at 0 degrees azimuth and 0
degrees elevation. Since the initial dimensions are approximations, it is important to verify the
antenna's input impedance behavior.

Numfreqs = 21;
freqsweep = unique([linspace(fmin,fmax,Numfreqs) fc]);
impedance(patchElement,freqsweep);

 Patch Antenna Array for FMCW Radar

17-81

According to the figure, the patch antenna has its first resonance (parallel resonance) at 74 GHz. It is
a common practice to shift this resonance to 77 GHz by scaling the length of the patch.

act_resonance = 74e9;
lambda_act = vp/act_resonance;
scale = lambda/lambda_act;
patchElement.Length = scale*patchElement.Length;

Next is to check the reflection coefficient of the patch antenna to confirm a good impedance match. It
is typical to consider the value as a threshold value for determining the antenna
bandwidth.

s = sparameters(patchElement,freqsweep);
rfplot(s,'m-.')
hold on
line(freqsweep/1e9,ones(1,numel(freqsweep))*-10,'LineWidth',1.5)
hold off

17 Featured Examples

17-82

The deep minimum at 77 GHz indicates a good match to 50. The antenna bandwidth is slightly
greater than 1 GHz. Thus, the frequency band is from 76.5 GHz to 77.5 GHz.

Finally, check if the pattern at the edge frequencies of the band meets the design. This is a good
indication whether the pattern behaves the same across the band. The patterns at 76.5 GHz and 77.6
GHz are shown below.

pattern(patchElement,76.5e9)

 Patch Antenna Array for FMCW Radar

17-83

pattern(patchElement,77.6e9)

17 Featured Examples

17-84

In general, it is a good practice to check pattern behavior over the frequency band of interest.

Create Array from Isolated Radiators and Plot Pattern

Next, create a uniform rectangular array (URA) with the patch antenna. The spacing is chosen to be
, where is the wavelength at the upper frequency of the band (77.6 GHz).

fc2 = 77.6e9;
lambda_fc2 = vp/77.6e9;
fmcwPatchArray = phased.URA;
fmcwPatchArray.Element = patchElement;
fmcwPatchArray.Size = [Nrow Ncol];
fmcwPatchArray.ElementSpacing = [0.5*lambda_fc2 0.5*lambda_fc2];

The following figure shows the pattern of the resulting patch antenna array. The pattern is computed
using a 5 degree separation in both azimuth and elevation.

az = -180:5:180;
el = -90:5:90;
clf
pattern(fmcwPatchArray,fc,az,el)

 Patch Antenna Array for FMCW Radar

17-85

Plots below compare the pattern variation in 2 orthogonal planes for the patch antenna array and the
cosine element array. Note that both arrays ignore mutual coupling effect.

First, plot the patterns along the azimuth direction.

patternAzimuth(fmcwPatchArray,fc)
hold on
patternAzimuth(fmcwCosineArray,fc)
p = polarpattern('gco');
p.LegendLabels = {'Patch','Cosine'};

17 Featured Examples

17-86

Then, plot the patterns along the elevation direction.

clf
patternElevation(fmcwPatchArray,fc)
hold on
patternElevation(fmcwCosineArray,fc)
p = polarpattern('gco');
p.LegendLabels = {'Patch','Cosine'};

 Patch Antenna Array for FMCW Radar

17-87

The figures show that both arrays have similar pattern behavior around the main beam in the
elevation plane (azimuth = 0 deg). The patch-element array has a significant backlobe as compared to
the cosine-element array.

Conclusions

This example starts the design of an antenna array for FMCW radar with an ideal cosine antenna and
then uses a patch antenna to form the real array. The example compares the patterns from the two
arrays to show the design tradeoff. From the comparison, it can be seen that using the isolated patch
element is a useful first step in understanding the effect that a realistic antenna element would have
on the array pattern.

However, analysis of realistic arrays must also consider mutual coupling effect. Since this is a small
array (8 elements in 2x4 configuration), the individual element patterns in the array environment
could be distorted significantly. As a result it is not possible to replace the isolated element pattern
with an embedded element pattern, as shown in the “Modeling Mutual Coupling in Large Arrays
Using Embedded Element Pattern” on page 17-48 example. A full-wave analysis must be performed to
understand the effect of mutual coupling on the overall array performance.

Reference

[1] R. Kulke, et al. 24 GHz Radar Sensor Integrates Patch Antennas, EMPC 2005 http://
empire.de/main/Empire/pdf/publications/2005/26-doc-empc2005.pdf

17 Featured Examples

17-88

Phased Array Gallery
This example shows how to model and visualize a variety of antenna array geometries with Phased
Array System Toolbox™. These geometries can also be used to model other kinds of arrays, such
hydrophone arrays and microphone arrays. You can view code for each plot, and use it in your own
project.

Linear Arrays

Linear antenna arrays can have uniform or nonuniform spacing between elements. This most common
linear antenna array is the Uniform Linear Array (ULA).

N = 20; % Number of elements
D = 0.5; % Element spacing (m)
ula = phased.ULA(N,D);
viewArray(ula,'Title','Uniform Linear Array (ULA)')
set(gca,'CameraViewAngle',4.4);

A Minimum Redundancy Linear Array (MRLA) is an example of a nonuniformly spaced linear array.
The MRLA minimizes the number of element pairs that have the same spatial correlation lag. It is
possible to design a 4-element array whose aperture is equivalent to 7-element ULA.

N = 4; % Number of elements
pos = zeros(3,N);
pos(2,:) = [-1.5 -1 0.5 1.5]; % Aperture equivalent to 7-element ULA
mrla = phased.ConformalArray('ElementPosition',pos,...

 Phased Array Gallery

17-89

 'ElementNormal',zeros(2,N));

viewArray(mrla,'Title','Minimum Redundancy Linear Array (MRLA)')
set(gca,'CameraViewAngle',4.85);

Circular Arrays

Circular antenna arrays can also have uniform or nonuniform spacing between elements. Next is an
example of a Uniform Circular Array (UCA).

N = 24; % Number of elements
R = 1; % Radius (m)
uca = phased.UCA(N,R);

viewArray(uca,'ShowNormals',true,'Title','Uniform Circular Array (UCA)')
view(0,90)

17 Featured Examples

17-90

Multiple circular antenna arrays with the same number of elements and different radii form a
concentric circular array.

N = 16; % Number of elements on each ring
R = [1 1.5 2]; % Radii (m)
azang = (0:N-1)*360/N-180;
pos = [zeros(1,N);cosd(azang);sind(azang)];
elNormal = zeros(2,N);
concentricCircularArray = phased.ConformalArray(...
 'ElementPosition',[R(1)*pos R(2)*pos R(3)*pos],...
 'ElementNormal',[elNormal elNormal elNormal]);

viewArray(concentricCircularArray,'Title','Concentric Circular Array');

 Phased Array Gallery

17-91

Planar Arrays with Rectangular Grid

Planar antenna arrays can have a uniform grid (or lattice) and different boundary shapes. Next is an
example of a Uniform Rectangular Array (URA) with a rectangular grid and rectangular boundary.

M = 18; % Number of elements on each row
N = 16; % Number of elements on each column
dy = 0.5; % Spacing between elements on each row (m)
dz = 0.5; % Spacing between elements on each column (m)
ura = phased.URA([N M],[dz dy]);

viewArray(ura,'Title','Uniform Rectangular Array (URA)');

17 Featured Examples

17-92

You can also model a planar antenna array with a circular boundary. The following code starts with a
URA and removes elements outside a circle.

N = 20; % Number of elements on each row/column of rectangular array
dy = 0.5; % Spacing between elements on each row (m)
dz = 0.5; % Spacing between elements on each column (m)
R = 4.5; % Radius (m)
refArray = phased.URA(N,[dy,dz]);
pos = getElementPosition(refArray);
elemToRemove = sum(pos.^2)>R^2;
pos(:,elemToRemove) = []; % Exclude elements outside circle
circularPlanarArray = phased.ConformalArray('ElementPosition',pos,...
 'ElementNormal',zeros(2,size(pos,2)));

viewArray(circularPlanarArray,'Title','Circular Planar Array');

 Phased Array Gallery

17-93

Next is an example of a planar antenna array with an elliptical boundary.

N = 20; % Number of elements on each row/column of rectangular array
dy = 0.5; % Spacing between elements on each row (m)
dz = 0.5; % Spacing between elements on each column (m)
Ry = 4.5; % Major radius (m)
Rz = 2.8; % Minor radius (m)
refArray = phased.URA(N,[dy,dz]);
pos = getElementPosition(refArray);
elemToRemove = (pos(2,:)/Ry).^2+(pos(3,:)/Rz).^2>1;
pos(:,elemToRemove) = []; % Exclude elements outside ellipse
ellipticalPlanarArray = phased.ConformalArray('ElementPosition',pos,...
 'ElementNormal',zeros(2,size(pos,2)));

viewArray(ellipticalPlanarArray,'Title','Elliptical Planar Array');

17 Featured Examples

17-94

The next example is a hexagonal array with a rectangular grid.

Nmin = 7; % Number of elements on bottom row
Nmax = 19; % Number of elements on widest row
dy = 0.5; % Row spacing
dz = 0.5; % Column spacing
rows = [Nmin:2:Nmax Nmax-2:-2:Nmin];
N = sum(rows); % Total number of elements
stop = cumsum(rows);
start = stop-rows+1;
pos = zeros(3,N);
count = 0;
for m = Nmin-Nmax:2:Nmax-Nmin
 count = count+1;
 idx = start(count):stop(count);
 pos(2,idx) = (-(rows(count)-1)/2:(rows(count)-1)/2)*dy;
 pos(3,idx) = m/2*dz;
end
hexagonalPlanarArray = phased.ConformalArray('ElementPosition',pos,...
 'ElementNormal',zeros(2,N));

viewArray(hexagonalPlanarArray,...
 'Title','Hexagonal Planar Array with Rectangular Grid');

 Phased Array Gallery

17-95

Planar Arrays with Triangular Grid

Triangular grids provide an efficient spatial sampling and are widely used in practice. Here again,
different boundary geometries can be applied. First is a rectangular array with a triangular lattice.

M = 18; % Number of elements on each row
N = 16; % Number of elements on each column
dy = 0.5; % Spacing between elements on each row (m)
dz = 0.5; % Spacing between elements on each column (m)
rectArrayTriGrid = phased.URA([N M],[dz dy],'Lattice','Triangular');

viewArray(rectArrayTriGrid,...
 'Title','Rectangular Array with Triangular Grid');

17 Featured Examples

17-96

Next is a circular planar antenna array with a triangular lattice.

N = 18; % Number of elements on each row/column of rectangular array
dy = 0.5; % Spacing between elements on each row (m)
dz = 0.5; % Spacing between elements on each column (m)
R = 4.5; % Radius (m)
refArray = phased.URA(N,[dy,dz],'Lattice','Triangular');
pos = getElementPosition(refArray);
elemToRemove = sum(pos.^2)>R^2;
pos(:,elemToRemove) = []; % Exclude elements outside circle
circularPlanarArrayTriGrid = phased.ConformalArray(...
 'ElementPosition',pos,'ElementNormal',zeros(2,size(pos,2)));

viewArray(circularPlanarArrayTriGrid,...
 'Title','Circular Planar Array with Triangular Grid');

 Phased Array Gallery

17-97

Next is an elliptical planar antenna array with a triangular lattice.

N = 18; % Number of elements on each row/column of rectangular array
dy = 0.5; % Spacing between elements on each row (m)
dz = 0.5; % Spacing between elements on each column (m)
Ry = 4.5; % Major radius (m)
Rz = 2.8; % Minor radius (m)
refArray = phased.URA(N,[dy,dz],'Lattice','Triangular');
pos = getElementPosition(refArray);
elemToRemove = (pos(2,:)/Ry).^2+(pos(3,:)/Rz).^2>1;
pos(:,elemToRemove) = []; % Exclude elements outside ellipse
ellipticalPlanarArrayTriGrid = ...
 phased.ConformalArray('ElementPosition',pos,...
 'ElementNormal',zeros(2,size(pos,2)));

viewArray(ellipticalPlanarArrayTriGrid,...
 'Title','Elliptical Planar Array with Triangular Grid');

17 Featured Examples

17-98

Next is an example of a Uniform Hexagonal Array (UHA).

Nmin = 9; % Number of elements on bottom row
Nmax = 17; % Number of elements on mid row
dy = 0.5; % Row spacing
dz = 0.5*sin(pi/3); % Column spacing
rows = [Nmin:Nmax Nmax-1:-1:Nmin];
N = sum(rows); % Total number of elements
stop = cumsum(rows);
start = stop-rows+1;
pos = zeros(3,N);
count = 0;
for m = Nmin-Nmax:Nmax-Nmin
 count = count+1;
 idx = start(count):stop(count);
 pos(2,idx) = (-(rows(count)-1)/2:(rows(count)-1)/2)*dy;
 pos(3,idx) = m*dz;
end
uha = phased.ConformalArray('ElementPosition',pos,...
 'ElementNormal',zeros(2,N));

viewArray(uha,'Title','Uniform Hexagonal Array (UHA)');

 Phased Array Gallery

17-99

Thinned Arrays

You can also model planar antenna arrays with nonuniform grids. Next is an example of a thinned
antenna array.

M = 19; % Number of elements on each row
N = 17; % Number of elements on each column
dy = 0.5; % Spacing between elements on each row (m)
dz = 0.5; % Spacing between elements on each column (m)
refArray = phased.URA([N M],[dz dy]);
pos = getElementPosition(refArray);
elemToRemove = [3:11:M*(N-1)/2 M*N-3:-11:(N+1)/2];
pos(:,elemToRemove) = [];
thinnedURA = phased.ConformalArray('ElementPosition',pos,...
 'ElementNormal',zeros(2,size(pos,2)));

viewArray(thinnedURA,'Title','Thinned Array');

17 Featured Examples

17-100

Hemispherical Conformal Arrays

You can also model nonplanar arrays. In many applications, sensors must conform to the shape of the
curved surface they are mounted on. Next is an example of an antenna array whose elements are
uniformly distributed on a hemisphere.

R = 2; % Radius (m)
az = -90:10:90; % Azimuth angles
el = -80:10:80; % Elevation angles (excluding poles)
[az_grid, el_grid] = meshgrid(az,el);
poles = [0 0; -90 90]; % Add south and north poles
nDir = [poles [az_grid(:) el_grid(:)]']; % Element normal directions
N = size(nDir,2); % Number of elements
[x, y, z] = sph2cart(degtorad(nDir(1,:)), degtorad(nDir(2,:)),R*ones(1,N));
hemisphericalConformalArray = phased.ConformalArray(...
 'ElementPosition',[x; y; z],'ElementNormal',nDir);

viewArray(hemisphericalConformalArray,...
 'Title','Hemispherical Conformal Array');
view(90,0)

 Phased Array Gallery

17-101

Subarrays

You can model and visualize subarrays. Next is an example of contiguous subarrays.

replicatedURA = phased.ReplicatedSubarray('Subarray',phased.URA(5),...
 'Layout','Rectangular',...
 'GridSize',[3 3],'GridSpacing','Auto');

viewArray(replicatedURA,'Title','3x3 Subarrays Each Having 5x5 Elements');

17 Featured Examples

17-102

You can lay out subarrays on a nonuniform grid. The next example models the failure of a T/R module
for one subarray.

Ns = 6; % Number of subarrays
posc = zeros(3,Ns);
posc(2,:) = -5:2.5:7.5; % Subarray phase centers
posc(:,3) = []; % Take out 3rd subarray to model T/R failure
defectiveSubarray = phased.ReplicatedSubarray(...
 'Subarray',phased.URA([25 5]),...
 'Layout','Custom',...
 'SubarrayPosition',posc, ...
 'SubarrayNormal',zeros(2,Ns-1));

viewArray(defectiveSubarray,'Title','Defective Subarray');
view(90,0)

 Phased Array Gallery

17-103

Subarrays can be interlaced and overlapped to mitigate grating lobes.

N = 40; % Number of elements
Ns = 8; % Number of subarrays
sel = zeros(Ns,N);
Nsec = N/Ns;
for m = 1:Ns
 if m==1
 sel(m,(m-1)*Nsec+1:m*Nsec+1) = 1;
 elseif m==Ns
 sel(m,(m-1)*Nsec:m*Nsec) = 1;
 else
 sel(m,(m-1)*Nsec:m*Nsec+1) = 1;
 end
end
overlappedSubarray = phased.PartitionedArray('Array',phased.ULA(N),...
 'SubarraySelection', sel);

viewArray(overlappedSubarray,'Title','Overlapped Subarrays');
set(gca,'CameraViewAngle',4.65);

17 Featured Examples

17-104

In certain space-constrained applications, such as on satellites, multiple antenna arrays must share
the same space. Groups of elements are interleaved, interlaced or interspersed. The next example
models interleaved, non-overlapped subarrays.

N = 20;
idx = reshape(randperm(N*N),N,N);
sel = zeros(N,N*N);
for i =1:N,
 sel(i,idx(i,:)) = 1;
end
interleavedArray = phased.PartitionedArray('Array',phased.URA(N),...
 'SubarraySelection',sel);

viewArray(interleavedArray,'Title','Interleaved Arrays');

 Phased Array Gallery

17-105

Another type of nonplanar antenna array is an array with multiple planar faces. The next example
shows uniform hexagonal arrays arranged as subarrays on a sphere.

R = 9; % Radius (m)
az = unigrid(-180,60,180,'[)'); % Azimuth angles
el = unigrid(-30,60,30); % Elevation angles (excluding poles)
[az_grid, el_grid] = meshgrid(az,el);
poles = [0 0; -90 90]; % Add south and north poles
nDir = [poles [az_grid(:) el_grid(:)]']; % Subarray normal directions
N = size(nDir,2); % Number of subarrays
[x, y, z] = sph2cart(degtorad(nDir(1,:)), degtorad(nDir(2,:)),R*ones(1,N));
sphericalHexagonalSubarray = phased.ReplicatedSubarray('Subarray',uha,...
 'Layout','Custom',...
 'SubarrayPosition',[x; y; z], ...
 'SubarrayNormal',nDir);

viewArray(sphericalHexagonalSubarray,...
 'Title','Hexagonal Subarrays on a Sphere');
view(30,0)

17 Featured Examples

17-106

You can also view the array from a different angle and interactively rotate it in 3-D.

view(0,90)
rotate3d on

 Phased Array Gallery

17-107

17 Featured Examples

17-108

Using Pilot Calibration to Compensate For Array Uncertainties
This example shows how to use pilot calibration to improve the performance of an antenna array in
the presence of unknown perturbations.

Introduction

In principle, one can easily design an ideal uniform linear array (ULA) to perform array processing
tasks such as beamforming or direction of arrival estimation. In practice, there is no such thing as an
ideal array. For example, there will always be some inevitable manufacturing tolerances among
different elements within the array. Since in general it is impossible to obtain exact knowledge about
those variations, they are often referred to as uncertainties or perturbations. Commonly observed
uncertainties include element gain and element phase uncertainties (electrical uncertainties) as well
as element location uncertainties (geometrical uncertainties).

The presence of uncertainties in an array system causes rapid degradation in the detection,
resolution, and estimation performance of array processing algorithms. Therefore it is critical to
calibrate the array before its deployment. In addition to the aforementioned factors, uncertainties can
also arise due to other factors such as hardware aging and environmental effects. Calibration is
therefore also performed on a regular basis in all deployed systems.

There are many array calibration algorithms. This example focuses on the pilot calibration approach
[1], where the uncertainties are estimated from the response of the array to one or more known
external sources at known locations. The example compares the effect of uncertainties on the array
performance before and after the calibration.

Modeling Electrical and Geometrical Uncertainties

Consider an ideal 6-element ULA along y-axis operating with half-wavelength spacing and uniform
tapering. For a ULA, the expected element positions and tapers can be computed.

N = 6;
designed_pos = [zeros(1,N);(0:N-1)*0.5;zeros(1,N)];
designed_taper = ones(N,1);

Next, model the perturbations that may exist in a real array. These are usually modeled as random
variables. For example, assume that the taper's magnitude and phase are perturbed by normally
distributed random variables with standard deviations of 0.1 and 0.05, respectively.

rng(2014);
taper = (designed_taper + 0.1*randn(N,1)).*exp(1i*0.05*randn(N,1));

The following figure shows the difference between the magnitude and phase of the perturbed taper
and the designed taper.

helperCompareArrayProperties('Taper',taper,designed_taper,...
 {'Perturbed Array','Designed Array'});

 Using Pilot Calibration to Compensate For Array Uncertainties

17-109

Perturbations in the sensor locations in the x, y, and z directions are generated similarly with a
standard deviation of 0.05.

pos = designed_pos + 0.05*randn(3,N);

The figure below shows where the element positions of the perturbed array and the ideal array.

helperCompareArrayProperties('Position',pos,designed_pos,...
 {'Perturbed Array','Designed Array'});

17 Featured Examples

17-110

Effect of Array Perturbation

The previous section shows the difference between the designed, ideal array and the real, perturbed
array. Because of these errors, if one blindly applies processing steps, such as beamforming weights,
computed using the designed array, on the perturbed array, the performance degrades significantly.

Consider the case of an LCMV beamformer designed to steer the ideal array to a direction of 10
degrees azimuth with two interferences from two known directions of -10 degrees azimuth and 60
degrees azimuth. The goal is to preserve the signal of interest while suppressing the interferences.

If the precise knowledge of the array's taper and geometry is known, the beamforming weights can
be computed as follows:

% Generate 10K samples from target and interferences with 30dB SNR
az = [-10 10 60];
Nsamp = 1e4;
ncov = db2pow(-30);
[~,~,rx_cov] = sensorsig(pos,Nsamp,az,ncov,'Taper',taper);

% Compute LCMV beamforming weights assuming the designed array
sv = steervec(pos,az);
w = lcmvweights(bsxfun(@times,taper,sv),[0;1;0],rx_cov);

However, since the array contains unknown perturbations, beamforming weights must be computed
based on the positions and taper of the designed array.

 Using Pilot Calibration to Compensate For Array Uncertainties

17-111

designed_sv = steervec(designed_pos,az);
designed_w = lcmvweights(bsxfun(@times,designed_taper,designed_sv),...
 [0;1;0],rx_cov);

The following figure compares the expected beam pattern with the pattern resulted from applying the
designed weights on the perturbed array.

helperCompareBeamPattern(pos,taper,w,designed_w,-90:90,az,...
 {'Expected Pattern','Uncalibrated Pattern'},...
 'Beam Pattern Before Calibration');

From the plotted patterns, it is clear that the pattern resulted from the uncalibrated weights does not
satisfy the requirements. It puts a null around the desired 10 degrees azimuth direction. This means
that the desired signal can no longer be retrieved. Fortunately, array calibration can help bring the
pattern back to order.

Pilot Calibration

There are many algorithms available to perform array calibration. One class of commonly used
algorithms is pilot calibration. The algorithm sets up several sources in known directions and then
uses the array to receive the signal from those transmitters. Because these transmitters are at the
known directions, the expected received signal of the ideal array can be computed. Comparing these
with the actual received signal, it is possible to derive the difference due to the uncertainties and
correct them.

The code below shows the process of array calibration. First, the pilot sources need to be chosen at
different directions. Note that the number of pilot sources determines how many uncertainties the

17 Featured Examples

17-112

algorithm can correct. In this example, to correct both sensor location uncertainties and taper
uncertainty, a minimum of four external sources is required. If more sources are used, the estimation
will improve.

pilot_ang = [-60, -5 ,5, 40; -10, 0, 0, 30];

The four pilot sources are located at the following azimuth and elevation angle pairs: (-60, -10), (-5,
0), (5, 0), and (40, 30). The received signal from these pilots can be simulated as

for m = size(pilot_ang,2):-1:1
 calib_sig(:,:,m) = sensorsig(pos,Nsamp,pilot_ang(:,m),...
 ncov,'Taper',taper);
end

Using the received signal from the pilots at the array, together with the element positions and tapers
of the designed array, the calibration algorithm [1] estimates the element positions and tapers for the
perturbed array.

[est_pos,est_taper] = pilotcalib(designed_pos,...
 calib_sig,pilot_ang,designed_taper);

Once the estimated positions and taper are available, these can be used in place of the designed
array parameters when calculating beamformer weights. This results in the array pattern
represented by the red line below.

corrected_w = lcmvweights(bsxfun(@times,est_taper,...
 steervec(est_pos,az)),[0;1;0],rx_cov);

helperCompareBeamPattern(pos,taper,...
 w,corrected_w,-90:90,az,...
 {'Expected Pattern','Calibrated Pattern'},...
 'Beam Pattern After Calibration');

 Using Pilot Calibration to Compensate For Array Uncertainties

17-113

The figure above shows that the pattern resulting from the calibrated array is much better than the
one from the uncalibrated array. In particular, signals from the desired direction are now preserved.

Summary

This example shows how uncertainties of an array can impact its response pattern and in turn
degrade the array's performance. The example also illustrates how pilot calibration can be used to
help restore the array performance.

References

[1] N. Fistas and A. Manikas, "A New General Global Array Calibration Method", IEEE Proceedings of
ICASSP, Vol. IV, pp. 73-76, April 1994.

17 Featured Examples

17-114

Using Self Calibration to Accommodate Array Uncertainties
This example shows a self calibration procedure based on a constrained optimization process.
Sources of opportunity are exploited to simultaneously estimate array shape uncertainties and source
directions.

This example requires Optimization Toolbox™.

Introduction

In theory, one can design a perfect uniform linear array (ULA) to perform all sorts of processing such
as beamforming or direction of arrival estimation. Typically this array will be calibrated in a
controlled environment before being deployed. However, uncertainties may arise in the system during
operation indicating that the array needs recalibrating. For instance, environmental effects may
cause array element positions to become perturbed, introducing array shape uncertainties. The
presence of these uncertainties causes rapid degradation in the detection, resolution and estimation
performance of array processing algorithms. It is therefore critical to remove these array
uncertainties as soon as possible.

There are many array calibration algorithms. This example focuses on one class of them, self
calibration (also called auto-calibration), where uncertainties are estimated jointly with the positions
of a number of external sources at unknown locations [1]. Unlike pilot calibration, this allows an
array to be re-calibrated in a less known environment. However, in general, this results in a small
number of signal observations with a large number of unknowns. There are a number of approaches
to solving this problem as described in [2]. One is to construct and optimize against a cost function.
These cost functions tend to be highly non-linear and contain local minima. In this example, a cost
function based on the Multiple Signal Classification (MUSIC) algorithm [3] is formed and solved as an
fmincon optimization problem using Optimization Toolbox (TM). In the literature, many other
combinations also exist [2].

A Perfect Array

Consider first a 5-element ULA operating with half wavelength spacing is deployed. In such an array,
the element positions can be readily computed.

N = 5;
designed_pos = [zeros(1,N);-(N-1)/2:(N-1)/2;zeros(1,N)]*0.5;

A Not So Perfect Array

Next, assume the array is perturbed whilst in operation and so undergoes array shape uncertainties
in the x and y dimensions. In order to fix the global axes, assume that the first sensor and the
direction to the second sensor is known as prescribed in [4].

rng default
pos_std = 0.02;
perturbed_pos = designed_pos + pos_std*[randn(2,N);zeros(1,N)];
perturbed_pos(:,1) = designed_pos(:,1); % The reference sensor has no
 % uncertainties
perturbed_pos(1,2) = designed_pos(1,2); % The x axis is fixed down by
 % assuming the x-location of
 % another sensor is known

Visualize the Array Imperfections

The figure below shows the difference between the deployed and the perturbed array.

 Using Self Calibration to Accommodate Array Uncertainties

17-115

helperCompareArrayProperties('Position',perturbed_pos,designed_pos,...
 {'Perturbed Array','Deployed Array'});
view(90,90);

Degradation of DOA Estimation

The previous section shows the difference between the deployed array and an array which has
undergone perturbations while in operation. If one blindly uses the processing designed for the
deployed array, the performance of the array reduces. For example, consider a beamscan estimator is
used to estimate the directions of 3 unknown sources at -20, 40 and 85 degrees azimuth.

% Generate 100K samples with 30dB SNR
ncov = db2pow(-30);
Nsamp = 1e5; % Number of snapshots (samples)
incoming_az = [-20,40,85]; % Unknown source locations to be estimated
M = length(incoming_az);
[x_pert,~,Rxx] = sensorsig(perturbed_pos,Nsamp,incoming_az,ncov);

% Estimate the directions of the sources
ula = phased.ULA('NumElements',N);
spatialspectrum = phased.BeamscanEstimator('SensorArray',ula,...
 'DOAOutputPort',true,'NumSignals',M);
[y,estimated_az] = spatialspectrum(x_pert);

incoming_az

incoming_az = 1×3

17 Featured Examples

17-116

 -20 40 85

estimated_az

estimated_az = 1×3

 -19 48 75

These uncertainties degrade the array performance. Self calibration can allow the array to be re-
calibrated using sources of opportunity, without needing to know their locations.

Self Calibration

A number of self calibration approaches are based on optimizing a cost function to jointly estimate
unknown array and source parameters (such as array sensor and source locations). The cost function
and optimization algorithm must be carefully chosen to encourage a global solution to be reached as
easily and quickly as possible. In addition, parameters associated with the optimization algorithm
must be tuned for the given scenario. A number of combinations of cost function and optimization
algorithm exist in the literature. For this example scenario, a MUSIC cost function [3] is chosen
alongside an fmincon optimization algorithm. As the scenario changes, it may be appropriate to adapt
the approach used depending upon the robustness of the calibration algorithm. For instance, in this
example, the performance of the calibration algorithm drops as sources move away from end-fire or
the number of array elements increase. The initial estimates of the source locations estimated
previously are used as the initialization criterion of the optimization procedure.

fun = @(x_in)helperMUSICIteration(x_in,Rxx,designed_pos);
nvars = 2*N - 3 + M; % Assuming 2D uncertainties
x0 = [0.1*randn(1,nvars-M),estimated_az]; % Initial value
locTol = 0.1; % Location tolerance
angTol = 20; % Angle tolerance
lb = [-locTol*ones(nvars-M,1);estimated_az.'-angTol]; % lower bound
ub = [locTol*ones(nvars-M,1);estimated_az.'+angTol]; % upper bound

options = optimoptions('fmincon','TolCon',1e-6,'DerivativeCheck','on',...
 'Display','off');
[x,fval,exitflag] = fmincon(fun,x0,[],[],[],[],lb,ub,[],options);

% Parse the final result
[~,perturbed_pos_est,postcal_estimated_az]=helperMUSICIteration(...
 x,Rxx,designed_pos);

helperCompareArrayProperties('Position',perturbed_pos,perturbed_pos_est,...
 {'Perturbed Array','Calibrated Array'});
view(90,90);

 Using Self Calibration to Accommodate Array Uncertainties

17-117

polarplot(deg2rad(incoming_az),[1 1 1],'s',...
 deg2rad(postcal_estimated_az(1,:)),[1 1 1],'+',...
 deg2rad(estimated_az),[1 1 1],'o','LineWidth',2,'MarkerSize',10)
legend('True directions','DOA after calibration',...
 'DOA before calibration','Location',[0.01 0.02 0.3 0.13])
rlim([0 1.3])

17 Featured Examples

17-118

By performing this calibration process the accuracy of the source estimation has improved
significantly. In addition, the positions of the perturbed sensors have also been estimated which can
be used as the new array geometry in the future.

Summary

This example shows how array shape uncertainties can impact the ability to estimate the direction of
arrival of unknown sources. The example also illustrates how self calibration can be used to overcome
the effects of these perturbations and estimate these uncertainties simultaneously.

References

[1]Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

[2] E Tuncer and B Friedlander. Classical and Modern Direction-of-Arrival Estimation. Elsevier, 2009.

[3] Schmidt, R. O. "Multiple Emitter Location and Signal Parameter Estimation." IEEE Transactions
on Antennas and Propagation. Vol. AP-34, March, 1986, pp. 276-280.

[4] Y. Rockah and P. M. Schultheiss. Array shape calibration using sources in unknown locations- Part
I: Farfield sources. IEEE Trans. ASSP, 35:286-299, 1987.

 Using Self Calibration to Accommodate Array Uncertainties

17-119

Subarrays in Phased Array Antennas
This example shows how to model subarrays, commonly used in modern phased array systems, using
Phased Array System Toolbox™ and perform analyses.

Introduction

Phased array antennas provide many benefits over traditional dish antennas. The elements of phased
array antennas are easier to manufacture; the entire system suffers less from component failures;
and best of all, can be electronically scanned toward different directions.

However, such flexibility does not come for free. Taking full advantage of a phased array requires
placing steering circuitry and T/R switches behind each individual element. For applications that
require large arrays with thousands or tens of thousands of elements, the cost of doing so is too high
to be practical. In addition, in many such applications, the desired performance does not require full
degree of freedom from the array. Hence, in practice, deployed systems often use a compromised
approach. Elements are grouped into subarrays and then subarrays form the entire array. The
elements are still easy to manufacture; the entire array is still robust with respect to component
failures; in addition, T/R switches are only needed at each subarray, thus significantly reducing the
cost.

The following sections show how to model a subarray network with different configurations for two
specific applications: limited field of view (LFOV) arrays and wideband arrays.

Limited Field of View (LFOV) Arrays

LFOV arrays are commonly used in satellite applications. As the name suggests, an LFOV array only
scans within a very limited window, normally less than 10 degrees. Because of that, it is possible to
use subarrays and such subarrays can be placed at a spacing much larger than half of the
wavelength.

The simplest way to construct an array with subarrays is to contiguously tile the subarray. The
following code snippet constructs a 64-element ULA consists of eight 8-element ULAs. Within each
subarray, the elements are spaced by half the wavelength. Note that there is no steering capability
inside each subarray so the array can only be steered using subarrays.

The array geometry can be seen in the following figure.

fc = 3e8;
c = 3e8;
antenna = phased.IsotropicAntennaElement('BackBaffled',true);
N = 64;
Nsubarray = 8;
subula = phased.ULA(N/Nsubarray,0.5*c/fc,'Element',antenna);

replarray = phased.ReplicatedSubarray('Subarray',subula,...
 'GridSize',[1 Nsubarray])

replarray =
 phased.ReplicatedSubarray with properties:

17 Featured Examples

17-120

 Subarray: [1x1 phased.ULA]
 Layout: 'Rectangular'
 GridSize: [1 8]
 GridSpacing: 'Auto'
 SubarraySteering: 'None'

Next, compare the radiation pattern of this array to the radiation pattern of a 64-element ULA with
no subarrays.

refula = phased.ULA(N,0.5*c/fc,'Element',antenna);
subplot(2,1,1), pattern(replarray,fc,-180:180,0,'Type','powerdb',...
 'CoordinateSystem','rectangular','PropagationSpeed',c);
title('Subarrayed ULA Azimuth Cut'); axis([-90 90 -50 0]);
subplot(2,1,2), pattern(refula,fc,-180:180,0,'Type','powerdb',...
 'CoordinateSystem','rectangular','PropagationSpeed',c);
title('ULA Azimuth Cut'); axis([-90 90 -50 0]);

From the plot, it is clear that the two responses are identical at broadside. Note that even though the
subarrays are widely spaced, there is no grating lobe in the response.

Next, steer both arrays to 2 degrees azimuth.

steerang = 2;
steeringvec_replarray = phased.SteeringVector('SensorArray',replarray,...
 'PropagationSpeed',c);
w = steeringvec_replarray(fc,steerang);

 Subarrays in Phased Array Antennas

17-121

steeringvec_refula = phased.SteeringVector('SensorArray',refula,...
 'PropagationSpeed',c);
wref = steeringvec_refula(fc,steerang);

subplot(2,1,1), pattern(replarray,fc,-180:180,0,'Type','powerdb',...
 'CoordinateSystem','rectangular','PropagationSpeed',c,'Weights',w);
title('Subarrayed ULA Azimuth Cut'); axis([-90 90 -50 0]);
subplot(2,1,2), pattern(refula,fc,-180:180,0,'Type','powerdb',...
 'CoordinateSystem','rectangular','PropagationSpeed',c,'Weights',wref);
title('ULA Azimuth Cut'); axis([-90 90 -50 0]);

In this case, the response of the reference array still retains its original shape, but this is not the case
for the subarrayed ULA. For the subarrayed ULA, although the mainlobe is correctly steered and
stands well above the sidelobes, the response clearly shows what is often referred to as quantization
lobes. The name comes from the fact that the steering is at the subarray level; hence, the required
phase shift for each element is quantized at the subarray level. This effect gets worse when the array
is steered further from the broadside. The following plots show the response after steering the arrays
toward 6 degrees off broadside.

steerang = 6;
w = steeringvec_replarray(fc,steerang);
wref = steeringvec_refula(fc,steerang);

subplot(2,1,1), pattern(replarray,fc,-180:180,0,'Type','powerdb',...
 'CoordinateSystem','rectangular','PropagationSpeed',c,'Weights',w);
title('Subarrayed ULA Azimuth Cut'); axis([-90 90 -50 0]);
subplot(2,1,2), pattern(refula,fc,-180:180,0,'Type','powerdb',...

17 Featured Examples

17-122

 'CoordinateSystem','rectangular','PropagationSpeed',c,'Weights',wref);
title('ULA Azimuth Cut'); axis([-90 90 -50 0]);

Therefore, when forming an LFOV, one needs to be cautious about using contiguous subarrays.

One way to compensate for quantization lobes is to add phase shifters behind each element. Although
it increases the cost, it still provides a big saving compared to the full degree of freedom array
because the T/R switches, which are the most expensive parts, only need to be implemented at the
subarray level. If there is a phase shifter behind each element, then the response becomes much
better, as shown in the following plots, assuming the phase shifters behind each element are also
configured to point each subarray toward 6 degrees off the broadside.

release(replarray);
replarray.SubarraySteering = 'Phase';
replarray.PhaseShifterFrequency = fc;

subplot(2,1,1);
pattern(replarray,fc,-180:180,0,'Type','powerdb','Weights',w,...
 'CoordinateSystem','rectangular','PropagationSpeed',c,'SteerAngle',6);
title('Subarrayed ULA Azimuth Cut'); axis([-90 90 -50 0]);
subplot(2,1,2);
pattern(refula,fc,-180:180,0,'Type','powerdb',...
 'CoordinateSystem','rectangular','PropagationSpeed',c,'Weights',wref);
title('ULA Azimuth Cut'); axis([-90 90 -50 0]);

 Subarrays in Phased Array Antennas

17-123

As a side note, the element and the subarrays do not necessarily steer to the same direction. In some
applications, the elements inside the subarrays are steered toward a specific direction. The subarrays
can then be steered to slightly different directions to search the vicinity.

Wideband Scanning Arrays

Although an electronically scanned array is often called a phased array, in reality, adjusting the phase
is only one way to steer the array. The phase shifters are, by nature, narrowband devices so they only
work well within a narrow band, especially for large arrays. The following figure shows the radiation
patterns when the reference array is phase steered to 30 degrees, both at the carrier frequency and 3
percent above the carrier frequency.

fsteer = [1 1.03]*fc;
steerang = 30;
release(steeringvec_refula);
wref = squeeze(steeringvec_refula(fc,steerang));

subplot(2,1,1)
pattern(refula,fsteer,-180:180,0,'Type','powerdb',...
 'CoordinateSystem','rectangular','PropagationSpeed',c,'Weights',wref);
title('ULA Azimuth Cut'); axis([-90 90 -50 0]);
subplot(2,1,2)
pattern(refula,fsteer,-180:180,0,'Type','powerdb',...
 'CoordinateSystem','rectangular','PropagationSpeed',c,'Weights',wref);
title('ULA Azimuth Cut, Peak Zoom View'); axis([25 35 -5 0]);

17 Featured Examples

17-124

It is obvious from the figure that even though the frequency offset is a mere 3 percent, the peak
location moved away from the desired direction. This is referred to as squint effect. Thus, to achieve
steering across a wideband, one needs to steer using true time delays.

The most popular way to achieve true time delay is to use cables. However, in a big array aperture
with thousands of elements, implementing the potentially huge time delay can require a lot of cables.
Hence, this approach is not only expensive, but also cumbersome. Subarrays provide a compromise
between the accuracy and feasibility. In summary, within each subarray, the steering is achieved by
the phase; and among subarrays, the steering is done by true time delays.

The simplest way to build such an array is to contiguously group the subarrays, as in previous
sections.

The following plots compare the radiation patterns at three frequencies for a subarrayed ULA. The
array is steered toward 30 degrees azimuth at the subarray level using true time delay. Again, within
each subarray, the elements are also steered toward 30 degrees azimuth. The radiation pattern is
shown at the carrier frequency, 10 percent above the carrier frequency, and 15 percent above the
carrier frequency.

steerang = 30;
fsteer = [1 1.1 1.15]*fc;
release(steeringvec_replarray);
release(steeringvec_refula);
w = squeeze(steeringvec_replarray(fsteer,steerang));
wref = squeeze(steeringvec_refula(fsteer,steerang));

 Subarrays in Phased Array Antennas

17-125

subplot(2,1,1)
pattern(replarray,fsteer,-180:180,0,'Type','powerdb',...
 'PropagationSpeed',c,'CoordinateSystem','rectangular','Weights',w,...
 'SteerAngle',steerang);
title('Subarrayed ULA Azimuth Cut'); axis([-90 90 -50 0]);
subplot(2,1,2)
pattern(replarray,fsteer,-180:180,0,'Type','powerdb',...
 'PropagationSpeed',c,'CoordinateSystem','rectangular','Weights',w,...
 'SteerAngle',steerang);
title('Subarrayed ULA Azimuth Cut, Peak Zoom View'); axis([25 35 -5 0]);

The plots show that the squint effect has been suppressed even though the bandwidth is much wider
compared to the previous case. However, as in the LFOV case, if the required bandwidth extends to
15 percent above the carrier frequency, the radiation pattern becomes undesirable due to
quantization lobes.

One way to address this issue is to use a configuration with aperiodic subarrays. Examples of such
configurations are interlaced subarrays, overlapped subarrays, and even random subarrays. Next
example shows an interlaced subarray, where the ends of the subarray are interlaced and overlapped.
Because it is no longer formed by identical subarrays, one needs to start with a large array aperture
and partition it to achieve such configuration.

The array geometry can be seen in the following figure.

17 Featured Examples

17-126

partarray = ...
 phased.PartitionedArray('Array',phased.ULA(N,0.5,'Element',antenna),...
 'SubarraySteering','Phase');
sel = zeros(Nsubarray,N);
Nsec = N/Nsubarray;
for m = 1:Nsubarray
 if m==1
 sel(m,(m-1)*Nsec+1:m*Nsec+1) = 1;
 elseif m==Nsubarray
 sel(m,(m-1)*Nsec:m*Nsec) = 1;
 else
 sel(m,(m-1)*Nsec:m*Nsec+1) = 1;
 end
end
partarray.SubarraySelection = sel

partarray =
 phased.PartitionedArray with properties:

 Array: [1x1 phased.ULA]
 SubarraySelection: [8x64 double]
 SubarraySteering: 'Phase'
 PhaseShifterFrequency: 300000000
 NumPhaseShifterBits: 0

The resulting radiation pattern can be seen in the following figures.

steeringvec_partarray = ...
 phased.SteeringVector('SensorArray',partarray,'PropagationSpeed',c);
wwa = squeeze(steeringvec_partarray(fsteer,steerang));

subplot(2,1,1);
pattern(partarray,fsteer,-180:180,0,'Type','powerdb',...
 'PropagationSpeed',c,'CoordinateSystem','rectangular','Weights',wwa,...
 'SteerAngle',steerang);
title('Interlaced and Overlapped Subarrayed ULA Azimuth Cut');
axis([-90 90 -50 0]);
subplot(2,1,2);
pattern(replarray,fsteer,-180:180,0,'Type','powerdb',...
 'PropagationSpeed',c,'CoordinateSystem','rectangular','Weights',w,...
 'SteerAngle',steerang);
title('Contiguous Subarrayed ULA Azimuth Cut'); axis([-90 90 -50 0]);

 Subarrays in Phased Array Antennas

17-127

The new radiation pattern suppresses the largest quantization lobe, achieving a gain of around 5 dB.
Higher gains can be achieved by designing a more sophisticated overlapped subarray network, but
that is outside the scope of this example.

Summary

This example shows how to model a phased array with subarrays and illustrates several practical
concerns when applying the subarray technique to applications such as LFOV arrays or wideband
scanning arrays.

Reference

[1] Robert Mailloux, Electronically Scanned Arrays, Morgan & Claypool, 2007.

17 Featured Examples

17-128

Tapering, Thinning and Arrays with Different Sensor Patterns
This example shows how to apply tapering and model thinning on different array configurations. It
also demonstrates how to create arrays with different element patterns.

ULA Tapering

This section shows how to apply a Taylor window on the elements of a uniform linear array (ULA) in
order to reduce the sidelobe levels.

%set the random seed
rs = rng(6);

% Create a ULA antenna of 10 elements.
N = 20;
ula = phased.ULA(N);

% Clone the ideal ULA
taperedULA = clone(ula);

% Calculate and assign the taper
nbar = 5; sll = -20;
taperedULA.Taper = taylorwin(N,nbar,sll).';

Compare the response of the tapered to the untapered array. Notice how the sidelobes of the tapered
ULA are lower.

helperCompareResponses(taperedULA,ula, ...
 'Ideal ULA versus Tapered ULA response', ...
 {'Tapered','Not tapered'});

 Tapering, Thinning and Arrays with Different Sensor Patterns

17-129

ULA Thinning

This section shows how to model thinning using tapering. When thinning, each element of the array
has a certain probability of being deactivated or removed. The taper values can be either 0, for an
inactive element, or 1 for an active element. Here, the probability of keeping the element is
proportional to the value of the Taylor window at that element.

% Get that previously computed taper values corresponding to a Taylor
% window
taper = taperedULA.Taper;

% Create a random vector uniformly distributed between 0 and 1
randvect = rand(size(taper));

% Compute the taper values whose probability of being 1 is equal to
% the value of the normalized Taylor window at the corresponding sensor.
thinningTaper = zeros(size(taper));
thinningTaper(randvect<taper/max(taper)) = 1;

% Apply thinning
thinnedULA = clone(ula);
thinnedULA.Taper = thinningTaper;

The following plot shows how the thinning taper values are distributed. Notice on the edges when the
window level goes down, the number of inactive sensors is up.

plot(taper)
hold on

17 Featured Examples

17-130

plot(thinningTaper,'o')
hold off
legend('Taylor window','Thinning taper')
title('Applied Thinning Taper');xlabel('Sensor Position');
ylabel('Taylor Window Values');

Compare the response of the thinned to the ideal array. Notice how the sidelobes of the thinned ULA
are lower.

helperCompareResponses(thinnedULA,ula, ...
 'Ideal ULA versus Thinned ULA response', ...
 {'Thinned','Not thinned'});

 Tapering, Thinning and Arrays with Different Sensor Patterns

17-131

URA Tapering

This section shows how to apply a Taylor window along both dimensions of a 13 by 10 uniform
rectangular array (URA).

uraSize = [13,10];
heterogeneousURA = phased.URA(uraSize);

nbar=2; sll = -20;

% along the z axis
twinz = taylorwin(uraSize(1),nbar,sll);

% along the y axis
twiny = taylorwin(uraSize(2),nbar,sll);

% Get the total taper values by multiplying the vectors of both dimensions
tap = twinz*twiny.';

% Apply the taper
taperedURA = clone(heterogeneousURA);
taperedURA.Taper = tap;

View the sensor's color brightness in proportion to the taper magnitudes

viewArray(taperedURA,'Title','Tapered URA','ShowTaper',true);

17 Featured Examples

17-132

Plot the taper values at each sensor in 3d space

clf
pos = getElementPosition(taperedURA);
plot3(pos(2,:),pos(3,:),taperedURA.Taper(:),'*');
title('Applied Taper');ylabel('Sensor Position');zlabel('Taper Values');

 Tapering, Thinning and Arrays with Different Sensor Patterns

17-133

Compare the response of the tapered to the untapered array. Notice how the sidelobes of the tapered
URA are lower.

helperCompareResponses(heterogeneousURA,taperedURA, ...
 'Ideal URA versus Tapered URA response', ...
 {'Not tapered','Tapered'});

17 Featured Examples

17-134

Circular Planar Tapering

This section shows how to apply a taper on a circular planar array with a radius of 5 meters and
distance between elements of 0.5 meters.

radius = 5; dist = 0.5;
numElPerSide = radius*2/dist;

% Get the positions of the smallest URA which could fit the circular planar
% array
pos = getElementPosition(phased.URA(numElPerSide,dist));

% Remove all elements in URA which are outside the circle
elemToRemove = sum(pos.^2) > radius^2;
pos(:,elemToRemove) = [];

% Create the circular planar array
circularPlanarArray = phased.ConformalArray('ElementPosition',pos,...
 'ElementNormal',[0;0]*ones(1,size(pos,2)));

Apply a circular Taylor window

taperedCircularPlanarArray = clone(circularPlanarArray);
nbar=3; sll = -25;

taperedCircularPlanarArray.Taper = taylortaperc(pos,2*radius,nbar,sll).';

View the array and plot the taper values at each sensor.

 Tapering, Thinning and Arrays with Different Sensor Patterns

17-135

viewArray(taperedCircularPlanarArray,...
 'Title','Tapered Circular Planar Array','ShowTaper',true)

clf
plot3(pos(2,:),pos(3,:),taperedCircularPlanarArray.Taper,'*');
title('Applied Taper');ylabel('Sensor Position');zlabel('Taper Values');

17 Featured Examples

17-136

Compare the response of the tapered to the untapered array. Notice how the sidelobes of the tapered
array are lower.

helperCompareResponses(circularPlanarArray,taperedCircularPlanarArray, ...
 'Ideal versus Tapered response', ...
 {'Not tapered','Tapered'});

 Tapering, Thinning and Arrays with Different Sensor Patterns

17-137

Circular Planar Thinning

Calculate the thinning taper values similar to the ULA section.

taper = taperedCircularPlanarArray.Taper;
randvect = rand(size(taper));
thinningTaper = zeros(size(taper));
thinningTaper(randvect<taper/max(max(taper))) = 1;

thinnedCircularPlanarArray = clone(circularPlanarArray);
thinnedCircularPlanarArray.Taper = thinningTaper;

View the array and Compare the response of the thinned to the ideal array.

viewArray(thinnedCircularPlanarArray,'ShowTaper',true)

17 Featured Examples

17-138

clf;
helperCompareResponses(circularPlanarArray,thinnedCircularPlanarArray, ...
 'Ideal versus Thinned response', ...
 {'Not thinned','Thinned'});

 Tapering, Thinning and Arrays with Different Sensor Patterns

17-139

Multiple Element Patterns in URA

This section shows how to create a 13 by 10 URA with sensor patterns on the edges and corners
different than the patterns of the remaining sensors. This ability could be used to model coupling
effects.

Create three different cosine patterns with the following azimuth and elevation cosine exponents
[azim exponent, elev exponent]: [2, 2] for the edges, [4, 4] for the corners, and [1.5, 1.5] for the main
sensors.

mainAntenna = phased.CosineAntennaElement('CosinePower',[1.5 1.5]);
edgeAntenna = phased.CosineAntennaElement('CosinePower',[2 2]);
cornerAntenna = phased.CosineAntennaElement('CosinePower',[4 4]);

Map the sensors to the patterns.

uraSize = [13,10];

% Create a cell array which includes all the patterns
patterns = {mainAntenna, edgeAntenna, cornerAntenna};

% Initialize all sensors to first pattern.
patternMap = ones(uraSize);

% Set the edges to the second pattern.
patternMap([1 end],2:end-1) = 2;
patternMap(2:end-1,[1 end]) = 2;

17 Featured Examples

17-140

% Set the corners to the third pattern.
patternMap([1 end],[1 end]) = 3;

% Create the URA

heterogeneousURA = phased.HeterogeneousURA('ElementSet' , patterns, ...
 'ElementIndices', patternMap);

View the pattern layout in the array.

helperViewPatternArray(heterogeneousURA);

Compare the response of the multiple pattern array to the single pattern array.

clf;
helperCompareResponses(heterogeneousURA, ...
 phased.URA(uraSize,'Element',mainAntenna), ...
 'Multiple versus single pattern response', ...
 {'Single Pattern','Multiple Patterns'});

 Tapering, Thinning and Arrays with Different Sensor Patterns

17-141

Multiple Element Patterns in Circular Planar Arrays

This section shows how to set the pattern of sensors located more than 4 meters from the center of
the array.

% Create a cell array which includes all the patterns
patterns = {mainAntenna, edgeAntenna};

% Get positions
pos = getElementPosition(circularPlanarArray);

% Initialize all sensors to first pattern in sensorPatterns.
patternMap = ones(1,size(pos,2));

% Get the indexed of the sensors more than 4 meters away from the center.
sensorIdx = find(sum(pos.^2) > 4^2);

% Set the edges to the second pattern in sensorPatterns.
patternMap(sensorIdx) = 2;

% Set the corresponding properties
heterogeneousCircularPlanarArray = ...
 phased.HeterogeneousConformalArray('ElementPosition',pos,...
 'ElementNormal',[1;0]*ones(1,size(pos,2)),...
 'ElementSet' , patterns, ...
 'ElementIndices', patternMap);

View the pattern layout in the array.

17 Featured Examples

17-142

helperViewPatternArray(heterogeneousCircularPlanarArray);

Compare the response of the multiple pattern array to the single pattern array.

clf;
helperCompareResponses(circularPlanarArray,...
 heterogeneousCircularPlanarArray,...
 'Multiple versus single pattern response',...
 {'Single Pattern','Multiple Patterns'});

% reset the random seed
rng(rs)

 Tapering, Thinning and Arrays with Different Sensor Patterns

17-143

Summary

This example demonstrated how to apply taper values and model thinning using taper values for
different array configurations. It also showed how to create arrays with different element patterns.

17 Featured Examples

17-144

Simultaneous Range and Speed Estimation Using MFSK
Waveform

This example compares triangle sweep frequency-modulated continuous (FMCW) and multiple
frequency-shift keying (MFSK) waveforms used for simultaneous range and speed estimation for
multiple targets. The MFSK waveform is specifically designed for automotive radar systems used in
advanced driver assistance systems (ADAS). It is particularly appealing in multi-target scenarios
because it does not introduce ghost targets.

Triangle Sweep FMCW Waveform

In example “Automotive Adaptive Cruise Control Using FMCW Technology” (Radar Toolbox), an
automotive radar system is designed to perform range estimation for an automatic cruise control
system. In the latter part of that example, a triangle sweep FMCW waveform is used to estimate the
range and speed of the target vehicle simultaneously.

Although the triangle sweep FMCW waveform solves the range-Doppler coupling issue elegantly for a
single target, its processing becomes complicated in multi-target situations. Next section shows how
a triangle sweep FMCW waveform behaves when two targets are present.

The scene includes a car 50 meters away from the radar, traveling at 96 km/h along the same
direction as the radar, and a truck at 55 meters away, traveling at 70 km/h in the opposite direction.
The radar itself is traveling at 60 km/h.

rng(2015);

[fmcwwaveform,target,tgtmotion,channel,transmitter,receiver,...
 sensormotion,c,fc,lambda,fs,maxbeatfreq] = helperMFSKSystemSetup;

Next, simulate the radar echo from the two vehicles. The FMCW waveform has a sweep bandwidth of
150 MHz so the range resolution is 1 meter. Each up or down sweep takes 1 millisecond so each
triangle sweep takes 2 milliseconds. Note that only one triangle sweep is needed to perform the joint
range and speed estimation.

Nsweep = 2;
xr = helperFMCWSimulate(Nsweep,fmcwwaveform,sensormotion,tgtmotion,...
 transmitter,channel,target,receiver);

Although the system needs a 150 MHz bandwidth, the maximum beat frequency is much less. This
means that at the processing side, one can decimate the signal to a lower frequency to ease the
hardware requirements. The beat frequencies are then estimated using the decimated signal.

dfactor = ceil(fs/maxbeatfreq)/2;
fs_d = fs/dfactor;
fbu_rng = rootmusic(decimate(xr(:,1),dfactor),2,fs_d);
fbd_rng = rootmusic(decimate(xr(:,2),dfactor),2,fs_d);

Now there are two beat frequencies from the up sweep and two beat frequencies from the down
sweeps. Since any pair of beat frequencies from an up sweep and a down sweep can define a target,
there are four possible combinations of range and Doppler estimates yet only two of them are
associated with the real targets.

sweep_slope = fmcwwaveform.SweepBandwidth/fmcwwaveform.SweepTime;
rng_est = beat2range([fbu_rng fbd_rng;fbu_rng flipud(fbd_rng)],...
 sweep_slope,c)

 Simultaneous Range and Speed Estimation Using MFSK Waveform

17-145

rng_est = 4×1

 49.9802
 54.9406
 64.2998
 40.6210

The remaining two are what often referred to as the ghost targets. The relationship between real
targets and ghost targets can be better explained using time-frequency representation.

As shown in the figure, each intersection of a up sweep return and a down sweep return indicates a
possible target. So it is critical to distinguish between the true targets and the ghost targets. To solve
this ambiguity, one can transmit additional FMCW signals with different sweep slopes. Since only the
true targets will occupy the same intersection in the time-frequency domain, the ambiguity is
resolved. However, this approach significantly increases the processing complexity as well as the
processing time needed to obtain the valid estimates.

MFSK Waveform

Multiple frequency shift keying (MFSK) waveform [1] on page 17-0 is designed for automotive
radar to achieve simultaneous range and Doppler estimation under multiple targets situation without
falling into the trap of ghost targets. Its time-frequency representation is shown in the following
figure.

17 Featured Examples

17-146

The figure indicates that the MFSK waveform is a combination of two linear FMCW waveforms with a
fixed frequency offset. Unlike the regular FMCW waveforms, MFSK sweeps the entire bandwidth at
discrete steps. Within each step, a single frequency continuous wave signal is transmitted. Because
there are two tones within each step, it can be considered as a frequency shift keying (FSK)
waveform. Thus, there is one set of range and Doppler relation from FMCW waveform and another
set of range and Doppler relation from FSK. Combining two sets of relations together can help
resolve the coupling between range and Doppler regardless the number of targets present in the
scene.

The following sections simulates the previous example again, but uses an MFSK waveform instead.

End-to-end Radar System Simulation Using MFSK Waveform

First, parameterize the MFSK waveform to satisfy the system requirement specified in [1] on page
17-0 . Because the range resolution is 1 meter, the sweep bandwidth is set at 150 MHz. In addition,
the frequency offset is set at -294 kHz as specified in [1] on page 17-0 . Each step lasts about 2
microseconds and the entire sweep has 1024 steps. Thus, each FMCW sweep takes 512 steps and the
total sweep time is a little over 2 ms. Note that the sweep time is comparable to the FMCW signal
used in previous sections.

mfskwaveform = phased.MFSKWaveform(...
 'SampleRate',151e6,...
 'SweepBandwidth',150e6,...
 'StepTime',2e-6,...
 'StepsPerSweep',1024,...
 'FrequencyOffset',-294e3,...
 'OutputFormat','Sweeps',...
 'NumSweeps',1);

The figure below shows the spectrogram of the waveform. It is zoomed into a small interval to better
reveal the time-frequency characteristics of the waveform.

numsamp_step = round(mfskwaveform.SampleRate*mfskwaveform.StepTime);
sig_display = mfskwaveform();

 Simultaneous Range and Speed Estimation Using MFSK Waveform

17-147

spectrogram(sig_display(1:8192),kaiser(3*numsamp_step,100),...
 ceil(2*numsamp_step),linspace(0,4e6,2048),mfskwaveform.SampleRate,...
 'yaxis','reassigned','minthreshold',-60)

Next, simulate the return of the system. Again, only 1 sweep is needed to estimate the range and
Doppler.

Nsweep = 1;
release(channel);
channel.SampleRate = mfskwaveform.SampleRate;
release(receiver);
receiver.SampleRate = mfskwaveform.SampleRate;

xr = helperFMCWSimulate(Nsweep,mfskwaveform,sensormotion,tgtmotion,...
 transmitter,channel,target,receiver);

The subsequent processing samples the return echo at the end of each step and group the sampled
signals into two sequences corresponding to two sweeps. Note that the sampling frequency of the
resulting sequence is now proportional to the time at each step, which is much less compared the
original sample rate.

x_dechirp = reshape(xr(numsamp_step:numsamp_step:end),2,[]).';
fs_dechirp = 1/(2*mfskwaveform.StepTime);

As in the case of FMCW signals, the MFSK waveform is processed in the frequency domain. Next
figures shows the frequency spectrums of the received echos corresponding to the two sweeps.

17 Featured Examples

17-148

xf_dechirp = fft(x_dechirp);
num_xf_samp = size(xf_dechirp,1);
beatfreq_vec = (0:num_xf_samp-1).'/num_xf_samp*fs_dechirp;

clf;
subplot(211),plot(beatfreq_vec/1e3,abs(xf_dechirp(:,1)));grid on;
ylabel('Magnitude');
title('Frequency spectrum for sweep 1');
subplot(212),plot(beatfreq_vec/1e3,abs(xf_dechirp(:,2)));grid on;
ylabel('Magnitude');
title('Frequency spectrum for sweep 2');
xlabel('Frequency (kHz)')

Note that there are two peaks in each frequency spectrum indicating two targets. In addition, the
peaks are at the identical locations in both returns so there is no ghost targets.

To detect the peaks, one can use a CFAR detector. Once detected, the beat frequencies as well as the
phase differences between two spectra are computed at the peak locations.

cfar = phased.CFARDetector('ProbabilityFalseAlarm',1e-2,...
 'NumTrainingCells',8);

peakidx = cfar(abs(xf_dechirp(:,1)),1:num_xf_samp);

Fbeat = beatfreq_vec(peakidx);
phi = angle(xf_dechirp(peakidx,2))-angle(xf_dechirp(peakidx,1));

 Simultaneous Range and Speed Estimation Using MFSK Waveform

17-149

Finally, the beat frequencies and phase differences are used to estimate the range and speed.
Depending on how one constructs the phase difference, the equations are slightly different. For the
approach shown in this example, it can be shown that the range and speed satisfies the following
relation:

fb = − 2v
λ + 2βR

c

Δϕ = −
4πTsv

λ +
4πfof f setR

c

where fb is the beat frequency, Δϕ is the phase difference, λ is the wavelength, c is the propagation
speed, Ts is the step time, fof f set is the frequency offset, β is the sweep slope, R is the range, and v is
the speed. Based on the equation, the range and speed are estimated below:

sweep_slope = mfskwaveform.SweepBandwidth/...
 (mfskwaveform.StepsPerSweep*mfskwaveform.StepTime);
temp = ...
 [1 sweep_slope;mfskwaveform.StepTime mfskwaveform.FrequencyOffset]\...
 [Fbeat phi/(2*pi)].';

r_est = c*temp(2,:)/2

r_est = 1×2

 54.8564 49.6452

v_est = lambda*temp(1,:)/(-2)

v_est = 1×2

 36.0089 -9.8495

The estimated range and speed match the true range and speed values, as tabulated below, very well.

• Car: r = 50 m, v = -10 m/s
• Truck: r = 55 m, v = 36 m/s

Summary

This example shows two simultaneous range and speed estimation approaches, using either a triangle
sweep FMCW waveform or an MFSK waveform. It is shown that MFSK waveform have an advantage
over FMCW waveform when multiple targets are present since it does not introduce ghost targets
during the processing.

References

[1] Rohling, H. and M. Meinecke. Waveform Design Principle for Automotive Radar Systems,
Proceedings of CIE International Conference on Radar, 2001.

17 Featured Examples

17-150

Waveform Analysis Using the Ambiguity Function
This example illustrates how to use the ambiguity function to analyze waveforms. It compares the
range and Doppler capability of several basic waveforms, e.g., the rectangular waveform and the
linear and stepped FM waveform.

In a radar system, the choice of a radar waveform plays an important role in enabling the system to
separate two closely located targets, in either range or speed. Therefore, it is often necessary to
examine a waveform and understand its resolution and ambiguity in both range and speed domains.
In radar, the range is measured using the delay and the speed is measured using the Doppler shift.
Thus, the range and the speed are used interchangeably with the delay and the Doppler.

Introduction

To improve the signal to noise ratio (SNR), modern radar systems often employ the matched filter in
the receiver chain. The ambiguity function of a waveform represents exactly the output of the
matched filter when the specified waveform is used as the filter input. This exact representation
makes the ambiguity function a popular tool for designing and analyzing waveforms. This approach
provides the insight of the resolution capability in both delay and Doppler domains for a given
waveform. Based on this analysis, one can then determine whether a waveform is suitable for a
particular application.

The following sections use the ambiguity function to explore the range-Doppler relationship for
several popular waveforms. To establish a comparison baseline, assume that the design specification
of the radar system requires a maximum unambiguous range of 15 km and a range resolution of 1.5
km. For the sake of simplicity, also use 3e8 m/s as the speed of light.

Rmax = 15e3;
Rres = 1500;
c = 3e8;

Based on the design specifications already mentioned, the pulse repetition frequency (PRF) and the
bandwidth of the waveform can be computed as follows.

prf = c/(2*Rmax);
bw = c/(2*Rres);

Choose a sampling frequency that is twice of the bandwidth.

fs = 2*bw;

Rectangular Pulse Waveform

The simplest waveform for a radar system is probably a rectangular waveform, sometimes also
referred to as single frequency waveform. For the rectangular waveform, the pulse width is the
reciprocal of the bandwidth.

A rectangular waveform can be created as follows.

rectwaveform = phased.RectangularWaveform('SampleRate',fs,...
 'PRF',prf,'PulseWidth',1/bw)

rectwaveform =
 phased.RectangularWaveform with properties:

 SampleRate: 200000

 Waveform Analysis Using the Ambiguity Function

17-151

 DurationSpecification: 'Pulse width'
 PulseWidth: 1.0000e-05
 PRF: 10000
 PRFSelectionInputPort: false
 FrequencyOffsetSource: 'Property'
 FrequencyOffset: 0
 OutputFormat: 'Pulses'
 NumPulses: 1
 PRFOutputPort: false
 CoefficientsOutputPort: false

Because the analysis of a waveform is always performed on full pulses, keep the OutputFormat
property as 'Pulses'. One can also check the bandwidth of the waveform using the bandwidth method.

bw_rect = bandwidth(rectwaveform)

bw_rect = 1.0000e+05

The resulting bandwidth matches the requirement. Now, generate one pulse of the waveform, and
then examine it using the ambiguity function.

wav = rectwaveform();
ambgfun(wav,rectwaveform.SampleRate,rectwaveform.PRF);

In the figure, notice that the nonzero response is occupying only about 10% of all delays, focusing in
a narrow strip around delay 0. This occurs because the waveform has a duty cycle of 0.1.

17 Featured Examples

17-152

dc_rect = dutycycle(rectwaveform.PulseWidth,rectwaveform.PRF)

dc_rect = 0.1000

When investigating a waveform's resolution capability, the zero delay cut and the zero Doppler cut of
the waveform ambiguity function are often of interest.

The zero Doppler cut of the ambiguity function returns the auto-correlation function (ACF) of the
rectangular waveform. The cut can be plotted using the following command.

ambgfun(wav,rectwaveform.SampleRate,rectwaveform.PRF,'Cut','Doppler');

The zero Doppler cut of the ambiguity function depicts the matched filter response of a target when
the target is stationary. From the plot, one can see that the first null response appears at 10
microseconds, which means that this waveform could resolve two targets that are at least 10
microseconds, or 1.5 km apart. Hence, the response matches the requirement in the design
specification.

The zero delay cut can be plotted using similar syntax.

ambgfun(wav,rectwaveform.SampleRate,rectwaveform.PRF,'Cut','Delay');

 Waveform Analysis Using the Ambiguity Function

17-153

Notice that the returned zero delay response is fairly broad. The first null does not appear till at the
edge, which corresponds to a Doppler shift of 100 kHz. Thus, if the two targets are at the same
range, they need to have a difference of 100 kHz in the Doppler domain to be separated. Assuming
the radar is working at 1 GHz, according to the computation below, such a separation corresponds to
a speed difference of 30 km/s. Because this number is so large, essentially one cannot separate two
targets in the Doppler domain using this system.

fc = 1e9;
deltav_rect = dop2speed(100e3,c/fc)

deltav_rect = 30000

At this point it may be worth it to mention another issue with the rectangular waveform. For a
rectangular waveform, the range resolution is determined by the pulse width. Thus, to achieve good
range resolution, the system needs to adopt a very small pulse width. At the same time, the system
also needs to be able to send out enough energy to the space so that the returned echo can be
reliably detected. Hence, a narrow pulse width requires very high peak power at the transmitter. In
practice, producing such power can be very costly.

Linear FM Pulse Waveform

One can see from the previous section that the Doppler resolution for a single rectangular pulse is
fairly poor. In fact, the Doppler resolution for a single rectangular pulse is given by the reciprocal of
its pulse width. Recall that the delay resolution of a rectangular waveform is given by its pulse width.
Apparently, there exists a conflict of interest between range and Doppler resolutions of a rectangular
waveform.

17 Featured Examples

17-154

The root issue here is that both the delay and the Doppler resolution depend on the pulse width in
opposite ways. Therefore, one way to solve this issue is to come up with a waveform that decouples
this dependency. One can then improve the resolution in both domains simultaneously.

Linear FM waveform is just such a waveform. The range resolution of a linear FM waveform is no
longer depending on the pulse width. Instead, the range resolution is determined by the sweep
bandwidth.

In linear FM waveform, because the range resolution is now determined by the sweep bandwidth, the
system can afford a longer pulse width. Hence, the power requirement is alleviated. Meanwhile,
because of the longer pulse width, the Doppler resolution improves. This improvement occurs even
though the Doppler resolution of a linear FM waveform is still given by the reciprocal of the pulse
width.

Now, explore the linear FM waveform in detail. The linear FM waveform that provides the desired
range resolution can be constructed as follows.

lfmwaveform = phased.LinearFMWaveform('SampleRate',fs,...
 'SweepBandwidth',bw,'PRF',prf,'PulseWidth',5/bw)

lfmwaveform =
 phased.LinearFMWaveform with properties:

 SampleRate: 200000
 DurationSpecification: 'Pulse width'
 PulseWidth: 5.0000e-05
 PRF: 10000
 PRFSelectionInputPort: false
 SweepBandwidth: 100000
 SweepDirection: 'Up'
 SweepInterval: 'Positive'
 Envelope: 'Rectangular'
 FrequencyOffsetSource: 'Property'
 FrequencyOffset: 0
 OutputFormat: 'Pulses'
 NumPulses: 1
 PRFOutputPort: false
 CoefficientsOutputPort: false

The pulse width is 5 times longer than that of the rectangular waveform used in the earlier sections
of this example. Notice that the bandwidth of the linear FM waveform is the same as the rectangular
waveform.

bw_lfm = bandwidth(lfmwaveform)

bw_lfm = 100000

The zero Doppler cut of the linear FM waveform appears in the next plot.

wav = lfmwaveform();
ambgfun(wav,lfmwaveform.SampleRate,lfmwaveform.PRF,'Cut','Doppler');

 Waveform Analysis Using the Ambiguity Function

17-155

From the preceding figure, one can see that even though the response now has sidelobes, the first
null still appears at 10 microseconds, so the range resolution is preserved.

One can also plot the zero delay cut of the linear FM waveform. Observe that the first null in Doppler
domain is now at around 20 kHz, which is 1/5 of the original rectangular waveform.

ambgfun(wav,lfmwaveform.SampleRate,lfmwaveform.PRF,'Cut','Delay');

17 Featured Examples

17-156

Following the same procedure as for the rectangular waveform in the earlier sections of this example,
one can calculate that the 20 kHz Doppler separation translates to a speed difference of 6 km/s. This
resolution is 5 times better than the rectangular waveform. Unfortunately, such resolution is still
inadequate.

deltav_lfm = dop2speed(20e3,c/fc)

deltav_lfm = 6000

One may also be interested in seeing the 3-D plot of the ambiguity function for the linear FM
waveform. If you want to see a 3-D plot other than the contour format, you can just get the returned
ambiguity function and then plot it using your favorite format. For example, the following snippet
generates the surface plot of the linear FM waveform ambiguity function.

[afmag_lfm,delay_lfm,doppler_lfm] = ambgfun(wav,lfmwaveform.SampleRate,...
 lfmwaveform.PRF);
surf(delay_lfm*1e6,doppler_lfm/1e3,afmag_lfm,'LineStyle','none');
axis tight; grid on; view([140,35]); colorbar;
xlabel('Delay \tau (us)');ylabel('Doppler f_d (kHz)');
title('Linear FM Pulse Waveform Ambiguity Function');

 Waveform Analysis Using the Ambiguity Function

17-157

Notice that compared to the ambiguity function of the rectangular waveform, the ambiguity function
of the linear FM waveform is slightly tilted. The tilt provides the improved resolution in the zero delay
cut. The ambiguity function of both rectangular waveform and linear FM waveform have the shape of
a long, narrow edge. This kind of ambiguity function is often termed as "knife edge" ambiguity
function.

Before proceeding to improve further the Doppler resolution, it is worth looking at an important
figure of merit used in waveform analysis. The product of the pulse width and the bandwidth of a
waveform is called the waveform's time bandwidth product. For a rectangular waveform, the time
bandwidth product is always 1. For a linear FM waveform, because of the decoupling of the
bandwidth and the pulse width, the time bandwidth can be larger than 1. The waveform just used has
a time bandwidth product of 5. Recall that by preserving the same range resolution as the
rectangular waveform, the linear FM waveform achieves a Doppler resolution that is 5 times better.

Coherent Pulse Train

As of the previous section, the Doppler resolution of the linear FM waveform is still fairly poor. One
way to improve this resolution is to further extend the pulse width. However, this approach will not
work for two reasons:

• The duty cycle of the waveform is already 50%, which is close to the practical limit. (Even if one
could, say, use a 100% duty cycle, it is still only a factor of 2 improvement, which is far from being
able to resolve the issue.)

• Longer pulse width means large minimum detectable range, which is also undesirable.

17 Featured Examples

17-158

If one cannot extend the pulse width within one pulse, one has to look beyond this boundary. Indeed,
in modern radar systems, the Doppler processing often uses a coherent pulse train. The more pulses
in the pulse train, the finer the Doppler resolution.

To illustrate the idea, next, try a five-pulse burst.

release(lfmwaveform);
lfmwaveform.NumPulses = 5;
wav = lfmwaveform();

First, plot the zero Doppler cut of the ambiguity function.

ambgfun(wav,lfmwaveform.SampleRate,lfmwaveform.PRF,'Cut','Doppler');

Notice that for the zero Doppler cut, the first null is still around 10 microseconds, so the range
resolution is the same. One should see immediately the presence of many range domain sidelobes.
These sidelobes are the tradeoff for using a pulse train. The distance between the mainlobe and the
first sidelobe is the length of one entire pulse, i.e., the reciprocal of the PRF. As one can see, this
value corresponds to the maximum unambiguous range.

T_max = 1/prf

T_max = 1.0000e-04

The zero delay cut also has sidelobes because of the pulse train. The distance between the mainlobe
and the first sidelobe is the PRF. Thus, this value is the maximum unambiguous Doppler the radar
system can detect. One can also calculate the corresponding maximum unambiguous speed.

 Waveform Analysis Using the Ambiguity Function

17-159

ambgfun(wav,lfmwaveform.SampleRate,lfmwaveform.PRF,'Cut','Delay');

V_max = dop2speed(lfmwaveform.PRF,c/fc)

V_max = 3000

However, notice that the mainlobe is now much sharper. Careful examination reveals that the first
null is at about 2 kHz. This Doppler resolution can actually be obtained by the following equation,

deltaf_train = lfmwaveform.PRF/5

deltaf_train = 2000

i.e., the resolution is now determined by the length of our entire pulse train, not the pulse width of a
single pulse. The corresponding speed resolution is now

deltav_train = dop2speed(deltaf_train,c/fc)

deltav_train = 600

which is significantly better. More importantly, to get even finer speed resolution, one can simply
increase the number of pulses included in the pulse train. Of course the number of pulses one can
have in a burst depends on whether one can preserve the coherence for the entire duration, but that
discussion is out of the scope of this example.

One may notice that in the zero delay cut, the distance between the peaks are no longer constant,
especially for farther out sidelobes. This lack of constancy occurs because the linear FM waveform's
ambiguity function is tilted. Hence, judging the separation of sidelobes in zero delay cut can be

17 Featured Examples

17-160

misleading. The ambiguity caused by the pulse train is probably best viewed in the contoured form,
as the next code example shows. Notice that along the edge of the ambiguity function, those
sidelobes are indeed evenly spaced.

ambgfun(wav,lfmwaveform.SampleRate,lfmwaveform.PRF);

Because of all the sidelobes, this kind of ambiguity function is called bed of nails ambiguity function.

Stepped FM Waveform

The linear FM waveform is very widely used in radar systems. However, it does present some
challenges to the hardware. For one thing, the hardware has to be able to sweep the entire frequency
range in one pulse. Using this waveform also makes it harder to build the receiver because it has to
accommodate the entire bandwidth.

To avoid these issues, you can use a stepped FM waveform instead. A stepped FM waveform consists
of multiple contiguous CW pulses. Each pulse has a different frequency and together, all pulses
occupy the entire bandwidth. Hence, there is no more sweep within the pulse, and the receiver only
needs to accommodate the bandwidth that is the reciprocal of the pulse width of a single pulse.

Next, set up such a stepped FM waveform.

stepfmwaveform = phased.SteppedFMWaveform('SampleRate', fs,...
 'PulseWidth',5/bw,'PRF',prf,'NumSteps',5,'FrequencyStep',bw/5,...
 'NumPulses',5)

stepfmwaveform =
 phased.SteppedFMWaveform with properties:

 Waveform Analysis Using the Ambiguity Function

17-161

 SampleRate: 200000
 DurationSpecification: 'Pulse width'
 PulseWidth: 5.0000e-05
 PRF: 10000
 PRFSelectionInputPort: false
 FrequencyStep: 20000
 NumSteps: 5
 FrequencyOffsetSource: 'Property'
 FrequencyOffset: 0
 OutputFormat: 'Pulses'
 NumPulses: 5
 PRFOutputPort: false
 CoefficientsOutputPort: false

wav = stepfmwaveform();

The zero Doppler cut, zero delay cut, and contour plot of the ambiguity function are shown below.

ambgfun(wav,stepfmwaveform.SampleRate,stepfmwaveform.PRF,'Cut','Doppler');

ambgfun(wav,stepfmwaveform.SampleRate,stepfmwaveform.PRF,'Cut','Delay');

17 Featured Examples

17-162

ambgfun(wav,stepfmwaveform.SampleRate,stepfmwaveform.PRF);

 Waveform Analysis Using the Ambiguity Function

17-163

From these figures, one can make the following observations:

• The first null in delay is still at 10 microseconds, so the range resolution is preserved. Notice that
because each pulse is different, the sidelobes in the range domain disappear.

• The first null in Doppler is still at 2 kHz, so it has the same Doppler resolution as the 5-pulse
linear FM pulse train. The sidelobes in the Doppler domain still present as in the linear FM pulse
train case.

• The contour plot of the stepped FM waveform is also of type bed of nails. Although the
unambiguous range is greatly extended, the unambiguous Doppler is still confined by the
waveform's PRF.

As to the disadvantage of a stepped FM waveform, the processing becomes more complicated.

Barker-Coded Waveform

Another important group of waveforms is phase-coded waveforms, among which the popularly used
ones are Barker codes, Frank codes, and Zadoff-Chu codes. In a phase-coded waveform, a pulse is
divided into multiple subpulses, often referred to as chips, and each chip is modulated with a given
phase. All phase-coded waveforms have good autocorrelation properties which make them good
candidates for pulse compression. Thus, if a phase-coded waveform is adopted, it could lower the
probability of interception as the energy is spread into chips. At the receiver, a properly configured
matched filter could suppress the noise and achieve good range resolution.

Barker code is probably the most well known phase-coded waveform. A Barker-coded waveform can
be constructed using the following command.

17 Featured Examples

17-164

barkerwaveform = phased.PhaseCodedWaveform('Code','Barker','NumChips',7,...
 'SampleRate', fs,'ChipWidth',1/bw,'PRF',prf)

barkerwaveform =
 phased.PhaseCodedWaveform with properties:

 SampleRate: 200000
 Code: 'Barker'
 ChipWidth: 1.0000e-05
 NumChips: 7
 PRF: 10000
 PRFSelectionInputPort: false
 FrequencyOffsetSource: 'Property'
 FrequencyOffset: 0
 OutputFormat: 'Pulses'
 NumPulses: 1
 PRFOutputPort: false
 CoefficientsOutputPort: false

wav = barkerwaveform();

This Barker code consists of 7 chips. Its zero Doppler cut of the ambiguity function is given by

ambgfun(wav,barkerwaveform.SampleRate,barkerwaveform.PRF,'Cut','Doppler');

From the figure, one can see that the zero Doppler cut of a Barker code's ambiguity function has an
interesting property. All its sidelobes have the same height and are exactly 1/7 of the mainlobe. In

 Waveform Analysis Using the Ambiguity Function

17-165

fact, a length-N Barker code can provide a peak-to-peak suppression of N, which helps distinguish
closely located targets in range. This is the most important property of the Barker code. The range
resolution is approximately 10 microseconds, the same as the chip width.

There are two issues associated with a Barker code. First, there are only seven known Barker codes.
Their lengths are 2, 3, 4, 5, 7, 11 and 13. It is believed that there are no other Barker codes. Second,
the Doppler performance of the Barker code is fairly poor. Although the ambiguity function has good
shape at the zero Doppler cut, once there is some Doppler shift, the sidelobe level increases
significantly. The increase can be seen in the following contour plot.

ambgfun(wav,barkerwaveform.SampleRate,barkerwaveform.PRF);

Summary

This example compared several popular waveforms including the rectangular waveform, the linear
FM waveform, the stepped FM waveform and the Barker-coded waveform. It also showed how to use
the ambiguity function to analyze these waveforms and determine their resolution capabilities.

Reference

[1] Nadav Levanon and Eli Mozeson, Radar Signals, Wiley-IEEE Press, 2004.

[2] Mark Richards, Fundamentals of Radar Signal Processing, McGraw Hill, 2005.

17 Featured Examples

17-166

Waveform Design to Improve Range Performance of an
Existing System

This example shows how waveform type affects a radar system's detection performance. The example
considers the situation where a new performance goal is set for an existing radar system design.
Since the old design can no longer achieve the desired performance, a new waveform is adopted. The
example also shows how to model Swerling targets, simulate the return, and then detect the target
ranges.

Design Specification Change

A monostatic pulse radar is designed in the example “Simulating Test Signals for a Radar Receiver”
on page 17-378 to achieve the following goal:

1 minimum target radar cross section (RCS): 1 m2, nonfluctuating;
2 maximum unambiguous range: 5 km;
3 probability of detection: 0.9;
4 probability of false alarm: 1e-6.

load BasicMonostaticRadarExampleData;

New Performance Requirement

After system deployment, two new requirements arise:

1 the maximum unambiguous range needs to be extended to 8 km.
2 the system also needs to be able to detect Swerling case 2 targets.

Can the existing design be modified to achieve the new performance goal? To answer this question,
we need to recalculate the parameters affected by these new requirements.

The first affected parameter is the pulse repetition frequency (PRF). It needs to be recalculated based
on the new maximum unambiguous range.

prop_speed = radiator.PropagationSpeed;
max_range = 8000;
prf = prop_speed/(2*max_range);

Compared to the 30 kHz PRF of the existing design, the new PRF, 18.737 kHz, is smaller. Hence the
pulse interval is longer. Note that this is a trivial change in the radar software and is fairly cheap in
hardware cost.

waveform.PRF = prf;

Next, because the target is described using a Swerling case 2 model, we need to use Shnidman's
equation, instead of Albersheim's equation, to calculate the required SNR to achieve the designated
Pd and Pfa. Shnidman's equation assumes noncoherent integration and a square law detector. The
number of pulses to integrate is 10.

num_pulse_int = 10;
pfa = 1e-6;
snr_min = shnidman(0.9,pfa,num_pulse_int,2)

snr_min = 6.1583

 Waveform Design to Improve Range Performance of an Existing System

17-167

https://www.mathworks.com/discovery/radar-system-design.html

Waveform Selection

If we were to use the same rectangular waveform in the existing design, the pulse width would
remain the same because it is determined by the range resolution. However, because our maximum
range has increased from 5 km to 8 km and the target model switched from nonfluctuating to
Swerling case 2, we need to recalculate the required peak transmit power.

fc = radiator.OperatingFrequency;
lambda = prop_speed/fc;
peak_power = ((4*pi)^3*noisepow(1/waveform.PulseWidth)*max_range^4*...
 db2pow(snr_min))/(db2pow(2*transmitter.Gain)*1*lambda^2)

peak_power = 4.4821e+04

The peak power is roughly eight times larger than the previous requirement. This is no longer a
trivial modification because (1) the existing radar hardware is designed to produce a pulse with peak
power of about 5200 w. Although most designs will leave some margin above the required power, it is
unlikely that an existing system can accommodate eight times more power; (2) it is very expensive to
replace the hardware to output such high power. Therefore, the current design needs to be modified
to accommodate the new goal by using more sophisticated signal processing techniques.

Linear FM Waveform

One approach to reduce the power requirement is to use a waveform other than the rectangular
waveform. For example, a linear FM waveform can use a longer pulse than a rectangular waveform.
As a result, the required peak transmit power drops.

Let us examine the details of the linear FM waveform's configuration.

The desired range resolution determines the waveform bandwidth. For a linear FM waveform, the
bandwidth is equal to its sweep bandwidth. However, the pulse width is no longer restricted to the
reciprocal of the pulse bandwidth, so a much longer pulse width can be used. We use a pulse width
that is 20 times longer and set the sample rate to be twice the pulse bandwidth.

range_res = 50;
pulse_bw = prop_speed/(2*range_res);
pulse_width = 20/pulse_bw;
fs = 2*pulse_bw;

waveform = phased.LinearFMWaveform(...
 'SweepBandwidth',pulse_bw,...
 'PulseWidth',pulse_width,...
 'PRF',prf,...
 'SampleRate',fs);

We now determine the new required transmit power needed to achieve the design requirements.

peak_power = ((4*pi)^3*noisepow(1/waveform.PulseWidth)*max_range^4*...
 db2pow(snr_min))/(db2pow(2*transmitter.Gain)*1*lambda^2)

peak_power = 2.2411e+03

This transmit power is well within the capability of our existing radar system. We have achieved a
peak transmit power that can meet the new requirements without modifying the existing hardware.

transmitter.PeakPower = peak_power;

17 Featured Examples

17-168

System Simulation

Now that we have defined the radar to meet the design specifications, we set up the targets and the
environment to simulate the entire system.

Targets

As in the case with the aforementioned example, we assume that there are 3 targets in a free space
environment. However, now the target model is Swerling case 2, the target positions and the mean
radar cross sections are specified as follows:

tgtpos = [[2024.66; 0; 0],[6518.63; 0; 0],[6845.04; 0; 0]];
tgtvel = [[0;0;0],[0;0;0],[0;0;0]];
tgtmotion = phased.Platform('InitialPosition',tgtpos,'Velocity',tgtvel);

tgtrcs = [2.2 1.1 1.05];
fc = radiator.OperatingFrequency;
target = phased.RadarTarget(...
 'Model','Swerling2',...
 'MeanRCS',tgtrcs,...
 'OperatingFrequency',fc);

We set the seed for generating the rcs in the targets so that we can reproduce the same results.

target.SeedSource = 'Property';
target.Seed = 2007;

Propagation Environments

We also set up the propagation channel between the radar and each target.

channel = phased.FreeSpace(...
 'SampleRate',waveform.SampleRate,...
 'TwoWayPropagation',true,...
 'OperatingFrequency',fc);

Signal Synthesis

We set the seed for the noise generation in the receiver so that we can reproduce the same results.

receiver.SeedSource = 'Property';
receiver.Seed = 2007;

fast_time_grid = unigrid(0,1/fs,1/prf,'[)');
slow_time_grid = (0:num_pulse_int-1)/prf;

rxpulses = zeros(numel(fast_time_grid),num_pulse_int); % pre-allocate

for m = 1:num_pulse_int

 % Update sensor and target positions
 [sensorpos,sensorvel] = sensormotion(1/prf);
 [tgtpos,tgtvel] = tgtmotion(1/prf);

 % Calculate the target angles as seen by the sensor
 [tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);

 % Simulate propagation of pulse in direction of targets

 Waveform Design to Improve Range Performance of an Existing System

17-169

 pulse = waveform();
 [txsig,txstatus] = transmitter(pulse);
 txsig = radiator(txsig,tgtang);
 txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);

 % Reflect pulse off of targets
 tgtsig = target(txsig,true);

 % Receive target returns at sensor
 rxsig = collector(tgtsig,tgtang);
 rxpulses(:,m) = receiver(rxsig,~(txstatus>0));
end

Range Detection

Detection Threshold

The detection threshold is calculated using the noise information, taking into consideration the pulse
integration. Note that in the loaded system, as outlined in the aforementioned example, the noise
bandwidth is half of the sample rate. We plot the threshold together with the first two pulses.

noise_bw = receiver.SampleRate/2;
npower = noisepow(noise_bw,...
 receiver.NoiseFigure,receiver.ReferenceTemperature);
threshold = npower * db2pow(npwgnthresh(pfa,num_pulse_int,'noncoherent'));

pulseplotnum = 2;
helperRadarPulsePlot(rxpulses,threshold,...
 fast_time_grid,slow_time_grid,pulseplotnum);

17 Featured Examples

17-170

The figure shows that the pulses are very wide which may result in poor range resolution. In addition,
the second and third targets are completely masked by the noise.

Matched Filter

As in the case of rectangular waveform, the received pulses are first passed through a matched filter
to improve the SNR. The matched filter offers a processing gain which further improves the detection
threshold. In addition, the added benefit of the matched filter of a linear FM waveform is that it
compresses the waveform in the time domain so that the filtered pulse becomes much narrower,
which translates to better range resolution.

matchingcoeff = getMatchedFilter(waveform);
matchedfilter = phased.MatchedFilter(...
 'CoefficientsSource','Property',...
 'Coefficients',matchingcoeff,...
 'GainOutputPort',true);
[rxpulses, mfgain] = matchedfilter(rxpulses);
threshold = threshold * db2pow(mfgain);

Compensate for the matched filter delay.

matchingdelay = size(matchingcoeff,1)-1;
rxpulses = buffer(rxpulses(matchingdelay+1:end),size(rxpulses,1));

A time varying gain is then applied to the signal so that a constant threshold can be used across the
entire detectable range.

 Waveform Design to Improve Range Performance of an Existing System

17-171

range_gates = prop_speed*fast_time_grid/2;
lambda = prop_speed/fc;

tvg = phased.TimeVaryingGain(...
 'RangeLoss',2*fspl(range_gates,lambda),...
 'ReferenceLoss',2*fspl(max_range,lambda));
rxpulses = tvg(rxpulses);

Noncoherent Integration

We now integrate the receive pulses noncoherently to further improve the SNR. This operation is also
referred to as video integration.

rxpulses = pulsint(rxpulses,'noncoherent');

helperRadarPulsePlot(rxpulses,threshold,fast_time_grid,slow_time_grid,1);

After video integration, the data is ready for the final detection stage. From the plot above, we see
that there are no false alarms.

Range Detection

Finally, threshold detection is performed on the integrated pulses. The detection scheme identifies
the peaks and then translates their positions into the ranges of the targets.

[~,range_detect] = findpeaks(rxpulses,'MinPeakHeight',sqrt(threshold));

The true ranges and the estimated ranges are

17 Featured Examples

17-172

true_range = round(tgtrng)

true_range = 1×3

 2025 6519 6845

range_estimates = round(range_gates(range_detect))

range_estimates = 1×3

 2025 6525 6850

Note that these range estimates are only accurate up to the range resolution that can be achieved by
the radar system, which is 50 m in this example.

Summary

In this example, we used the chirp waveform for range detection. By using the chirp waveform, we
were able to reduce the required peak transmit power, thus achieving a larger detectable range of 8
km for Swerling case 2 targets.

 Waveform Design to Improve Range Performance of an Existing System

17-173

Acoustic Beamforming Using a Microphone Array
This example illustrates microphone array beamforming to extract desired speech signals in an
interference-dominant, noisy environment. Such operations are useful to enhance speech signal
quality for perception or further processing. For example, the noisy environment can be a trading
room, and the microphone array can be mounted on the monitor of a trading computer. If the trading
computer must accept speech commands from a trader, the beamformer operation is crucial to
enhance the received speech quality and achieve the designed speech recognition accuracy.

This example shows two types of time domain beamformers: the time delay beamformer and the Frost
beamformer. It illustrates how one can use diagonal loading to improve the robustness of the Frost
beamformer. You can listen to the speech signals at each processing step if your system has sound
support.

Define a Uniform Linear Array

First, we define a uniform linear array (ULA) to receive the signal. The array contains 10
omnidirectional microphones and the element spacing is 5 cm.

microphone = ...
 phased.OmnidirectionalMicrophoneElement('FrequencyRange',[20 20e3]);

Nele = 10;
ula = phased.ULA(Nele,0.05,'Element',microphone);
c = 340; % sound speed, in m/s

Simulate the Received Signals

Next, we simulate the multichannel signals received by the microphone array. We begin by loading
two recorded speeches and one laughter recording. We also load the laughter audio segment as
interference. The sampling frequency of the audio signals is 8 kHz.

Because the audio signal is usually large, it is often not practical to read the entire signal into the
memory. Therefore, in this example, we will simulate and process the signal in a streaming fashion,
i.e., breaking the signal into small blocks at the input, processing each block, and then assembling
them at the output.

The incident direction of the first speech signal is -30 degrees in azimuth and 0 degrees in elevation.
The direction of the second speech signal is -10 degrees in azimuth and 10 degrees in elevation. The
interference comes from 20 degrees in azimuth and 0 degrees in elevation.

ang_dft = [-30; 0];
ang_cleanspeech = [-10; 10];
ang_laughter = [20; 0];

Now we can use a wideband collector to simulate a 3-second multichannel signal received by the
array. Notice that this approach assumes that each input single-channel signal is received at the
origin of the array by a single microphone.

fs = 8000;
collector = phased.WidebandCollector('Sensor',ula,'PropagationSpeed',c,...
 'SampleRate',fs,'NumSubbands',1000,'ModulatedInput', false);

t_duration = 3; % 3 seconds
t = 0:1/fs:t_duration-1/fs;

17 Featured Examples

17-174

We generate a white noise signal with a power of 1e-4 watts to represent the thermal noise for each
sensor. A local random number stream ensures reproducible results.

prevS = rng(2008);
noisePwr = 1e-4; % noise power

We now start the simulation. At the output, the received signal is stored in a 10-column matrix. Each
column of the matrix represents the signal collected by one microphone. Note that we are also
playing back the audio using the streaming approach during the simulation.

% preallocate
NSampPerFrame = 1000;
NTSample = t_duration*fs;
sigArray = zeros(NTSample,Nele);
voice_dft = zeros(NTSample,1);
voice_cleanspeech = zeros(NTSample,1);
voice_laugh = zeros(NTSample,1);

% set up audio device writer
audioWriter = audioDeviceWriter('SampleRate',fs, ...
 'SupportVariableSizeInput', true);
isAudioSupported = (length(getAudioDevices(audioWriter))>1);

dftFileReader = dsp.AudioFileReader('dft_voice_8kHz.wav',...
 'SamplesPerFrame',NSampPerFrame);
speechFileReader = dsp.AudioFileReader('cleanspeech_voice_8kHz.wav',...
 'SamplesPerFrame',NSampPerFrame);
laughterFileReader = dsp.AudioFileReader('laughter_8kHz.wav',...
 'SamplesPerFrame',NSampPerFrame);

% simulate
for m = 1:NSampPerFrame:NTSample
 sig_idx = m:m+NSampPerFrame-1;
 x1 = dftFileReader();
 x2 = speechFileReader();
 x3 = 2*laughterFileReader();
 temp = collector([x1 x2 x3],...
 [ang_dft ang_cleanspeech ang_laughter]) + ...
 sqrt(noisePwr)*randn(NSampPerFrame,Nele);
 if isAudioSupported
 play(audioWriter,0.5*temp(:,3));
 end
 sigArray(sig_idx,:) = temp;
 voice_dft(sig_idx) = x1;
 voice_cleanspeech(sig_idx) = x2;
 voice_laugh(sig_idx) = x3;
end

Notice that the laughter masks the speech signals, rendering them unintelligible. We can plot the
signal in channel 3 as follows:

plot(t,sigArray(:,3));
xlabel('Time (sec)'); ylabel ('Amplitude (V)');
title('Signal Received at Channel 3'); ylim([-3 3]);

 Acoustic Beamforming Using a Microphone Array

17-175

Process with a Time Delay Beamformer

The time delay beamformer compensates for the arrival time differences across the array for a signal
coming from a specific direction. The time aligned multichannel signals are coherently averaged to
improve the signal-to-noise ratio (SNR). Now, define a steering angle corresponding to the incident
direction of the first speech signal and construct a time delay beamformer.

angSteer = ang_dft;
beamformer = phased.TimeDelayBeamformer('SensorArray',ula,...
 'SampleRate',fs,'Direction',angSteer,'PropagationSpeed',c)

beamformer =
 phased.TimeDelayBeamformer with properties:

 SensorArray: [1x1 phased.ULA]
 PropagationSpeed: 340
 SampleRate: 8000
 DirectionSource: 'Property'
 Direction: [2x1 double]
 WeightsOutputPort: false

Next, we process the synthesized signal, plot and listen to the output of the conventional beamformer.
Again, we play back the beamformed audio signal during the processing.

signalsource = dsp.SignalSource('Signal',sigArray,...
 'SamplesPerFrame',NSampPerFrame);

17 Featured Examples

17-176

cbfOut = zeros(NTSample,1);

for m = 1:NSampPerFrame:NTSample
 temp = beamformer(signalsource());
 if isAudioSupported
 play(audioWriter,temp);
 end
 cbfOut(m:m+NSampPerFrame-1,:) = temp;
end

plot(t,cbfOut);
xlabel('Time (Sec)'); ylabel ('Amplitude (V)');
title('Time Delay Beamformer Output'); ylim([-3 3]);

One can measure the speech enhancement by the array gain, which is the ratio of output signal-to-
interference-plus-noise ratio (SINR) to input SINR.

agCbf = pow2db(mean((voice_cleanspeech+voice_laugh).^2+noisePwr)/...
 mean((cbfOut - voice_dft).^2))

agCbf = 9.5022

The first speech signal begins to emerge in the time delay beamformer output. We obtain an SINR
improvement of 9.4 dB. However, the background laughter is still comparable to the speech. To
obtain better beamformer performance, use a Frost beamformer.

 Acoustic Beamforming Using a Microphone Array

17-177

Process with a Frost Beamformer

By attaching FIR filters to each sensor, the Frost beamformer has more beamforming weights to
suppress the interference. It is an adaptive algorithm that places nulls at learned interference
directions to better suppress the interference. In the steering direction, the Frost beamformer uses
distortionless constraints to ensure desired signals are not suppressed. Let us create a Frost
beamformer with a 20-tap FIR after each sensor.

frostbeamformer = ...
 phased.FrostBeamformer('SensorArray',ula,'SampleRate',fs,...
 'PropagationSpeed',c,'FilterLength',20,'DirectionSource','Input port');

Next, process the synthesized signal using the Frost beamformer.

reset(signalsource);
FrostOut = zeros(NTSample,1);
for m = 1:NSampPerFrame:NTSample
 FrostOut(m:m+NSampPerFrame-1,:) = ...
 frostbeamformer(signalsource(),ang_dft);
end

We can play and plot the entire audio signal once it is processed.

if isAudioSupported
 play(audioWriter,FrostOut);
end

plot(t,FrostOut);
xlabel('Time (sec)'); ylabel ('Amplitude (V)');
title('Frost Beamformer Output'); ylim([-3 3]);

17 Featured Examples

17-178

% Calculate the array gain
agFrost = pow2db(mean((voice_cleanspeech+voice_laugh).^2+noisePwr)/...
 mean((FrostOut - voice_dft).^2))

agFrost = 14.4385

Notice that the interference is now canceled. The Frost beamformer has an array gain of 14 dB,
which is 4.5 dB higher than that of the time delay beamformer. The performance improvement is
impressive, but has a high computational cost. In the preceding example, an FIR filter of order 20 is
used for each microphone. With all 10 sensors, one needs to invert a 200-by-200 matrix, which may
be expensive in real-time processing.

Use Diagonal Loading to Improve Robustness of the Frost Beamformer

Next, we want to steer the array in the direction of the second speech signal. Suppose we do not
know the exact direction of the second speech signal except a rough estimate of azimuth -5 degrees
and elevation 5 degrees.

release(frostbeamformer);
ang_cleanspeech_est = [-5; 5]; % Estimated steering direction

reset(signalsource);
FrostOut2 = zeros(NTSample,1);
for m = 1:NSampPerFrame:NTSample
 FrostOut2(m:m+NSampPerFrame-1,:) = frostbeamformer(signalsource(),...
 ang_cleanspeech_est);

 Acoustic Beamforming Using a Microphone Array

17-179

end

if isAudioSupported
 play(audioWriter,FrostOut2);
end

plot(t,FrostOut2);
xlabel('Time (sec)'); ylabel ('Amplitude (V)');
title('Frost Beamformer Output'); ylim([-3 3]);

% Calculate the array gain
agFrost2 = pow2db(mean((voice_dft+voice_laugh).^2+noisePwr)/...
 mean((FrostOut2 - voice_cleanspeech).^2))

agFrost2 = 6.1927

The speech is barely audible. Despite the 6.1 dB gain from the beamformer, performance suffers from
the inaccurate steering direction. One way to improve the robustness of the Frost beamformer is to
use diagonal loading. This approach adds a small quantity to the diagonal elements of the estimated
covariance matrix. Here we use a diagonal value of 1e-3.

% Specify diagonal loading value
release(frostbeamformer);
frostbeamformer.DiagonalLoadingFactor = 1e-3;

reset(signalsource);
FrostOut2_dl = zeros(NTSample,1);

17 Featured Examples

17-180

for m = 1:NSampPerFrame:NTSample
 FrostOut2_dl(m:m+NSampPerFrame-1,:) = ...
 frostbeamformer(signalsource(),ang_cleanspeech_est);
end

if isAudioSupported
 play(audioWriter,FrostOut2_dl);
end

plot(t,FrostOut2_dl);
xlabel('Time (sec)'); ylabel ('Amplitude (V)');
title('Frost Beamformer Output'); ylim([-3 3]);

% Calculate the array gain
agFrost2_dl = pow2db(mean((voice_dft+voice_laugh).^2+noisePwr)/...
 mean((FrostOut2_dl - voice_cleanspeech).^2))

agFrost2_dl = 6.4788

Now the output speech signal is improved and we obtain a 0.3 dB gain improvement from the
diagonal loading technique.

release(frostbeamformer);
release(signalsource);
if isAudioSupported
 pause(3); % flush out AudioPlayer buffer
 release(audioWriter);

 Acoustic Beamforming Using a Microphone Array

17-181

end
rng(prevS);

Summary

This example shows how to use time domain beamformers to retrieve speech signals from noisy
microphone array measurements. The example also shows how to simulate an interference-dominant
signal received by a microphone array. The example used both time delay and the Frost beamformers
and compared their performance. The Frost beamformer has a better interference suppression
capability. The example also illustrates the use of diagonal loading to improve the robustness of the
Frost beamformer.

Reference

[1] O. L. Frost III, An algorithm for linear constrained adaptive array processing, Proceedings of the
IEEE, Vol. 60, Number 8, Aug. 1972, pp. 925-935.

17 Featured Examples

17-182

Beamforming for MIMO-OFDM Systems
This example shows how to model a point-to-point MIMO-OFDM system with beamforming. The
combination of multiple-input-multiple-output (MIMO) and orthogonal frequency division multiplexing
(OFDM) techniques have been adopted in recent wireless standards, such as 802.11x families, to
provide higher data rate. Because MIMO uses antenna arrays, beamforming can be adopted to
improve the received signal to noise ratio (SNR) which in turn reduces the bit error rate (BER).

This example requires Communications Toolbox™.

Introduction

The term MIMO is used to describe a system where multiple transmitters or multiple receivers are
present. In practice the system can take many different forms, such as single-input-multiple-output
(SIMO) or multiple-input-single-output (MISO) system. This example illustrates a downlink MISO
system. An 8-element ULA is deployed at the base station as the transmitter while the mobile unit is
the receiver with a single antenna.

The rest of the system is configured as follows. The transmitter power is 8 watts and the transmit
gain is -8 dB. The mobile receiver is stationary and located at 2750 meters away, and is 3 degrees off
the transmitter's boresight. An interferer with a power of 1 watt and a gain of -20 dB is located at
9000 meters, 20 degrees off the transmitter's boresight.

% Initialize system constants
rng(2014);
gc = helperGetDesignSpecsParameters();

% Tunable parameters
tp.txPower = 9; % watt
tp.txGain = -8; % dB
tp.mobileRange = 2750; % m
tp.mobileAngle = 3; % degrees
tp.interfPower = 1; % watt
tp.interfGain = -20; % dB
tp.interfRange = 9000; % m
tp.interfAngle = 20; % degrees
tp.numTXElements = 8;
tp.steeringAngle = 0; % degrees
tp.rxGain = 108.8320 - tp.txGain; % dB

numTx= tp.numTXElements;

The entire scene can be depicted in the figure below.

helperPlotMIMOEnvironment(gc, tp);

 Beamforming for MIMO-OFDM Systems

17-183

Signal Transmission

First, configure the system's transmitter.

[encoder,scrambler,modulatorOFDM,steeringvec,transmitter,...
 radiator,pilots,numDataSymbols,frmSz] = helperMIMOTxSetup(gc,tp);

There are many components in the transmitter subsystem, such as the convolutional encoder, the
scrambler, the QAM modulator, the OFDM modulator, and so on. The message is first converted to an
information bit stream and then passed through source coding and modulation stages to prepare for
the radiation.

txBits = randi([0, 1], frmSz,1);
coded = encoder(txBits);
bitsS = scrambler(coded);
tx = qammod(bitsS,gc.modMode,'InputType','bit','UnitAveragePower',true);

In an OFDM system, the data is carried by multiple sub-carriers that are orthogonal to each other.

ofdm1 = reshape(tx, gc.numCarriers,numDataSymbols);

Then, the data stream is duplicated to all radiating elements in the transmitting array

ofdmData = repmat(ofdm1,[1, 1, numTx]);
txOFDM = modulatorOFDM(ofdmData, pilots);
%scale
txOFDM = txOFDM * ...
 (gc.FFTLength/sqrt(gc.FFTLength-sum(gc.NumGuardBandCarriers)-1));

% Amplify to achieve peak TX power for each channel
for n = 1:numTx
 txOFDM(:,n) = transmitter(txOFDM(:,n));
end

In a MIMO system, it is also possible to separate multiple users spatial division multiplexing (SDMA).
In these situations, the data stream is often modulated by a weight corresponding to the desired
direction so that once radiated, the signal is maximized in that direction. Because in a MIMO channel,
the signal radiated from different elements in an array may go through different propagation

17 Featured Examples

17-184

environments, the signal radiated from each antenna should be propagated individually. This can be
achieved by setting CombineRadiatedSignals to false on the phased.Radiator component.

radiator.CombineRadiatedSignals = false;

To achieve precoding, the data stream radiated from each antenna in the array is modulated by a
phase shift corresponding to its radiating direction. The goal of this precoding is to ensure these data
streams add in phase if the array is steered toward that direction. Precoding can be specified as
weights used at the radiator.

wR = steeringvec(gc.fc,[-tp.mobileAngle;0]);

Meanwhile, the array is also steered toward a given steering angle, so the total weights are a
combination of both precoding and the steering weights.

wT = steeringvec(gc.fc,[tp.steeringAngle;0]);
weight = wT.* wR;

The transmitted signal is thus given by

txOFDM = radiator(txOFDM,repmat([tp.mobileAngle;0],1,numTx),conj(weight));

Note that the transmitted signal, txOFDM, is a matrix whose columns represent data streams
radiated from the corresponding elements in the transmit array.

Signal Propagation

Next, the signal propagates through a MIMO channel. In general, there are two propagation effects
on the received signal strength that are of interest: one of them is the spreading loss due to the
propagation distance, often termed as the free space path loss; and the other is the fading due to
multipath. This example models both effects.

[channel,interferenceTransmitter,toRxAng,spLoss] = ...
 helperMIMOEnvSetup(gc,tp);
[sigFade, chPathG] = channel(txOFDM);
sigLoss = sigFade/sqrt(db2pow(spLoss(1)));

To simulate a more realistic mobile environment, next section also inserts an interference source.
Note that in a wireless communication system, the interference is often a different mobile user.

% Generate interference and apply gain and propagation loss
numBits = size(sigFade,1);
interfSymbols = wgn(numBits,1,1,'linear','complex');
interfSymbols = interferenceTransmitter(interfSymbols);
interfLoss = interfSymbols/sqrt(db2pow(spLoss(2)));

Signal Reception

The receiving antenna collects both the propagated signal as well as the interference and passes
them to the receiver to recover the original information embedded in the signal. Just like the transmit
end of the system, the receiver used in a MIMO-OFDM system also contains many stages, including
OFDM demodulator, QAM demodulator, descrambler, equalizer, and Viterbi decoder.

[collector,receiver,demodulatorOFDM,descrambler,decoder] = ...
 helperMIMORxSetup(gc,tp,numDataSymbols);

rxSig = collector([sigLoss interfLoss],toRxAng);

 Beamforming for MIMO-OFDM Systems

17-185

% Front-end amplifier gain and thermal noise
rxSig = receiver(rxSig);

rxOFDM = rxSig * ...
 (sqrt(gc.FFTLength-sum(gc.NumGuardBandCarriers)-1)) / (gc.FFTLength);

% OFDM Demodulation
rxOFDM = demodulatorOFDM(rxOFDM);

% Channel estimation
hD = helperIdealChannelEstimation(gc, numDataSymbols, chPathG);

% Equalization
rxEq = helperEqualizer(rxOFDM, hD, numTx);

% Collapse OFDM matrix
rxSymbs = rxEq(:);

rxBitsS = qamdemod(rxSymbs,gc.modMode,'UnitAveragePower',true,...
 'OutputType','bit');
rxCoded = descrambler(rxBitsS);
rxDeCoded = decoder(rxCoded);
rxBits = rxDeCoded(1:frmSz);

A comparison of the decoded output with the original message stream suggests that the resulting
BER is too high for a communication system. The constellation diagram is also shown below

ber = comm.ErrorRate;
measures = ber(txBits, rxBits);
fprintf('BER = %.2f%%; No. of Bits = %d; No. of errors = %d\n', ...
 measures(1)*100,measures(3), measures(2));

BER = 32.07%; No. of Bits = 30714; No. of errors = 9850

constdiag = comm.ConstellationDiagram('SamplesPerSymbol', 1,...
 'ReferenceConstellation', [], 'ColorFading',true,...
 'Position', gc.constPlotPosition);
% Display received constellation
constdiag(rxSymbs);

17 Featured Examples

17-186

The high BER is mainly due to the mobile being off the steering direction of the base station array. If
the mobile is aligned with the steering direction, the BER is greatly improved.

tp.steeringAngle = tp.mobileAngle;

% Steer the transmitter main lobe
wT = steeringvec(gc.fc,[tp.steeringAngle;0]);

[txBits, rxBits,rxSymbs] = helperRerunMIMOBeamformingExample(gc,tp,wT);

reset(ber);
measures = ber(txBits, rxBits);
fprintf('BER = %.2f%%; No. of Bits = %d; No. of errors = %d\n', ...
 measures(1)*100,measures(3), measures(2));

BER = 0.02%; No. of Bits = 30714; No. of errors = 5

constdiag(rxSymbs);

 Beamforming for MIMO-OFDM Systems

17-187

Therefore, the system is very sensitive to the steering error. On the other hand, it is this kind of
spatial sensitivity makes SDMA possible to distinguish multiple users in space.

Phase Shifter Quantization Effect

The discussion so far assumes that the beam can be steered toward the exact desired direction. In
reality, however, this is often not true, especially when the analog phase shifters are used. Analog
phase shifters have only limited precision and are categorized by the number of bits used in phase
shifts. For example, a 3-bit phase shifter can only represent 8 different angles within 360 degrees.
Thus, if such quantization is included in the simulation, the system performance degrades, which can
be observed from the constellation plot.

% analog phase shifter with quantization effect
release(steeringvec);
steeringvec.NumPhaseShifterBits = 4;
wTq = steeringvec(gc.fc,[tp.steeringAngle;0]);

[txBits, rxBits,rxSymbs] = helperRerunMIMOBeamformingExample(gc,tp,wTq);

reset(ber);
measures = ber(txBits, rxBits);
fprintf('BER = %.2f%%; No. of Bits = %d; No. of errors = %d\n', ...
 measures(1)*100,measures(3), measures(2));

constdiag = comm.ConstellationDiagram('SamplesPerSymbol', 1,...
 'ReferenceConstellation', [], 'ColorFading',true,...
 'Position', gc.constPlotPosition);
constdiag(rxSymbs);

BER = 0.02%; No. of Bits = 30714; No. of errors = 7

17 Featured Examples

17-188

Summary

This example shows a system level simulation of a point-to-point MIMO-OFDM system employing
beamforming. The simulation models many system components such as encoding, transmit
beamforming, precoding, multipath fading, channel estimation, equalization, and decoding.

Reference

[1] Houman Zarrinkoub, Understanding LTE with MATLAB, Wiley, 2014

[2] Theodore S. Rappaport et al. Millimeter Wave Wireless Communications, Prentice Hall, 2014

See Also
phased.Radiator

 Beamforming for MIMO-OFDM Systems

17-189

Conventional and Adaptive Beamformers
This example illustrates how to apply digital beamforming to a narrowband signal received by an
antenna array. Three beamforming algorithms are illustrated: the phase shift beamformer
(PhaseShift), the minimum variance distortionless response (MVDR) beamformer, and the linearly
constrained minimum variance (LCMV) beamformer.

Simulating the Received Signal

First, we define the incoming signal. The signal's baseband representation is a simple rectangular
pulse as defined below:

t = 0:0.001:0.3; % Time, sampling frequency is 1kHz
s = zeros(size(t));
s = s(:); % Signal in column vector
s(201:205) = s(201:205) + 1; % Define the pulse
plot(t,s);
title('Pulse');xlabel('Time (s)');ylabel('Amplitude (V)');

For this example, we also assume that the signal's carrier frequency is 100 MHz.

carrierFreq = 100e6;
wavelength = physconst('LightSpeed')/carrierFreq;

We now define the uniform linear array (ULA) used to receive the signal. The array contains 10
isotropic antennas. The element spacing is half of the incoming wave's wavelength.

17 Featured Examples

17-190

ula = phased.ULA('NumElements',10,'ElementSpacing',wavelength/2);
ula.Element.FrequencyRange = [90e5 110e6];

Then we use the collectPlaneWave method of the array object to simulate the received signal at the
array. Assume the signal arrives at the array from 45 degrees in azimuth and 0 degrees in elevation;
the received signal can be modeled as

inputAngle = [45; 0];
x = collectPlaneWave(ula,s,inputAngle,carrierFreq);

The received signal often includes some thermal noise. The noise can be modeled as complex,
Gaussian distributed random numbers. In this example, we assume that the noise power is 0.5 watts,
which corresponds to a 3 dB signal-to-noise ratio (SNR) at each antenna element.

% Create and reset a local random number generator so the result is the
% same every time.
rs = RandStream.create('mt19937ar','Seed',2008);

noisePwr = .5; % noise power
noise = sqrt(noisePwr/2)*(randn(rs,size(x))+1i*randn(rs,size(x)));

The total return is the received signal plus the thermal noise.

rxSignal = x + noise;

The total return has ten columns, where each column corresponds to one antenna element. The plot
below shows the magnitude plot of the signal for the first two channels.

subplot(211);
plot(t,abs(rxSignal(:,1)));axis tight;
title('Pulse at Antenna 1');xlabel('Time (s)');ylabel('Magnitude (V)');
subplot(212);
plot(t,abs(rxSignal(:,2)));axis tight;
title('Pulse at Antenna 2');xlabel('Time (s)');ylabel('Magnitude (V)');

 Conventional and Adaptive Beamformers

17-191

Phase Shift Beamformer

A beamformer can be considered a spatial filter that suppresses the signal from all directions, except
the desired ones. A conventional beamformer simply delays the received signal at each antenna so
that the signals are aligned as if they arrive at all the antennas at the same time. In the narrowband
case, this is equivalent to multiplying the signal received at each antenna by a phase factor. To define
a phase shift beamformer pointing to the signal's incoming direction, we use

psbeamformer = phased.PhaseShiftBeamformer('SensorArray',ula,...
 'OperatingFrequency',carrierFreq,'Direction',inputAngle,...
 'WeightsOutputPort', true);

We can now obtain the output signal and weighting coefficients from the beamformer.

[yCbf,w] = psbeamformer(rxSignal);
% Plot the output
clf;
plot(t,abs(yCbf)); axis tight;
title('Output of Phase Shift Beamformer');
xlabel('Time (s)');ylabel('Magnitude (V)');

17 Featured Examples

17-192

From the figure, we can see that the signal becomes much stronger compared to the noise. The
output SNR is approximately 10 times stronger than that of the received signal on a single antenna,
because a 10-element array produces an array gain of 10.

To see the beam pattern of the beamformer, we plot the array response along 0 degrees elevation
with the weights applied. Since the array is a ULA with isotropic elements, it has ambiguity in front
and back of the array. Therefore, we only plot between -90 and 90 degrees in azimuth.

% Plot array response with weighting
pattern(ula,carrierFreq,-180:180,0,'Weights',w,'Type','powerdb',...
 'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...
 'CoordinateSystem','rectangular');
axis([-90 90 -60 0]);

 Conventional and Adaptive Beamformers

17-193

You can see that the main beam of the beamformer is pointing in the desired direction (45 degrees),
as expected.

Next, we use the beamformer to enhance the received signal under interference conditions. In the
presence of strong interference, the target signal may be masked by the interference signal. For
example, interference from a nearby radio tower can blind the antenna array in that direction. If the
radio signal is strong enough, it can blind the radar in multiple directions, especially when the
desired signal is received by a sidelobe. Such scenarios are very challenging for a phase shift
beamformer, and therefore, adaptive beamformers are introduced to address this problem.

Modeling the Interference Signals

We model two interference signals arriving from 30 degrees and 50 degrees in azimuth. The
interference amplitudes are much higher than the desired signal shown in the previous scenario.

nSamp = length(t);
s1 = 10*randn(rs,nSamp,1);
s2 = 10*randn(rs,nSamp,1);
% interference at 30 degrees and 50 degrees
interference = collectPlaneWave(ula,[s1 s2],[30 50; 0 0],carrierFreq);

To illustrate the effect of interference, we'll reduce the noise level to a minimal level. For the rest of
the example, let us assume a high SNR value of 50dB at each antenna. We'll see that even though
there is almost no noise, the interference alone can make a phase shift beamformer fail.

noisePwr = 0.00001; % noise power, 50dB SNR
noise = sqrt(noisePwr/2)*(randn(rs,size(x))+1i*randn(rs,size(x)));

17 Featured Examples

17-194

rxInt = interference + noise; % total interference + noise
rxSignal = x + rxInt; % total received Signal

First, we'll try to apply the phase shift beamformer to retrieve the signal along the incoming
direction.

yCbf = psbeamformer(rxSignal);

plot(t,abs(yCbf)); axis tight;
title('Output of Phase Shift Beamformer With Presence of Interference');
xlabel('Time (s)');ylabel('Magnitude (V)');

From the figure, we can see that, because the interference signals are much stronger than the target
signal, we cannot extract the signal content.

MVDR Beamformer

To overcome the interference problem, we can use the MVDR beamformer, a popular adaptive
beamformer. The MVDR beamformer preserves the signal arriving along a desired direction, while
trying to suppress signals coming from other directions. In this case, the desired signal is at the
direction 45 degrees in azimuth.

% Define the MVDR beamformer
mvdrbeamformer = phased.MVDRBeamformer('SensorArray',ula,...
 'Direction',inputAngle,'OperatingFrequency',carrierFreq,...
 'WeightsOutputPort',true);

 Conventional and Adaptive Beamformers

17-195

When we have access to target-free data, we can provide such information to the MVDR beamformer
by setting the TrainingInputPort property to true.

mvdrbeamformer.TrainingInputPort = true;

We apply the MVDR beamformer to the received signal. The plot shows the MVDR beamformer
output signal. You can see that the target signal can now be recovered.

[yMVDR, wMVDR] = mvdrbeamformer(rxSignal,rxInt);

plot(t,abs(yMVDR)); axis tight;
title('Output of MVDR Beamformer With Presence of Interference');
xlabel('Time (s)');ylabel('Magnitude (V)');

Looking at the response pattern of the beamformer, we see two deep nulls along the interference
directions (30 and 50 degrees). The beamformer also has a gain of 0 dB along the target direction of
45 degrees. Thus, the MVDR beamformer preserves the target signal and suppresses the interference
signals.

pattern(ula,carrierFreq,-180:180,0,'Weights',wMVDR,'Type','powerdb',...
 'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...
 'CoordinateSystem','rectangular');
axis([-90 90 -80 20]);

hold on; % compare to PhaseShift
pattern(ula,carrierFreq,-180:180,0,'Weights',w,...
 'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...

17 Featured Examples

17-196

 'Type','powerdb','CoordinateSystem','rectangular');
hold off;
legend('MVDR','PhaseShift')

Also shown in the figure is the response pattern from PhaseShift. We can see that the PhaseShift
pattern does not null out the interference at all.

Self Nulling Issue in MVDR

On many occasions, we may not be able to separate the interference from the target signal, and
therefore, the MVDR beamformer has to calculate weights using data that includes the target signal.
In this case, if the target signal is received along a direction slightly different from the desired one,
the MVDR beamformer suppresses it. This occurs because the MVDR beamformer treats all the
signals, except the one along the desired direction, as undesired interferences. This effect is
sometimes referred to as "signal self nulling".

To illustrate this self nulling effect, we define an MVDR beamformer and set the TrainingInputPort
property to false.

mvdrbeamformer_selfnull = phased.MVDRBeamformer('SensorArray',ula,...
 'Direction',inputAngle,'OperatingFrequency',carrierFreq,...
 'WeightsOutputPort',true,'TrainingInputPort',false);

We then create a direction mismatch between the incoming signal direction and the desired direction.

Recall that the signal is impinging from 45 degrees in azimuth. If, with some a priori information, we
expect the signal to be arriving from 43 degrees in azimuth, then we use 43 degrees in azimuth as the

 Conventional and Adaptive Beamformers

17-197

desired direction in the MVDR beamformer. However, since the real signal is arriving at 45 degrees in
azimuth, there is a slight mismatch in the signal direction.

expDir = [43; 0];
mvdrbeamformer_selfnull.Direction = expDir;

When we apply the MVDR beamformer to the received signal, we see that the receiver cannot
differentiate the target signal and the interference.

[ySn, wSn] = mvdrbeamformer_selfnull(rxSignal);

plot(t,abs(ySn)); axis tight;
title('Output of MVDR Beamformer With Signal Direction Mismatch');
xlabel('Time (s)');ylabel('Magnitude (V)');

When we look at the beamformer response pattern, we see that the MVDR beamformer tries to
suppress the signal arriving along 45 degrees because it is treated like an interference signal. The
MVDR beamformer is very sensitive to signal-steering vector mismatch, especially when we cannot
provide interference information.

pattern(ula,carrierFreq,-180:180,0,'Weights',wSn,'Type','powerdb',...
 'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...
 'CoordinateSystem','rectangular');
axis([-90 90 -40 25]);

17 Featured Examples

17-198

LCMV Beamformer

To prevent signal self-nulling, we can use an LCMV beamformer, which allows us to put multiple
constraints along the target direction (steering vector). It reduces the chance that the target signal
will be suppressed when it arrives at a slightly different angle from the desired direction. First we
create an LCMV beamformer:

lcmvbeamformer = phased.LCMVBeamformer('WeightsOutputPort',true);

Now we need to create several constraints. To specify a constraint, we put corresponding entries in
both the constraint matrix, Constraint, and the desired response vector, DesiredResponse. Each
column in Constraint is a set of weights we can apply to the array and the corresponding entry in
DesiredResponse is the desired response we want to achieve when the weights are applied. For
example, to avoid self nulling in this example, we may want to add the following constraints to the
beamformer:

• Preserve the incoming signal from the expected direction (43 degrees in azimuth).
• To avoid self nulling, ensure that the response of the beamformer will not decline at +/- 2 degrees

of the expected direction.

For all the constraints, the weights are given by the steering vectors that steer the array toward
those directions:

steeringvec = phased.SteeringVector('SensorArray',ula);
stv = steeringvec(carrierFreq,[43 41 45]);

 Conventional and Adaptive Beamformers

17-199

The desired responses should be 1 for all three directions. The Constraint matrix and
DesiredResponse are given by:

lcmvbeamformer.Constraint = stv;
lcmvbeamformer.DesiredResponse = [1; 1; 1];

Then we apply the beamformer to the received signal. The plot below shows that the target signal can
be detected again even though there is the mismatch between the desired and the true signal
arriving direction.

[yLCMV,wLCMV] = lcmvbeamformer(rxSignal);

plot(t,abs(yLCMV)); axis tight;
title('Output of LCMV Beamformer With Signal Direction Mismatch');
xlabel('Time (s)');ylabel('Magnitude (V)');

The LCMV response pattern shows that the beamformer puts the constraints along the specified
directions, while nulling the interference signals along 30 and 50 degrees. Here we only show the
pattern between 0 and 90 degrees in azimuth so that we can see the behavior of the response pattern
at the signal and interference directions better.

pattern(ula,carrierFreq,-180:180,0,'Weights',wLCMV,'Type','powerdb',...
 'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...
 'CoordinateSystem','rectangular');
axis([0 90 -40 35]);

hold on; % compare to MVDR

17 Featured Examples

17-200

pattern(ula,carrierFreq,-180:180,0,'Weights',wSn,...
 'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...
 'Type','powerdb','CoordinateSystem','rectangular');
hold off;
legend('LCMV','MVDR');

The effect of constraints can be better seen when comparing the LCMV beamformer's response
pattern to the MVDR beamformer's response pattern. Notice how the LCMV beamformer is able to
maintain a flat response region around the 45 degrees in azimuth, while the MVDR beamformer
creates a null.

2D Array Beamforming

In this section, we illustrate the use of a beamformer with a uniform rectangular array (URA). The
beamformer can be applied to a URA in the same way as to the ULA. We only illustrate the MVDR
beamformer for the URA in this example. The usages of other algorithms are similar.

First, we define a URA. The URA consists of 10 rows and 5 columns of isotropic antenna elements.
The spacing between the rows and the columns are 0.4 and 0.5 wavelength, respectively.

colSp = 0.5*wavelength;
rowSp = 0.4*wavelength;
ura = phased.URA('Size',[10 5],'ElementSpacing',[rowSp colSp]);
ura.Element.FrequencyRange = [90e5 110e6];

 Conventional and Adaptive Beamformers

17-201

Consider the same source signal as was used in the previous sections. The source signal arrives at
the URA from 45 degrees in azimuth and 0 degrees in elevation. The received signal, including the
noise at the array, can be modeled as

x = collectPlaneWave(ura,s,inputAngle,carrierFreq);
noise = sqrt(noisePwr/2)*(randn(rs,size(x))+1i*randn(rs,size(x)));

Unlike a ULA, which can only differentiate the angles in azimuth direction, a URA can also
differentiate angles in elevation direction. Therefore, we specify two interference signals arriving
along the directions [30;10] and [50;-5] degrees, respectively.

s1 = 10*randn(rs,nSamp,1);
s2 = 10*randn(rs,nSamp,1);

%interference at [30; 10] and at [50; -5]
interference = collectPlaneWave(ura,[s1 s2],[30 50; 10 -5],carrierFreq);
rxInt = interference + noise; % total interference + noise
rxSignal = x + rxInt; % total received signal

We now create an MVDR beamformer pointing to the target signal direction.

mvdrbeamformer = phased.MVDRBeamformer('SensorArray',ura,...
 'Direction',inputAngle,'OperatingFrequency',carrierFreq,...
 'TrainingInputPort',true,'WeightsOutputPort',true);

Finally, we apply the MVDR beamformer to the received signal and plot its output.

[yURA,w]= mvdrbeamformer(rxSignal,rxInt);

plot(t,abs(yURA)); axis tight;
title('Output of MVDR Beamformer for URA');
xlabel('Time (s)');ylabel('Magnitude (V)');

17 Featured Examples

17-202

To see clearly that the beamformer puts the nulls along the interference directions, we'll plot the
beamformer response pattern of the array along -5 degrees and 10 degrees in elevation, respectively.
The figure shows that the beamformer suppresses the interference signals along [30 10] and [50 -5]
directions.

subplot(2,1,1);
pattern(ura,carrierFreq,-180:180,-5,'Weights',w,'Type','powerdb',...
 'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...
 'CoordinateSystem','rectangular');
title('Response Pattern at -5 Degrees Elevation');
axis([-90 90 -60 -5]);
subplot(2,1,2);
pattern(ura,carrierFreq,-180:180,10,'Weights',w,'Type','powerdb',...
 'PropagationSpeed',physconst('LightSpeed'),'Normalize',false,...
 'CoordinateSystem','rectangular');
title('Response Pattern at 10 Degrees Elevation');
axis([-90 90 -60 -5]);

 Conventional and Adaptive Beamformers

17-203

Summary

In this example, we illustrated how to use a beamformer to retrieve the signal from a particular
direction using a ULA or a URA. The choice of the beamformer depends on the operating
environment. Adaptive beamformers provide superior interference rejection compared to that offered
by conventional beamformers. When the knowledge about the target direction is not accurate, the
LCMV beamformer is preferable because it prevents signal self-nulling.

17 Featured Examples

17-204

Direction of Arrival Estimation with Beamscan, MVDR, and
MUSIC

This example illustrates using beamscan, MVDR, and MUSIC for direction of arrival (DOA)
estimation. Beamscan is a technique that forms a conventional beam and scans it over directions of
interest to obtain a spatial spectrum. Minimum variance distortionless response (MVDR) is similar to
beamscan but uses an MVDR beam. Multiple signal classification (MUSIC) is a subspace method that
provides high resolution DOA estimates. For all three methods, the peaks of the output spatial
spectrum indicate the DOAs of the received signals. In this example, we illustrate the use of
beamscan, MVDR, and MUSIC to estimate broadside angles with a uniform linear array (ULA) and
azimuth and elevation angles with a uniform rectangular array (URA).

Modeling ULA's Received Signal

First, model a uniform linear array (ULA) containing 10 isotropic antennas spaced 0.5 meters apart.

ula = phased.ULA('NumElements',10,'ElementSpacing',0.5);

Assume that two narrowband signals impinge on the array. The first signal arrives from 40° in
azimuth and 0° in elevation, while the second signal arrives from -20° in azimuth and 0° in elevation.
The operating frequency of the system is 300 MHz.

ang1 = [40; 0]; % First signal
ang2 = [-20; 0]; % Second signal
angs = [ang1 ang2];

c = physconst('LightSpeed');
fc = 300e6; % Operating frequency
lambda = c/fc;
pos = getElementPosition(ula)/lambda;

Nsamp = 1000;

Also, assume that the thermal noise power at each antenna is 0.01 Watts.

nPower = 0.01;

Generate the multichannel signal received by the ULA.

rs = rng(2007);
signal = sensorsig(pos,Nsamp,angs,nPower);

Beamscan DOA Estimation with a ULA

We want to estimate the two DOAs using the received signal. Because the signal is received by a ULA,
which is symmetric around its axis, we cannot obtain both azimuth and elevation at the same time.
Instead, we can estimate the broadside angle, which is measured from the broadside of the ULA. The
relationship between these angles is illustrated in the following figure:

 Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC

17-205

The broadside angles corresponding to the two incident directions are:

broadsideAngle = az2broadside(angs(1,:),angs(2,:))

broadsideAngle =

 40.0000 -20.0000

We can see that the two broadside angles are the same as the azimuth angles. In general, when the
elevation angle is zero and the azimuth angle is within [-90 90], the broadside angle is the same as
the azimuth angle. In the following we only perform the conversion when they are not equal.

The beamscan algorithm scans a conventional beam through a predefined scan region. Here we set
the scanning region to [-90 90] to cover all 180 degrees.

spatialspectrum = phased.BeamscanEstimator('SensorArray',ula,...
 'OperatingFrequency',fc,'ScanAngles',-90:90);

By default, the beamscan estimator only produces a spatial spectrum across the scan region. Set the
DOAOutputPort property to true to obtain DOA estimates. Set the NumSignals property to 2 to find
the locations of the top two peaks.

spatialspectrum.DOAOutputPort = true;
spatialspectrum.NumSignals = 2;

17 Featured Examples

17-206

We now obtain the spatial spectrum and the DOAs. The estimated DOAs show the correct values,
which are 40° and -20°.

[~,ang] = spatialspectrum(signal)

ang =

 40 -20

Plot the spatial spectrum of the beamscan output.

plotSpectrum(spatialspectrum);

Improving Resolution Using MVDR and MUSIC Estimators

The conventional beam cannot resolve two closely-spaced signals. When two signals arrive from
directions separated by less than the beamwidth, beamscan will fail to estimate the directions of the
signals. To illustrate this limitation, we simulate two received signals from 30° and 40° in azimuth.

ang1 = [30; 0]; ang2 = [40; 0];
signal = sensorsig(pos,Nsamp,[ang1 ang2],nPower);

[~,ang] = spatialspectrum(signal)

ang =

 Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC

17-207

 35 71

The results differ from the true azimuth angles. Let's take a look at the output spectrum.

plotSpectrum(spatialspectrum);

The output spatial spectrum has only one dominant peak. Therefore, it cannot resolve these two
closely-spaced signals. When we try to estimate the DOA from the peaks of the beamscan output, we
get incorrect estimates. The beamscan object returns two maximum peaks as the estimated DOAs no
matter how different the peaks are. In this case, the beamscan returns the small peak at 71° as the
second estimate.

To resolve closely-spaced signals, we can use the minimum variance distortionless response (MVDR)
algorithm or the multiple signal classification (MUSIC) algorithm. First, we will examine the MVDR
estimator, which scans an MVDR beam over the specified region. Because an MVDR beam has a
smaller beamwidth, it has higher resolution.

mvdrspatialspect = phased.MVDREstimator('SensorArray',ula,...
 'OperatingFrequency',fc,'ScanAngles',-90:90,...
 'DOAOutputPort',true,'NumSignals',2);
[~,ang] = mvdrspatialspect(signal)
plotSpectrum(mvdrspatialspect);

ang =

17 Featured Examples

17-208

 30 40

The MVDR algorithm correctly estimates the DOAs that are unresolvable by beamscan. The improved
resolution comes with a price. The MVDR is more sensitive to sensor position errors. In
circumstances where sensor positions are inaccurate, MVDR could produce a worse spatial spectrum
than beamscan. Moreover, if we further reduce the difference of two signal directions to a level that
is smaller than the beamwidth of an MVDR beam, the MVDR estimator will also fail.

The MUSIC algorithm can also be used to resolve these closely-spaced signals. Estimate the
directions of arrival of the two sources and compare the spatial spectrum of MVDR to the spatial
spectrum of MUSIC.

musicspatialspect = phased.MUSICEstimator('SensorArray',ula,...
 'OperatingFrequency',fc,'ScanAngles',-90:90,...
 'DOAOutputPort',true,'NumSignalsSource','Property','NumSignals',2);
[~,ang] = musicspatialspect(signal)
ymvdr = mvdrspatialspect(signal);
ymusic = musicspatialspect(signal);
helperPlotDOASpectra(mvdrspatialspect.ScanAngles,...
 musicspatialspect.ScanAngles,ymvdr,ymusic,'ULA')

ang =

 Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC

17-209

 30 40

The directions of arrival using MUSIC are correct, and MUSIC provides even better spatial resolution
than MVDR. MUSIC, like MVDR, is sensitive to sensor position errors. In addition, the number of
sources must be known or accurately estimated. When the number of sources specified is incorrect,
MVDR and Beamscan may simply return insignificant peaks from the correct spatial spectrum. In
contrast, the MUSIC spatial spectrum itself may be inaccurate when the number of sources is not
specified correctly. In addition, the amplitudes of MUSIC spectral peaks cannot be interpreted as the
power of the sources.

For a ULA, additional high resolution algorithms can further exploit the special geometry of the ULA.
See “High Resolution Direction of Arrival Estimation” on page 17-216.

Converting Broadside Angles to Azimuth

Although we can only estimate broadside angles using a ULA, we can convert the estimated
broadside angles to azimuth angles if we know their incoming elevations. We now model two signals
coming from 35° in elevation and estimate their corresponding broadside angles.

ang1 = [40; 35]; ang2 = [15; 35];

signal = sensorsig(pos,Nsamp,[ang1 ang2],nPower);
[~,ang] = mvdrspatialspect(signal)

ang =

17 Featured Examples

17-210

 32 12

The resulting broadside angles are different from either the azimuth or elevation angles. We can
convert the broadside angles to the azimuth angles if we know the elevation.

ang = broadside2az(ang,35)

ang =

 40.3092 14.7033

Beamscan DOA Estimation with a URA

Next, we illustrate DOA estimation using a 10-by-5 uniform rectangular array (URA). A URA can
estimate both azimuth and elevation angles. The element spacing is 0.3 meters between each row,
and 0.5 meters between each column.

ura = phased.URA('Size',[10 5],'ElementSpacing',[0.3 0.5]);

Assume that two signals impinge on the URA. The first signal arrives from 40° in azimuth and 45° in
elevation, while the second signal arrives from -20° in azimuth and 20° in elevation.

ang1 = [40; 45]; % First signal
ang2 = [-20; 20]; % Second signal

signal = sensorsig(getElementPosition(ura)/lambda,Nsamp, ...
 [ang1 ang2],nPower);
rng(rs); % Restore random number generator

Create a 2-D beamscan estimator object from the URA. This object uses the same algorithm as the 1-
D case except that it scans over both azimuth and elevation instead of broadside angles.

The scanning region is specified by the property 'AzimuthScanAngles' and 'ElevationScanAngles'. To
reduce computational complexity, we assume some a priori knowledge about the incoming signal
directions. We restrict the azimuth scan region to [-45 45] and the elevation scan region to [10 60].

azelspectrum = phased.BeamscanEstimator2D('SensorArray',ura,...
 'OperatingFrequency',fc,...
 'AzimuthScanAngles',-45:45,'ElevationScanAngles',10:60,...
 'DOAOutputPort',true,'NumSignals',2);

The DOA output is a 2-by-N matrix where N is the number of signal directions. The first row contains
azimuth angles while the second row contains elevation angles.

[~,ang] = azelspectrum(signal)

ang =

 40 -20
 45 20

Plot a 3-D spectrum in azimuth and elevation.

 Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC

17-211

plotSpectrum(azelspectrum);

MVDR DOA Estimation with a URA

Similar to the ULA case, we use a 2-D version of the MVDR algorithm. Since our knowledge of the
sensor positions is perfect, we expect the MVDR spectrum to have a better resolution than beamscan.

mvdrazelspectrum = phased.MVDREstimator2D('SensorArray',ura,...
 'OperatingFrequency',fc,...
 'AzimuthScanAngles',-45:45,'ElevationScanAngles',10:60,...
 'DOAOutputPort',true,'NumSignals',2);
[~,ang] = mvdrazelspectrum(signal)
plotSpectrum(mvdrazelspectrum);

ang =

 -20 40
 20 45

17 Featured Examples

17-212

MUSIC DOA Estimation with a URA

We can also use the MUSIC algorithm to estimate the directions of arrival of the two sources.

musicazelspectrum = phased.MUSICEstimator2D('SensorArray',ura,...
 'OperatingFrequency',fc,...
 'AzimuthScanAngles',-45:45,'ElevationScanAngles',10:60,...
 'DOAOutputPort',true,'NumSignalsSource','Property','NumSignals',2);
[~,ang] = musicazelspectrum(signal)
plotSpectrum(musicazelspectrum);

ang =

 -20 40
 20 45

 Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC

17-213

To compare MVDR and MUSIC estimators, let's consider sources located even closer together. Using
MVDR and MUSIC, compute the spatial spectrum of two sources located at 10° in azimuth and
separated by 3° in elevation.

ang1 = [10; 20]; % First signal
ang2 = [10; 23]; % Second signal

signal = sensorsig(getElementPosition(ura)/lambda,Nsamp, ...
 [ang1 ang2],nPower);
[~,angmvdr] = mvdrazelspectrum(signal)
[~,angmusic] = musicazelspectrum(signal)

angmvdr =

 10 -27
 22 21

angmusic =

 10 10
 23 20

In this case, only MUSIC correctly estimates to directions of arrival for the two sources. To see why,
plot an elevation cut of each spatial spectrum at 10° azimuth.

17 Featured Examples

17-214

ymvdr = mvdrazelspectrum(signal);
ymusic = musicazelspectrum(signal);
helperPlotDOASpectra(mvdrazelspectrum.ElevationScanAngles,...
 musicazelspectrum.ElevationScanAngles,ymvdr(:,56),ymusic(:,56),'URA')

Since the MUSIC spectrum has better spatial resolution than MVDR, MUSIC correctly identifies the
sources while MVDR fails to do so.

Summary

In this example, we showed how to apply the beamscan, MVDR, and MUSIC techniques to the DOA
estimation problem. We used both techniques to estimate broadside angles for the signals received by
a ULA. The MVDR algorithm has better resolution than beamscan when there is no sensor position
error. MUSIC has even better resolution than MVDR, but the number of sources must be known. We
also illustrated how to convert between azimuth and broadside angles. Next, we applied beamscan,
MVDR, and MUSIC to estimate both azimuth and elevation angles using a URA. In all of these cases,
we plotted the output spatial spectrum, and found again that MUSIC had the best spatial resolution.
Beamscan, MVDR, and MUSIC are techniques that can be applied to any type of array, but for ULAs
and URAs there are additional high resolution techniques that can further exploit the array geometry.

 Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC

17-215

High Resolution Direction of Arrival Estimation
This example illustrates several high-resolution direction of arrival (DOA) estimation techniques. It
introduces variants of the MUSIC, root-MUSIC, ESPRIT and root-WSF algorithms and discusses their
respective merits in the context of far-field, narrowband signal sources received by a uniform linear
array (ULA) antenna.

Modeling the Received Array Signals

Define a uniform linear array (ULA) composed of 10 isotropic antennas. The array element spacing is
0.5 meters.

N = 10;
ula = phased.ULA('NumElements',N,'ElementSpacing',0.5)

ula =
 phased.ULA with properties:

 Element: [1x1 phased.IsotropicAntennaElement]
 NumElements: 10
 ElementSpacing: 0.5000
 ArrayAxis: 'y'
 Taper: 1

Simulate the array output for two incident signals. Both signals are incident from 90° in azimuth.
Their elevation angles are 73° and 68° respectively. In this example, we assume that these two
directions are unknown and need to be estimated. Simulate the baseband received signal at the array
demodulated from an operating frequency of 300 MHz.

fc = 300e6; % Operating frequency
fs = 8192; % Sampling frequency
lambda = physconst('LightSpeed')/fc; % Wavelength
pos = getElementPosition(ula)/lambda; % Element position in wavelengths
ang1 = [90;73]; ang2 = [90;68]; % Direction of the signals
angs = [ang1 ang2];
Nsamp = 1024; % Number of snapshots
noisePwr = 0.01; % Noise power

rs = rng(2012); % Set random number generator
signal = sensorsig(pos,Nsamp,angs,noisePwr);

Because a ULA is symmetric around its axis, a DOA algorithm cannot uniquely determine azimuth and
elevation. Therefore, the results returned by these high-resolution DOA estimators are in the form of
broadside angles. An illustration of broadside angles can be found in the following figure.

17 Featured Examples

17-216

Calculate the broadside angles corresponding to the two incident angles.

ang_true = az2broadside(angs(1,:),angs(2,:))

ang_true = 1×2

 17.0000 22.0000

The broadside angles are 17° and 22°.

Estimating the Direction of Arrival (DOA)

Assume that we know a priori that there are two sources. To estimate the DOA, use the root-MUSIC
technique. Construct a DOA estimator using the root-MUSIC algorithm.

rootmusicangle = phased.RootMUSICEstimator('SensorArray',ula,...
 'OperatingFrequency',fc,...
 'NumSignalsSource','Property','NumSignals',2)

rootmusicangle =
 phased.RootMUSICEstimator with properties:

 High Resolution Direction of Arrival Estimation

17-217

 SensorArray: [1x1 phased.ULA]
 PropagationSpeed: 299792458
 OperatingFrequency: 300000000
 NumSignalsSource: 'Property'
 NumSignals: 2
 ForwardBackwardAveraging: false
 SpatialSmoothing: 0

Because the array response vector of a ULA is conjugate symmetric, we can use forward-backward
(FB) averaging to perform computations with real matrices and reduce computational complexity. FB-
based estimators also have a lower variance and reduce the correlation between signals.

To apply forward-backward averaging, set the ForwardBackwardAveraging property of the root-
MUSIC DOA estimator to true. In this case, the root-MUSIC algorithm is also called the unitary root-
MUSIC algorithm.

rootmusicangle.ForwardBackwardAveraging = true;

Perform the DOA estimation:

ang = rootmusicangle(signal)

ang = 1×2

 16.9960 21.9964

We can also use an ESPRIT DOA estimator. As in the case of root-MUSIC, set the
ForwardBackwardAveraging property to true. This algorithm is also called unitary ESPRIT.

espritangle = phased.ESPRITEstimator('SensorArray',ula,...
 'OperatingFrequency',fc,'ForwardBackwardAveraging',true,...
 'NumSignalsSource','Property','NumSignals',2)

espritangle =
 phased.ESPRITEstimator with properties:

 SensorArray: [1x1 phased.ULA]
 PropagationSpeed: 299792458
 OperatingFrequency: 300000000
 NumSignalsSource: 'Property'
 NumSignals: 2
 SpatialSmoothing: 0
 Method: 'TLS'
 ForwardBackwardAveraging: true
 RowWeighting: 1

ang = espritangle(signal)

ang = 1×2

 21.9988 16.9748

17 Featured Examples

17-218

Finally, use the MUSIC DOA estimator. MUSIC also supports forward-backward averaging. Unlike
ESPRIT and root-MUSIC, MUSIC computes a spatial spectrum for specified broadside scan angles.
Directions of arrival correspond to peaks in the MUSIC spatial spectrum.

musicangle = phased.MUSICEstimator('SensorArray',ula,...
 'OperatingFrequency',fc,'ForwardBackwardAveraging',true,...
 'NumSignalsSource','Property','NumSignals',2,...
 'DOAOutputPort',true)

musicangle =
 phased.MUSICEstimator with properties:

 SensorArray: [1x1 phased.ULA]
 PropagationSpeed: 299792458
 OperatingFrequency: 300000000
 ForwardBackwardAveraging: true
 SpatialSmoothing: 0
 ScanAngles: [-90 -89 -88 -87 -86 -85 -84 -83 -82 -81 ...]
 DOAOutputPort: true
 NumSignals: 2
 NumSignalsSource: 'Property'

[~,ang] = musicangle(signal)

ang = 1×2

 17 22

plotSpectrum(musicangle)

 High Resolution Direction of Arrival Estimation

17-219

Directions of arrival for MUSIC are limited to the scan angles in the ScanAngles property. Because
the true directions of arrival in this example coincide with the search angles in ScanAngles, MUSIC
provides precise DOA angle estimates. In practice, root-MUSIC provides superior resolution to
MUSIC. However, the MUSIC algorithm can also be used for DOA estimation in both azimuth and
elevation using a 2-D array. See “Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC”
on page 17-205.

Estimating the Number of Signal Sources

In practice, you generally do not know the number of signal sources, and need to estimate the
number of sources from the received signal. You can estimate the number of signal sources by
specifying 'Auto' for the NumSignalsSource property and choosing either 'AIC' or 'MDL' for the
NumSignalsMethod property. For AIC, the Akaike information criterion (AIC) is used, and for MDL,
the minimum description length (MDL) criterion is used.

Before you can set NumSignalsSource, you must release the DOA object because it is locked to
improve efficiency during processing.

release(espritangle);
espritangle.NumSignalsSource = 'Auto';
espritangle.NumSignalsMethod = 'AIC';
ang = espritangle(signal)

ang = 1×2

 21.9988 16.9748

17 Featured Examples

17-220

Reducing Computational Complexity

In addition to forward-backward averaging, other methods can reduce computational complexity. One
of these approaches is to solve an equivalent problem with reduced dimensions in beamspace. While
the ESPRIT algorithm performs the eigenvalue decomposition (EVD) of a 10x10 real matrix in our
example, the beamspace version can reduce the problem to the EVD of a 3x3 real matrix. This
technique uses a priori knowledge of the sector where the signals are located to position the center of
the beam fan. In this example, point the beam fan to 20° in azimuth.

bsespritangle = phased.BeamspaceESPRITEstimator('SensorArray',ula,...
 'OperatingFrequency',fc,...
 'NumBeamsSource','Property','NumBeams',3,...
 'BeamFanCenter',20);
ang = bsespritangle(signal)

ang = 1×2

 21.9875 16.9943

Another technique is the root-weighted subspace fitting (WSF) algorithm. This algorithm is iterative
and the most demanding in terms of computational complexity. You can set the maximum number of
iterations by specifying the MaximumIterationCount property to maintain the cost below a specific
limit.

rootwsfangle = phased.RootWSFEstimator('SensorArray',ula,...
 'OperatingFrequency',fc,'MaximumIterationCount',2);
ang = rootwsfangle(signal)

ang = 1×2

 21.9962 16.9961

Optimizing Performance

In addition to FB averaging, you can use row weighting to improve the statistical performance of the
element-space ESPRIT estimator. Row weighting is a technique that applies different weights to the
rows of the signal subspace matrix. The row weighting parameter determines the maximum weight.
In most cases, it is chosen to be as large as possible. However, its value can never be greater than
(N-1)/2, where N is the number of elements of the array.

release(espritangle);
espritangle.RowWeighting = 4

espritangle =
 phased.ESPRITEstimator with properties:

 SensorArray: [1x1 phased.ULA]
 PropagationSpeed: 299792458
 OperatingFrequency: 300000000
 NumSignalsSource: 'Auto'
 NumSignalsMethod: 'AIC'
 SpatialSmoothing: 0
 Method: 'TLS'
 ForwardBackwardAveraging: true
 RowWeighting: 4

 High Resolution Direction of Arrival Estimation

17-221

ang = espritangle(signal)

ang = 1×2

 21.9884 17.0003

Estimating Coherent Sources in Multipath Environments

If several sources are correlated or coherent (as in multipath environments), the spatial covariance
matrix becomes rank deficient and subspace-based DOA estimation methods may fail. To show this,
model a received signal composed of 4 narrowband components. Assume that 2 of the first 3 signals
are multipath reflections of the first source, having magnitudes equal to 1/4 and 1/2 that of the first
source, respectively.

scov = eye(4);
magratio = [1;0.25;0.5];
scov(1:3,1:3) = magratio*magratio';

All signals are incident at 0° elevation, with azimuth incident angles of -23°, 0°, 12°, and 40°.

% Incident azimuth
az_ang = [-23 0 12 40];

% When the elevation is zero, the azimuth within [-90 90] is the same as
% the broadside angle.
el_ang = zeros(1,4);

% The received signals
signal = sensorsig(pos,Nsamp,[az_ang; el_ang],noisePwr,scov);
rng(rs); % Restore random number generator

Compare the performance of the DOA algorithm when sources are coherent. To simplify the example,
run only one trial per algorithm. Given the high SNR, the results will be a good indicator of
estimation accuracy.

First, verify that the AIC criterion underestimates the number of sources, causing the unitary ESPRIT
algorithm to give incorrect estimates. The AIC estimates the number of sources as two because three
sources are correlated.

release(espritangle);
espritangle.NumSignalsSource = 'Auto';
espritangle.NumSignalsMethod = 'AIC';
ang = espritangle(signal)

ang = 1×2

 -15.3535 40.0024

The root-WSF algorithm is robust in the context of correlated signals. With the correct number of
sources as an input, the algorithm correctly estimates the directions of arrival.

release(rootwsfangle);
rootwsfangle.NumSignalsSource = 'Property';
rootwsfangle.NumSignals = 4;
ang = rootwsfangle(signal)

17 Featured Examples

17-222

ang = 1×4

 40.0016 -22.9919 12.0693 0.0737

ESPRIT, root-MUSIC, and MUSIC, however, fail to estimate the correct directions of arrival, even if
we specify the number of sources and use the unitary implementations.

release(rootmusicangle);
rootmusicangle.NumSignalsSource = 'Property';
rootmusicangle.NumSignals = 4;
rootmusicangle.ForwardBackwardAveraging = true;
ang = rootmusicangle(signal)

ang = 1×4

 40.0077 -22.8313 4.4976 -11.9038

You can apply spatial smoothing to estimate the DOAs of correlated signals. Using spatial smoothing,
however, decreases the effective aperture of the array. Therefore, the variance of the estimators
increases because the subarrays are smaller than the original array.

release(rootmusicangle);
Nr = 2; % Number of multipath reflections
rootmusicangle.SpatialSmoothing = Nr

rootmusicangle =
 phased.RootMUSICEstimator with properties:

 SensorArray: [1x1 phased.ULA]
 PropagationSpeed: 299792458
 OperatingFrequency: 300000000
 NumSignalsSource: 'Property'
 NumSignals: 4
 ForwardBackwardAveraging: true
 SpatialSmoothing: 2

ang = rootmusicangle(signal)

ang = 1×4

 40.0010 -22.9959 12.1376 0.1843

Comparison of DOA Algorithms

In summary, ESPRIT, MUSIC, root-MUSIC, and root-WSF are important DOA algorithms that provide
good performance and reasonable computational complexity for ULAs. Unitary ESPRIT, unitary root-
MUSIC, and beamspace unitary ESPRIT provide ways to significantly reduce the computational cost
of the estimators, while also improving their performance. root-WSF is particularly attractive in the
context of correlated sources because, contrary to the other methods, it does not require spatial
smoothing to properly estimate the DOAs when the number of sources is known.

 High Resolution Direction of Arrival Estimation

17-223

Increasing Angular Resolution with Virtual Arrays
This example introduces how forming a virtual array in MIMO radars can help increase angular
resolution. It shows how to simulate a coherent MIMO radar signal processing chain using Phased
Array System Toolbox™.

Introduction

There are two categories of multiple input multiple output (MIMO) radars. Multistatic radars form
the first category. They are often referred to as statistical MIMO radars. Coherent MIMO radars form
the second category and are the focus of this example. A benefit of coherent MIMO radar signal
processing is the ability to increase the angular resolution of the physical antenna array by forming a
virtual array.

Virtual Array

A virtual array can be created by quasi-monostatic MIMO radars, where the transmit and receive
arrays are closely located. To better understand the virtual array concept, first look at the two-way
pattern of a conventional phased array radar. The two-way pattern of a phased array radar is the
product of its transmit array pattern and receive array pattern. For example, consider a 77 GHz
millimeter wave radar with a 2-element transmit array and a 4-element receive array.

fc = 77e9;
c = 3e8;
lambda = c/fc;
Nt = 2;
Nr = 4;

If both arrays have half-wavelength spacing, which are sometimes referred to as full arrays, then the
two-way pattern is close to the receive array pattern.

dt = lambda/2;
dr = lambda/2;

txarray = phased.ULA(Nt,dt);
rxarray = phased.ULA(Nr,dr);

ang = -90:90;

pattx = pattern(txarray,fc,ang,0,'Type','powerdb');
patrx = pattern(rxarray,fc,ang,0,'Type','powerdb');
pat2way = pattx+patrx;

helperPlotMultipledBPattern(ang,[pat2way pattx patrx],[-30 0],...
 {'Two-way Pattern','Tx Pattern','Rx Pattern'},...
 'Patterns of full/full arrays - 2Tx, 4Rx',...
 {'-','--','-.'});

17 Featured Examples

17-224

If the full transmit array is replaced with a thin array, meaning the element spacing is wider than half
wavelength, then the two-way pattern has a narrower beamwidth. Notice that even though the thin
transmit array has grating lobes, those grating lobes are not present in the two-way pattern.

dt = Nr*lambda/2;
txarray = phased.ULA(Nt,dt);
pattx = pattern(txarray,fc,ang,0,'Type','powerdb');
pat2way = pattx+patrx;
helperPlotMultipledBPattern(ang,[pat2way pattx patrx],[-30 0],...
 {'Two-way Pattern','Tx Pattern','Rx Pattern'},...
 'Patterns of thin/full arrays - 2Tx, 4Rx',...
 {'-','--','-.'});

 Increasing Angular Resolution with Virtual Arrays

17-225

The two-way pattern of this system corresponds to the pattern of a virtual receive array with 2 x 4 =
8 elements. Thus, by carefully choosing the geometry of the transmit and the receive arrays, we can
increase the angular resolution of the system without adding more antennas to the arrays.

varray = phased.ULA(Nt*Nr,dr);
patv = pattern(varray,fc,ang,0,'Type','powerdb');
helperPlotMultipledBPattern(ang,[pat2way patv],[-30 0],...
 {'Two-way Pattern','Virtual Array Pattern'},...
 'Patterns of thin/full arrays and virtual array',...
 {'-','--'},[1 2]);

17 Featured Examples

17-226

Virtual Array in MIMO Radars

In a coherent MIMO radar system, each antenna of the transmit array transmits an orthogonal
waveform. Because of this orthogonality, it is possible to recover the transmitted signals at the
receive array. The measurements at the physical receive array corresponding to each orthogonal
waveform can then be stacked to form the measurements of the virtual array.

Note that since each element in the transmit array radiates independently, there is no transmit
beamforming, so the transmit pattern is broad and covers a large field of view (FOV). This allows the
simultaneous illumination of all targets in the FOV. The receive array can then generate multiple
beams to process all target echoes. Compared to conventional phased array radars that need
successive scans to cover the entire FOV, this is another advantage of MIMO radars for applications
that require fast reaction time.

TDM-MIMO Radar Simulation

Time division multiplexing (TDM) is one way to achieve orthogonality among transmit channels. The
remainder of this example shows how to model and simulate a TDM-MIMO frequency-modulated

 Increasing Angular Resolution with Virtual Arrays

17-227

continuous wave (FMCW) automotive radar system. The waveform characteristics are adapted from
the “Automotive Adaptive Cruise Control Using FMCW Technology” (Radar Toolbox) example.

waveform = helperDesignFMCWWaveform(c,lambda);
fs = waveform.SampleRate;

Imagine that there are two cars in the FOV with a separation of 20 degrees. As seen in the earlier
array pattern plots of this example, the 3dB beamwidth of a 4-element receive array is around 30
degrees so conventional processing would not be able to separate the two targets in the angular
domain. The radar sensor parameters are as follows:

transmitter = phased.Transmitter('PeakPower',0.001,'Gain',36);
receiver = phased.ReceiverPreamp('Gain',40,'NoiseFigure',4.5,'SampleRate',fs);

txradiator = phased.Radiator('Sensor',txarray,'OperatingFrequency',fc,...
 'PropagationSpeed',c,'WeightsInputPort',true);

rxcollector = phased.Collector('Sensor',rxarray,'OperatingFrequency',fc,...
 'PropagationSpeed',c);

Define the position and motion of the ego vehicle and the two cars in the FOV.

radar_speed = 100*1000/3600; % Ego vehicle speed 100 km/h
radarmotion = phased.Platform('InitialPosition',[0;0;0.5],'Velocity',[radar_speed;0;0]);

car_dist = [40 50]; % Distance between sensor and cars (meters)
car_speed = [-80 96]*1000/3600; % km/h -> m/s
car_az = [-10 10];
car_rcs = [20 40];
car_pos = [car_dist.*cosd(car_az);car_dist.*sind(car_az);0.5 0.5];

cars = phased.RadarTarget('MeanRCS',car_rcs,'PropagationSpeed',c,'OperatingFrequency',fc);
carmotion = phased.Platform('InitialPosition',car_pos,'Velocity',[car_speed;0 0;0 0]);

The propagation model is assumed to be free space.

channel = phased.FreeSpace('PropagationSpeed',c,...
 'OperatingFrequency',fc,'SampleRate',fs,'TwoWayPropagation',true);

The raw data cube received by the physical array of the TDM MIMO radar can then be simulated as
follows:

rng(2017);
Nsweep = 64;
Dn = 2; % Decimation factor
fs = fs/Dn;
xr = complex(zeros(fs*waveform.SweepTime,Nr,Nsweep));

w0 = [0;1]; % weights to enable/disable radiating elements

for m = 1:Nsweep
 % Update radar and target positions
 [radar_pos,radar_vel] = radarmotion(waveform.SweepTime);
 [tgt_pos,tgt_vel] = carmotion(waveform.SweepTime);
 [~,tgt_ang] = rangeangle(tgt_pos,radar_pos);

 % Transmit FMCW waveform
 sig = waveform();

17 Featured Examples

17-228

 txsig = transmitter(sig);

 % Toggle transmit element
 w0 = 1-w0;
 txsig = txradiator(txsig,tgt_ang,w0);

 % Propagate the signal and reflect off the target
 txsig = channel(txsig,radar_pos,tgt_pos,radar_vel,tgt_vel);
 txsig = cars(txsig);

 % Dechirp the received radar return
 rxsig = rxcollector(txsig,tgt_ang);
 rxsig = receiver(rxsig);
 dechirpsig = dechirp(rxsig,sig);

 % Decimate the return to reduce computation requirements
 for n = size(xr,2):-1:1
 xr(:,n,m) = decimate(dechirpsig(:,n),Dn,'FIR');
 end
end

Virtual Array Processing

The data cube received by the physical array must be processed to form the virtual array data cube.
For the TDM-MIMO radar system used in this example, the measurements corresponding to the two
transmit antenna elements can be recovered from two consecutive sweeps by taking every other page
of the data cube.

Nvsweep = Nsweep/2;
xr1 = xr(:,:,1:2:end);
xr2 = xr(:,:,2:2:end);

Now the data cube in xr1 contains the return corresponding to the first transmit antenna element,
and the data cube in xr2 contains the return corresponding to the second transmit antenna element.
Hence, the data cube from the virtual array can be formed as:

xrv = cat(2,xr1,xr2);

Next, perform range-Doppler processing on the virtual data cube. Because the range-Doppler
processing is linear, the phase information is preserved. Therefore, the resulting response can be
used later to perform further spatial processing on the virtual aperture.

nfft_r = 2^nextpow2(size(xrv,1));
nfft_d = 2^nextpow2(size(xrv,3));

rngdop = phased.RangeDopplerResponse('PropagationSpeed',c,...
 'DopplerOutput','Speed','OperatingFrequency',fc,'SampleRate',fs,...
 'RangeMethod','FFT','PRFSource','Property',...
 'RangeWindow','Hann','PRF',1/(Nt*waveform.SweepTime),...
 'SweepSlope',waveform.SweepBandwidth/waveform.SweepTime,...
 'RangeFFTLengthSource','Property','RangeFFTLength',nfft_r,...
 'DopplerFFTLengthSource','Property','DopplerFFTLength',nfft_d,...
 'DopplerWindow','Hann');

[resp,r,sp] = rngdop(xrv);

 Increasing Angular Resolution with Virtual Arrays

17-229

The resulting resp is a data cube containing the range-Doppler response for each element in the
virtual array. As an illustration, the range-Doppler map for the first element in the virtual array is
shown.

plotResponse(rngdop,squeeze(xrv(:,1,:)));

The detection can be performed on the range-Doppler map from each pair of transmit and receive
element to identify the targets in scene. In this example, a simple threshold-based detection is
performed on the map obtained between the first transmit element and the first receive element,
which corresponds to the measurement at the first element in the virtual array. Based on the range-
Doppler map shown in the previous figure, the threshold is set at 10 dB below the maximum peak.

respmap = squeeze(mag2db(abs(resp(:,1,:))));
ridx = helperRDDetection(respmap,-10);

Based on the detected range of the targets, the corresponding range cuts can be extracted from the
virtual array data cube to perform further spatial processing. To verify that the virtual array provides
a higher resolution compared to the physical array, the code below extracts the range cuts for both
targets and combines them into a single data matrix. The beamscan algorithm is then performed over
these virtual array measurements to estimate the directions of the targets.

xv = squeeze(sum(resp(ridx,:,:),1))';

doa = phased.BeamscanEstimator('SensorArray',varray,'PropagationSpeed',c,...
 'OperatingFrequency',fc,'DOAOutputPort',true,'NumSignals',2,'ScanAngles',ang);
[Pdoav,target_az_est] = doa(xv);

17 Featured Examples

17-230

fprintf('target_az_est = [%s]\n',num2str(target_az_est));

target_az_est = [-6 10]

The two targets are successfully separated. The actual angles for the two cars are -10 and 10
degrees.

The next figure compares the spatial spectrums from the virtual and the physical receive array.

doarx = phased.BeamscanEstimator('SensorArray',rxarray,'PropagationSpeed',c,...
 'OperatingFrequency',fc,'DOAOutputPort',true,'ScanAngles',ang);
Pdoarx = doarx(xr);

helperPlotMultipledBPattern(ang,mag2db(abs([Pdoav Pdoarx])),[-30 0],...
 {'Virtual Array','Physical Array'},...
 'Spatial spectrum for virtual array and physical array',{'-','--'});

In this example, the detection is performed on the range-Doppler map without spatial processing of
the virtual array data cube. This works because the SNR is high. If the SNR is low, it is also possible
to process the virtual array blindly across the entire range-Doppler map to maximize the SNR before
the detection.

Phase-coded MIMO Radars

Although a TDM-MIMO radar's processing chain is relatively simple, it uses only one transmit
antenna at a time. Therefore, it does not take advantage of the full capacity of the transmit array. To
improve the efficiency, there are other orthogonal waveforms that can be used in a MIMO radar.

 Increasing Angular Resolution with Virtual Arrays

17-231

Using the same configuration as the example, one scheme to achieve orthogonality is to have one
element always transmit the same FMCW waveform, while the second transmit element reverses the
phase of the FMCW waveform for each sweep. This way both transmit elements are active in all
sweeps. For the first sweep, the two elements transmit the same waveform, and for the second
sweep, the two elements transmit the waveform with opposite phase, and so on. This is essentially
coding the consecutive sweeps from different elements with a Hadamard code. It is similar to the
Alamouti codes used in MIMO communication systems.

MIMO radars can also adopt phase-coded waveforms in MIMO radar. In this case, each radiating
element can transmit a uniquely coded waveform, and the receiver can then have a matched filter
bank corresponding to each of those phase coded waveform. The signals can then be recovered and
processed to form the virtual array.

Summary

In this example, we gave a brief introduction to coherent MIMO radar and the virtual array concept.
We simulated the return of a MIMO radar with a 2-element transmit array and a 4-element receive
array and performed direction of arrival estimation of the simulated echos of two closely spaced
targets using an 8-element virtual array.

References

[1] Frank Robey, et al. MIMO Radar Theory and Experimental Results, Conference Record of the
Thirty Eighth Asilomar Conference on Signals, Systems and Computers, California, pp. 300-304,
2004.

[2] Eli Brookner, MIMO Radars and Their Conventional Equivalents, IEEE Radar Conference, 2015.

[3] Sandeep Rao, MIMO Radar, Texas Instruments Application Report SWRA554, May 2017.

[4] Jian Li and Peter Stoica, MIMO Radar Signal Processing, John Wiley & Sons, 2009.

17 Featured Examples

17-232

Introduction to Space-Time Adaptive Processing
This example gives a brief introduction to space-time adaptive processing (STAP) techniques and
illustrates how to use Phased Array System Toolbox™ to apply STAP algorithms to the received
pulses. STAP is a technique used in airborne radar systems to suppress clutter and jammer
interference.

Introduction

In a ground moving target indicator (GMTI) system, an airborne radar collects the returned echo
from the moving target on the ground. However, the received signal contains not only the reflected
echo from the target, but also the returns from the illuminated ground surface. The return from the
ground is generally referred to as clutter.

The clutter return comes from all the areas illuminated by the radar beam, so it occupies all range
bins and all directions. The total clutter return is often much stronger than the returned signal echo,
which poses a great challenge to target detection. Clutter filtering, therefore, is a critical part of a
GMTI system.

In traditional MTI systems, clutter filtering often takes advantage of the fact that the ground does not
move. Thus, the clutter occupies the zero Doppler bin in the Doppler spectrum. This principle leads to
many Doppler-based clutter filtering techniques, such as pulse canceller. Interested readers can refer
to “Ground Clutter Mitigation with Moving Target Indication (MTI) Radar” (Radar Toolbox) for a
detailed example of the pulse canceller. When the radar platform itself is also moving, such as in a
plane, the Doppler component from the ground return is no longer zero. In addition, the Doppler
components of clutter returns are angle dependent. In this case, the clutter return is likely to have
energy across the Doppler spectrum. Therefore, the clutter cannot be filtered only with respect to
Doppler frequency.

Jamming is another significant interference source that is often present in the received signal. The
simplest form of jamming is a barrage jammer, which is strong, continuous white noise directed
toward the radar receiver so that the receiver cannot easily detect the target return. The jammer is
usually at a specific location, and the jamming signal is therefore associated with a specific direction.
However, because of the white noise nature of the jammer, the received jamming signal occupies the
entire Doppler band.

STAP techniques filter the signal in both the angular and Doppler domains (thus, the name "space-
time adaptive processing") to suppress the clutter and jammer returns. In the following sections, we
simulate returns from target, clutter, and jammer and illustrate how STAP techniques filter the
interference from the received signal.

System Setup

We first define a radar system, starting from the system built in the example “Simulating Test Signals
for a Radar Receiver” on page 17-378.

load BasicMonostaticRadarExampleData.mat; % Load monostatic pulse radar

Antenna Definition

Assume that the antenna element has an isotropic response in the front hemisphere and all zeros in
the back hemisphere. The operating frequency range is set to 8 to 12 GHz to match the 10 GHz
operating frequency of the system.

 Introduction to Space-Time Adaptive Processing

17-233

antenna = phased.IsotropicAntennaElement...
 ('FrequencyRange',[8e9 12e9],'BackBaffled',true); % Baffled Isotropic

Define a 6-element ULA with a custom element pattern. The element spacing is assumed to be one
half the wavelength of the waveform.

fc = radiator.OperatingFrequency;
c = radiator.PropagationSpeed;
lambda = c/fc;
ula = phased.ULA('Element',antenna,'NumElements',6,...
 'ElementSpacing', lambda/2);

pattern(ula,fc,'PropagationSpeed',c,'Type','powerdb')
title('6-element Baffled ULA Response Pattern')
view(60,50)

Radar Setup

Next, mount the antenna array on the radiator/collector. Then, define the radar motion. The radar
system is mounted on a plane that flies 1000 meters above the ground. The plane is flying along the
array axis of the ULA at a speed such that it travels a half element spacing of the array during one
pulse interval. (An explanation of such a setting is provided in the DPCA technique section that
follows.)

radiator.Sensor = ula;
collector.Sensor = ula;
sensormotion = phased.Platform('InitialPosition',[0; 0; 1000]);

17 Featured Examples

17-234

arrayAxis = [0; 1; 0];
prf = waveform.PRF;
vr = ula.ElementSpacing*prf; % in [m/s]
sensormotion.Velocity = vr/2*arrayAxis;

Target

Next, define a nonfluctuating target with a radar cross section of 1 square meter moving on the
ground.

target = phased.RadarTarget('Model','Nonfluctuating','MeanRCS',1, ...
 'OperatingFrequency', fc);
tgtmotion = phased.Platform('InitialPosition',[1000; 1000; 0],...
 'Velocity',[30; 30; 0]);

Jammer

The target returns the desired signal; however, several interferences are also present in the received
signal. If Radar Toolbox is available, please set the varaible hasRadarToolbox to true to define a
simple barrage jammer with an effective radiated power of 100 watts. Otherwise, the simulation will
use a saved jammer signal.

hasRadarToolbox = false;
Fs = waveform.SampleRate;
rngbin = c/2*(0:1/Fs:1/prf-1/Fs).';
if hasRadarToolbox
 jammer = barrageJammer('ERP',100);
 jammer.SamplesPerFrame = numel(rngbin);
 jammermotion = phased.Platform('InitialPosition',[1000; 1732; 1000]);
end

Clutter

In this example we simulate the clutter using the constant gamma model with a gamma value of -15
dB. Literature shows that such a gamma value can be used to model terrain covered by woods. For
each range, the clutter return can be thought of as a combination of the returns from many small
clutter patches on that range ring. Since the antenna is back baffled, the clutter contribution is only
from the front. To simplify the computation, use an azimuth width of 10 degrees for each patch.
Again, if Radar Toolbox is not available, the simulation will use a saved clutter signal.

if hasRadarToolbox
 Rmax = 5000;
 Azcov = 120;
 clutter = constantGammaClutter('Sensor',ula,'SampleRate',Fs,...
 'Gamma',-15,'PlatformHeight',1000,...
 'OperatingFrequency',fc,...
 'PropagationSpeed',c,...
 'PRF',prf,...
 'TransmitERP',transmitter.PeakPower*db2pow(transmitter.Gain),...
 'PlatformSpeed',norm(sensormotion.Velocity),...
 'PlatformDirection',[90;0],...
 'ClutterMaxRange', Rmax,...
 'ClutterAzimuthSpan',Azcov,...
 'PatchAzimuthSpan',10,...
 'OutputFormat','Pulses');
end

Propagation Paths

 Introduction to Space-Time Adaptive Processing

17-235

Finally, create a free space environment to represent the target and jammer paths. Because we are
using a monostatic radar system, the target channel is set to simulate two-way propagation delays.
The jammer path computes only one-way propagation delays.

tgtchannel = phased.FreeSpace('TwoWayPropagation',true,'SampleRate',Fs,...
 'OperatingFrequency', fc);
jammerchannel = phased.FreeSpace('TwoWayPropagation',false,...
 'SampleRate',Fs,'OperatingFrequency', fc);

Simulation Loop

We are now ready to simulate the returns. Collect 10 pulses before processing. The seed of the
random number generator from the jammer model is set to a constant to get reproducible results.

numpulse = 10; % Number of pulses
tsig = zeros(size(rngbin,1), ula.NumElements, numpulse);
jsig = tsig; tjcsig = tsig; tcsig = tsig; csig = tsig;

if hasRadarToolbox
 jammer.SeedSource = 'Property';
 jammer.Seed = 5;
 clutter.SeedSource = 'Property';
 clutter.Seed = 5;
else
 load STAPIntroExampleData;
end

for m = 1:numpulse

 % Update sensor, target and calculate target angle as seen by the sensor
 [sensorpos,sensorvel] = sensormotion(1/prf);
 [tgtpos,tgtvel] = tgtmotion(1/prf);
 [~,tgtang] = rangeangle(tgtpos,sensorpos);

 % Update jammer and calculate the jammer angles as seen by the sensor
 if hasRadarToolbox
 [jampos,jamvel] = jammermotion(1/prf);
 [~,jamang] = rangeangle(jampos,sensorpos);
 end

 % Simulate propagation of pulse in direction of targets
 pulse = waveform();
 [pulse,txstatus] = transmitter(pulse);
 pulse = radiator(pulse,tgtang);
 pulse = tgtchannel(pulse,sensorpos,tgtpos,sensorvel,tgtvel);

 % Collect target returns at sensor
 pulse = target(pulse);
 tsig(:,:,m) = collector(pulse,tgtang);

 % Collect jammer and clutter signal at sensor
 if hasRadarToolbox
 jamsig = jammer();
 jamsig = jammerchannel(jamsig,jampos,sensorpos,jamvel,sensorvel);
 jsig(:,:,m) = collector(jamsig,jamang);

 csig(:,:,m) = clutter();
 end

17 Featured Examples

17-236

 % Receive collected signals
 tjcsig(:,:,m) = receiver(tsig(:,:,m)+jsig(:,:,m)+csig(:,:,m),...
 ~(txstatus>0)); % Target + jammer + clutter
 tcsig(:,:,m) = receiver(tsig(:,:,m)+csig(:,:,m),...
 ~(txstatus>0)); % Target + clutter
 tsig(:,:,m) = receiver(tsig(:,:,m),...
 ~(txstatus>0)); % Target echo only
end

True Target Range, Angle and Doppler

The target azimuth angle is 45 degrees, and the elevation angle is about -35.27 degrees.

tgtLocation = global2localcoord(tgtpos,'rs',sensorpos);
tgtAzAngle = tgtLocation(1)

tgtAzAngle = 44.9981

tgtElAngle = tgtLocation(2)

tgtElAngle = -35.2651

The target range is 1732 m.

tgtRng = tgtLocation(3)

tgtRng = 1.7320e+03

The target Doppler normalized frequency is about 0.21.

sp = radialspeed(tgtpos, tgtmotion.Velocity, ...
 sensorpos, sensormotion.Velocity);
tgtDp = 2*speed2dop(sp,lambda); % Round trip Doppler
tgtDp/prf

ans = 0.2116

The total received signal contains returns from the target, clutter and jammer combined. The signal
is a data cube with three dimensions (range bins x number of elements x number of pulses). Notice
that the clutter return dominates the total return and masks the target return. We cannot detect the
target (blue vertical line) without further processing at this stage.

ReceivePulse = tjcsig;
plot([tgtRng tgtRng],[0 0.01],rngbin,abs(ReceivePulse(:,:,1)));
xlabel('Range (m)'), ylabel('Magnitude');
title('Signals collected by the ULA within the first pulse interval')

 Introduction to Space-Time Adaptive Processing

17-237

Now, examine the returns in 2-D angle Doppler (or space-time) domain. In general, the response is
generated by scanning all ranges and azimuth angles for a given elevation angle. Because we know
exactly where the target is, we can calculate its range and elevation angle with respect to the
antenna array.

tgtCellIdx = val2ind(tgtRng,c/(2*Fs));
snapshot = shiftdim(ReceivePulse(tgtCellIdx,:,:)); % Remove singleton dim
angdopresp = phased.AngleDopplerResponse('SensorArray',ula,...
 'OperatingFrequency',fc, 'PropagationSpeed',c,...
 'PRF',prf, 'ElevationAngle',tgtElAngle);
plotResponse(angdopresp,snapshot,'NormalizeDoppler',true);
text(tgtAzAngle,tgtDp/prf,'+ Target')

17 Featured Examples

17-238

If we look at the angle Doppler response which is dominated by the clutter return, we see that the
clutter return occupies not only the zero Doppler, but also other Doppler bins. The Doppler of the
clutter return is also a function of the angle. The clutter return looks like a diagonal line in the entire
angle Doppler space. Such a line is often referred to as clutter ridge. The received jammer signal is
white noise, which spreads over the entire Doppler spectrum at a particular angle, around 60
degrees.

Clutter Suppression with a DPCA Canceller

The displaced phase center antenna (DPCA) algorithm is often considered to be the first STAP
algorithm. This algorithm uses the shifted aperture to compensate for the platform motion so that the
clutter return does not change from pulse to pulse. Thus, this algorithm can remove the clutter via a
simple subtraction of two consecutive pulses.

A DPCA canceller is often used on ULAs but requires special platform motion conditions. The
platform must move along the antenna's array axis and at a speed such that during one pulse interval,
the platform travels exactly half of the element spacing. The system used here is set up, as described
in earlier sections, to meet these conditions.

Assume that N is the number of ULA elements. The clutter return received at antenna 1 through
antenna N-1 during the first pulse is the same as the clutter return received at antenna 2 through
antenna N during the second pulse. By subtracting the pulses received at these two subarrays during
the two pulse intervals, the clutter can be cancelled out. The cost of this method is an aperture that is
one element smaller than the original array.

 Introduction to Space-Time Adaptive Processing

17-239

Now, define a DPCA canceller. The algorithm may need to search through all combinations of angle
and Doppler to locate a target, but for the example, because we know exactly where the target is, we
can direct our processor to that point.

rxmainlobedir = [0; 0];
stapdpca = phased.DPCACanceller('SensorArray',ula,'PRF',prf,...
 'PropagationSpeed',c,'OperatingFrequency',fc,...
 'Direction',rxmainlobedir,'Doppler',tgtDp,...
 'WeightsOutputPort',true)

stapdpca =
 phased.DPCACanceller with properties:

 SensorArray: [1x1 phased.ULA]
 PropagationSpeed: 299792458
 OperatingFrequency: 1.0000e+10
 PRFSource: 'Property'
 PRF: 2.9979e+04
 DirectionSource: 'Property'
 Direction: [2x1 double]
 NumPhaseShifterBits: 0
 DopplerSource: 'Property'
 Doppler: 6.3429e+03
 WeightsOutputPort: true
 PreDopplerOutput: false

First, apply the DPCA canceller to both the target return and the clutter return.

ReceivePulse = tcsig;
[y,w] = stapdpca(ReceivePulse,tgtCellIdx);

The processed data combines all information in space and across the pulses to become a single pulse.
Next, examine the processed signal in the time domain.

plot([tgtRng tgtRng],[0 1.2e-5],rngbin,abs(y));
xlabel('Range (m)'), ylabel('Magnitude');
title('DPCA Canceller Output (no Jammer)')

17 Featured Examples

17-240

The signal now is clearly distinguishable from the noise and the clutter has been filtered out. From
the angle Doppler response of the DPCA processor weights below, we can also see that the weights
produce a deep null along the clutter ridge.

angdopresp.ElevationAngle = 0;
plotResponse(angdopresp,w,'NormalizeDoppler',true);
title('DPCA Weights Angle Doppler Response at 0 degrees Elevation')

 Introduction to Space-Time Adaptive Processing

17-241

Although the results obtained by DPCA are very good, the radar platform has to satisfy very strict
requirements in its movement to use this technique. Also, the DPCA technique cannot suppress the
jammer interference.

Applying DPCA processing to the total signal produces the result shown in the following figure. We
can see that DPCA cannot filter the jammer from the signal. The resulting angle Doppler pattern of
the weights is the same as before. Thus, the processor cannot adapt to the newly added jammer
interference.

ReceivePulse = tjcsig;
[y,w] = stapdpca(ReceivePulse,tgtCellIdx);
plot([tgtRng tgtRng],[0 8e-4],rngbin,abs(y));
xlabel('Range (m)'), ylabel('Magnitude');
title('DPCA Canceller Output (with Jammer)')

17 Featured Examples

17-242

plotResponse(angdopresp,w,'NormalizeDoppler',true);
title('DPCA Weights Angle Doppler Response at 0 degrees Elevation')

 Introduction to Space-Time Adaptive Processing

17-243

Clutter and Jammer Suppression with an SMI Beamformer

To suppress the clutter and jammer simultaneously, we need a more sophisticated algorithm. The
optimum receiver weights, when the interference is Gaussian-distributed, are given by [1]

w = kR−1s

where k is a scalar factor, R is the space-time covariance matrix of the interference signal, and s is
the desired space-time steering vector. The exact information of R is often unavailable, so we will use
the sample matrix inversion (SMI) algorithm. The algorithm estimates R from training-cell samples
and then uses it in the aforementioned equation.

Now, define an SMI beamformer and apply it to the signal. In addition to the information needed in
DPCA, the SMI beamformer needs to know the number of guard cells and the number of training
cells. The algorithm uses the samples in the training cells to estimate the interference. Thus, we
should not use the cells that are close to the target cell for the estimates because they may contain
some target information, i.e., we should define guard cells. The number of guard cells must be an
even number to be split equally in front of and behind the target cell. The number of training cells
also must be an even number and split equally in front of and behind the target. Normally, the larger
the number of training cells, the better the interference estimate.

tgtAngle = [tgtAzAngle; tgtElAngle];
stapsmi = phased.STAPSMIBeamformer('SensorArray', ula, 'PRF', prf, ...
 'PropagationSpeed', c, 'OperatingFrequency', fc, ...
 'Direction', tgtAngle, 'Doppler', tgtDp, ...

17 Featured Examples

17-244

 'WeightsOutputPort', true,...
 'NumGuardCells', 4, 'NumTrainingCells', 100)

stapsmi =
 phased.STAPSMIBeamformer with properties:

 SensorArray: [1x1 phased.ULA]
 PropagationSpeed: 299792458
 OperatingFrequency: 1.0000e+10
 PRFSource: 'Property'
 PRF: 2.9979e+04
 DirectionSource: 'Property'
 Direction: [2x1 double]
 NumPhaseShifterBits: 0
 DopplerSource: 'Property'
 Doppler: 6.3429e+03
 NumGuardCells: 4
 NumTrainingCells: 100
 WeightsOutputPort: true

[y,w] = stapsmi(ReceivePulse,tgtCellIdx);
plot([tgtRng tgtRng],[0 2e-6],rngbin,abs(y));
xlabel('Range (m)'), ylabel('Magnitude');
title('SMI Beamformer Output (with Jammer)')

plotResponse(angdopresp,w,'NormalizeDoppler',true);
title('SMI Weights Angle Doppler Response at 0 degrees Elevation')

 Introduction to Space-Time Adaptive Processing

17-245

The result shows that an SMI beamformer can distinguish signals from both the clutter and the
jammer. The angle Doppler pattern of the SMI weights shows a deep null along the jammer direction.

SMI provides the maximum degrees of freedom, and hence, the maximum gain among all STAP
algorithms. It is often used as a baseline for comparing different STAP algorithms.

Reducing the Computation Cost with an ADPCA Canceller

Although SMI is the optimum STAP algorithm, it has several innate drawbacks, including a high
computation cost because it uses the full dimension data of each cell. More importantly, SMI requires
a stationary environment across many pulses. This kind of environment is not often found in real
applications. Therefore, many reduced dimension STAP algorithms have been proposed.

An adaptive DPCA (ADPCA) canceller filters out the clutter in the same manner as DPCA, but it also
has the capability to suppress the jammer as it estimates the interference covariance matrix using
two consecutive pulses. Because there are only two pulses involved, the computation is greatly
reduced. In addition, because the algorithm is adapted to the interference, it can also tolerate some
motion disturbance.

Now, define an ADPCA canceller, and then apply it to the received signal.

stapadpca = phased.ADPCACanceller('SensorArray', ula, 'PRF', prf, ...
 'PropagationSpeed', c, 'OperatingFrequency', fc, ...
 'Direction', rxmainlobedir, 'Doppler', tgtDp, ...
 'WeightsOutputPort', true,...
 'NumGuardCells', 4, 'NumTrainingCells', 100)

17 Featured Examples

17-246

stapadpca =
 phased.ADPCACanceller with properties:

 SensorArray: [1x1 phased.ULA]
 PropagationSpeed: 299792458
 OperatingFrequency: 1.0000e+10
 PRFSource: 'Property'
 PRF: 2.9979e+04
 DirectionSource: 'Property'
 Direction: [2x1 double]
 NumPhaseShifterBits: 0
 DopplerSource: 'Property'
 Doppler: 6.3429e+03
 NumGuardCells: 4
 NumTrainingCells: 100
 WeightsOutputPort: true
 PreDopplerOutput: false

[y,w] = stapadpca(ReceivePulse,tgtCellIdx);
plot([tgtRng tgtRng],[0 2e-6],rngbin,abs(y));
xlabel('Range (m)'), ylabel('Magnitude');
title('ADPCA Canceller Output (with Jammer)')

plotResponse(angdopresp,w,'NormalizeDoppler',true);
title('ADPCA Weights Angle Doppler Response at 0 degrees Elevation')

 Introduction to Space-Time Adaptive Processing

17-247

The time domain plot shows that the signal is successfully recovered. The angle Doppler response of
the ADPCA weights is similar to the one produced by the SMI weights.

Summary

This example presented a brief introduction to space-time adaptive processing and illustrated how to
use different STAP algorithms, namely, SMI, DPCA, and ADPCA, to suppress clutter and jammer
interference in the received pulses.

Reference

[1] J. R. Guerci, Space-Time Adaptive Processing for Radar, Artech House, 2003

17 Featured Examples

17-248

Source Localization Using Generalized Cross Correlation
This example shows how to determine the position of the source of a wideband signal using
generalized cross-correlation (GCC) and triangulation. For simplicity, this example is confined to a
two-dimensional scenario consisting of one source and two receiving sensor arrays. You can extend
this approach to more than two sensors or sensor arrays and to three dimensions.

Introduction

Source localization differs from direction-of-arrival (DOA) estimation. DOA estimation seeks to
determine only the direction of a source from a sensor. Source localization determines its position. In
this example, source localization consists of two steps, the first of which is DOA estimation.

1 Estimate the direction of the source from each sensor array using a DOA estimation algorithm.
For wideband signals, many well-known direction of arrival estimation algorithms, such as
Capon's method or MUSIC, cannot be applied because they employ the phase difference between
elements, making them suitable only for narrowband signals. In the wideband case, instead of
phase information, you can use the difference in the signal's time-of-arrival among elements. To
compute the time-of-arrival differences, this example uses the generalized cross-correlation with
phase transformation (GCC-PHAT) algorithm. From the differences in time-of-arrival, you can
compute the DOA. (For another example of narrowband DOA estimation algorithms, see “High
Resolution Direction of Arrival Estimation” on page 17-216).

2 Calculate the source position by triangulation. First, draw straight lines from the arrays along
the directions-of-arrival. Then, compute the intersection of these two lines. This is the source
location. Source localization requires knowledge of the position and orientation of the receiving
sensors or sensor arrays.

Triangulation Formula

The triangulation algorithm is based on simple trigonometric formulas. Assume that the sensor arrays
are located at the 2-D coordinates (0,0) and (L,0) and the unknown source location is (x,y). From
knowledge of the sensor arrays positions and the two directions-of-arrival at the arrays, θ1 and θ2,
you can compute the (x,y) coordinates from

L = ytanθ1 + ytanθ2

which you can solve for y

y = L/(tanθ1 + tanθ2)

and then for x

x = ytanθ1

The remainder of this example shows how you can use the functions and System objects of the
Phased Array System Toolbox™ to compute source position.

Source and Sensor Geometry

Set up two receiving 4-element ULAs aligned along the x-axis of the global coordinate system and
spaced 50 meters apart. The phase center of the first array is (0,0,0) . The phase center of the second
array is (50,0,0) . The source is located at (30,100) meters. As indicated in the figure, the receiving
array gains point in the +y direction. The source transmits in the -y direction.

 Source Localization Using Generalized Cross Correlation

17-249

Specify the baseline between sensor arrays.

L = 50;

Create a 4-element receiver ULA of omnidirectional microphones. You can use the same phased.ULA
System object™ for the phased.WidebandCollector and phased.GCCEstimator System objects
for both arrays.

N = 4;
rxULA = phased.ULA('Element',phased.OmnidirectionalMicrophoneElement,...
 'NumElements',N);

Specify the position and orientation of the first sensor array. When you create a ULA, the array
elements are automatically spaced along the y-axis. You must rotate the local axes of the array by 90°
to align the elements along the x-axis of the global coordinate system.

rxpos1 = [0;0;0];
rxvel1 = [0;0;0];
rxax1 = azelaxes(90,0);

Specify the position and orientation of the second sensor array. Choose the local axes of the second
array to align with the local axes of the first array.

rxpos2 = [L;0;0];
rxvel2 = [0;0;0];
rxax2 = rxax1;

Specify the signal source as a single omnidirectional transducer.

srcpos = [30;100;0];
srcvel = [0;0;0];

17 Featured Examples

17-250

srcax = azelaxes(-90,0);
srcULA = phased.OmnidirectionalMicrophoneElement;

Define Waveform

Choose the source signal to be a wideband LFM waveform. Assume the operating frequency of the
system is 300 kHz and set the bandwidth of the signal to 100 kHz. Assume a maximum operating
range of 150 m. Then, you can set the pulse repetition interval (PRI) and the pulse repetition
frequency (PRF). Assume a 10% duty cycle and set the pulse width. Finally, use a speed of sound in an
underwater channel of 1500 m/s.

Set the LFM waveform parameters and create the phased.LinearFMWaveform System object™.

fc = 300e3; % 300 kHz
c = 1500; % 1500 m/s
dmax = 150; % 150 m
pri = (2*dmax)/c;
prf = 1/pri;
bw = 100.0e3; % 100 kHz
fs = 2*bw;
waveform = phased.LinearFMWaveform('SampleRate',fs,'SweepBandwidth',bw,...
 'PRF',prf,'PulseWidth',pri/10);

The transmit signal can then be generated as

signal = waveform();

Radiate, Propagate, and Collect Signals

Modeling the radiation and propagation for wideband systems is more complicate than modeling
narrowband systems. For example, the attenuation depends on frequency. The Doppler shift as well
as the phase shifts among elements due to the signal incoming direction also vary according to the
frequency. Thus, it is critical to model those behaviors when dealing with wideband signals. This
example uses a subband approach.

Set the number of subbands to 128.

nfft = 128;

Specify the source radiator and the sensor array collectors.

radiator = phased.WidebandRadiator('Sensor',srcULA,...
 'PropagationSpeed',c,'SampleRate',fs,...
 'CarrierFrequency',fc,'NumSubbands',nfft);
collector1 = phased.WidebandCollector('Sensor',rxULA,...
 'PropagationSpeed',c,'SampleRate',fs,...
 'CarrierFrequency',fc,'NumSubbands',nfft);
collector2 = phased.WidebandCollector('Sensor',rxULA,...
 'PropagationSpeed',c,'SampleRate',fs,...
 'CarrierFrequency',fc,'NumSubbands',nfft);

Create the wideband signal propagators for the paths from the source to the two sensor arrays.

channel1 = phased.WidebandFreeSpace('PropagationSpeed',c,...
 'SampleRate',fs,'OperatingFrequency',fc,'NumSubbands',nfft);
channel2 = phased.WidebandFreeSpace('PropagationSpeed',c,...
 'SampleRate',fs,'OperatingFrequency',fc,'NumSubbands',nfft);

 Source Localization Using Generalized Cross Correlation

17-251

Determine the propagation directions from the source to the sensor arrays. Propagation directions
are with respect to the local coordinate system of the source.

[~,ang1t] = rangeangle(rxpos1,srcpos,srcax);
[~,ang2t] = rangeangle(rxpos2,srcpos,srcax);

Radiate the signal from the source in the directions of the sensor arrays.

sigt = radiator(signal,[ang1t ang2t]);

Then, propagate the signal to the sensor arrays.

sigp1 = channel1(sigt(:,1),srcpos,rxpos1,srcvel,rxvel1);
sigp2 = channel2(sigt(:,2),srcpos,rxpos2,srcvel,rxvel2);

Compute the arrival directions of the propagated signal at the sensor arrays. Because the collector
response is a function of the directions of arrival in the sensor array local coordinate system, pass the
local coordinate axes matrices to the rangeangle function.

[~,ang1r] = rangeangle(srcpos,rxpos1,rxax1);
[~,ang2r] = rangeangle(srcpos,rxpos2,rxax2);

Collect the signal at the receive sensor arrays.

sigr1 = collector1(sigp1,ang1r);
sigr2 = collector2(sigp2,ang2r);

GCC Estimation and Triangulation

Create the GCC-PHAT estimators.

doa1 = phased.GCCEstimator('SensorArray',rxULA,'SampleRate',fs,...
 'PropagationSpeed',c);
doa2 = phased.GCCEstimator('SensorArray',rxULA,'SampleRate',fs,...
 'PropagationSpeed',c);

Estimate the directions of arrival.

angest1 = doa1(sigr1);
angest2 = doa2(sigr2);

Triangulate the source position use the formulas established previously. Because the scenario is
confined to the x-y plane, set the z-coordinate to zero.

yest = L/(abs(tand(angest1)) + abs(tand(angest2)));
xest = yest*abs(tand(angest1));
zest = 0;
srcpos_est = [xest;yest;zest]

srcpos_est = 3×1

 29.9881
 100.5743
 0

The estimated source location matches the true location to within 30 cm.

17 Featured Examples

17-252

Summary

This example showed how to perform source localization using triangulation. In particular, the
example showed how to simulate, propagate, and process wideband signals. The GCC-PHAT
algorithm is used to estimate the direction of arrival of a wideband signal.

 Source Localization Using Generalized Cross Correlation

17-253

Acoustic Beamforming Using Microphone Arrays
This example shows how to beamform signals received by an array of microphones to extract a
desired speech signal in a noisy environment. This Simulink® example is based on the MATLAB®
example “Acoustic Beamforming Using a Microphone Array” on page 17-174 for System objects.

Structure of the Model

The model simulates the reception of three audio signals from different directions on a 10-element
uniformly linear microphone array (ULA). After the addition of thermal noise at the receiver,
beamforming is applied and the result played on a sound device.

The model consists of two stages: simulate the received audio signals and beamform the result. The
blocks that corresponds to each stage of the model are:

Received audio simulation

• Audio Sources - Subsystem reads the audio files and specifies their direction.

17 Featured Examples

17-254

• From Multimedia File - Part of the Audio Sources subsystem, each block reads audio from a
different wav file, 1000 samples at a time. Three blocks labelled source1, source2 and source3
correspond to the three sources.

• Concatenate - Concatenates the output of the three From Multimedia File blocks into a
three column matrix, one column per audio signal.

• source angles - Constant block specifies the incident directions of the audio sources to the
Wideband Rx Array block. The block outputs a 2x3 matrix. The two rows correspond to the
azimuth and elevation angles in degrees of each source, the three columns correspond to the
three audio signals.

• Wideband Rx Array - Simulates the audio signals received at the ULA. The first input port to
this block is a 1000x3 matrix. Each column corresponds to the received samples of each audio
signal. The second input port (Ang) specifies the incident direction of the pulses. The first row of
Ang specifies the azimuth angle in degree for each signal and the second row specifies the
elevation angle in degree for each signal. The second row is optional. If they not specified, the
elevation angles are assumed to be 0 degrees. The output of this block is a 1000x10 matrix. Each
column corresponds to the audio recorded at each element of the microphone array. The
microphone array's configuration is specified in the Sensor Array tab of the block dialog panel.
This configuration should match the configuration specified on the block dialog panel of the Frost
Beamformer. See the “Conventional and Adaptive Beamformers” on page 17-258 Simulink®
example to learn how to use sensor array configuration variables for conveniently sharing the
same configuration across several blocks.

 Acoustic Beamforming Using Microphone Arrays

17-255

• Receiver Preamp - Adds white noise to the received signals.

Beamforming

• Select beamform angle - Constant block controls the Multi-Port Switch output and
specifies which of the three source directions in which to beamform.

• Frost Beamformer - Performs Frost beamforming on the matrix passed via the input port X
along the direction specified via the input port Ang.

• 2-D Selector - Selects the received signal at one of the microphone elements.
• Manual switch - Switches between the non-beamformed and the beamformed audio stream sent

to the audio device.

Exploring the Example

Click on the Manual switch while running the simulation to toggle between playing the non-
beamformed audio stream and the beamformed stream. Setting a value of 1, 2, or 3 in the Select
beamform angle block while running the simulation will beamform along one of the three audio

17 Featured Examples

17-256

signals direction. You will notice that the non-beamformed audio sounds garbled while you can clearly
hear any one of the selected audio streams after beamforming.

 Acoustic Beamforming Using Microphone Arrays

17-257

Conventional and Adaptive Beamformers
This example shows how to apply conventional and adaptive beamforming in Simulink® to a
narrowband signal received by an antenna array. The signal model includes noise and interference.
This example is based on the “Conventional and Adaptive Beamformers” on page 17-190 example.

Available Example Implementations

This example includes two Simulink® models:

• Conventional Beamforming with Noise: slexBeamformerExample.slx
• Conventional and Adaptive Beamformers with Interference:

slexBeamformerInterferenceExample.slx

Conventional Beamforming with Noise

The first model simulates the reception of a rectangular pulse with a delay offset on a 10-element
uniformly linear antenna array (ULA). The source of the pulse is located at an azimuth of 45 degrees
and an elevation of 0 degrees. Noise with power of 0.5 watts is added to the signal at each element of
the array. A phase-shift beamformer is then applied. The example compares the output of the phase-
shift beamformer with the signal received at one of the antenna elements.

The model consists of a Signal Simulation stage and a Signal Processing stage. The blocks that
corresponds to each stage of the model are:

Signal simulation

• Rectangular - Creates rectangular pulses.
• Offset waveform - Delay block delays each pulse by 150 samples.
• Signal direction - Constant block specifies the incident direction of the pulses to the

Narrowband Rx Array block.
• Narrowband Rx Array - Simulates the signals received at the ULA. The first input to this block

is a column vector which contains the received pulses. The pulses are assumed to be narrowband

17 Featured Examples

17-258

matlab:slexBeamformerExample
matlab:slexBeamformerInterferenceExample

with a carrier frequency equal to the operating frequency specified in the block's dialog panel.
The second input (Ang) specifies the incident direction of the pulses. The antenna array's
configuration is created by a helper script as a variable in the MATLAB® workspace. This variable
is referenced by the Sensor Array tab of the block's dialog panel. Using a variable makes it
easier to share the antenna array's configuration across several blocks. Each column of the output
corresponds to the signal received at each element of the antenna array.

• Receiver Preamp - Adds thermal noise to the received signal.

Signal processing

• Angle to beamform - Constant block specifies to the Phase Shift Beamformer the
beamforming direction.

• Phase Shift Beamformer - Performs narrowband delay-and-sum beamforming on the matrix
passed via the input port X along the direction specified via the input port Ang.

• 2-D Selector - Selects the received signal at one of the antenna elements.

Exploring the Example

Several model parameters are calculated by the helper function helperslexBeamformerParam. To
open the function from the model, click on Modify Simulation Parameters block. This function
is executed once when the model is loaded. It exports to the workspace a structure whose fields are
referenced by the model's dialog panels. To modify any parameters, either change the values in the
structure from the command prompt or edit the helper function and rerun it to update the parameter
structure.

Results and Displays

The displays below show the output of a single element (not beamformed) compared to the reference
pulse and the output of the beamformer compared to the reference pulse. When the received signal is
not beamformed, the pulse cannot be detected due to the noise. The display of the beamformer's
output shows that the beamformed signal is much larger than the noise. The output SNR is
approximately 10 times larger than that of the received signal on a single antenna, because a 10-
element array produces an array gain of 10.

 Conventional and Adaptive Beamformers

17-259

17 Featured Examples

17-260

Conventional and Adaptive Beamformers with Interference

The second model illustrates beamforming in the presence of two interference signals arriving from
30 degrees and 50 degrees in azimuth. The interference amplitudes are much larger than the pulse
amplitude. The noise level is set to -50 dBW to highlight only the effect of interference. Phase shift,
MVDR, and LCMV beamformers are applied to the received signal and their results are compared.

 Conventional and Adaptive Beamformers

17-261

Several new blocks are added to the blocks used in the previous model:

• Random Source - Two blocks generate Gaussian vectors to simulate the interference signals
(labeled Interference1 and Interference2)

• Concatenate - Concatenates the outputs of the Random Source and the Rectangular blocks
into a 3 column matrix.

• Signal direction - Constant block specifies the incident directions of the pulses and
interference signals to the Narrowband Rx Array block.

• MVDR Beamformer - Performs MVDR beamforming along the specified direction.
• LCMV Beamformer - Performs LCMV beamforming with the specified constraint matrix and

desired response.

Exploring the Example

The helper function used for this example is helperslexBeamformerParam. To open the function from
the model, click on Modify Simulation Parameters block. The pulse, interference signal and
beamforming directions can also be changed at runtime by changing the angles on the Signal
directions and the Angle to beamform blocks without stopping the simulation.

Results and Displays

The figure below shows the output of the phased-shift beamformer. It is not able to detect the pulses
because the interference signals are much stronger than the pulse signal.

17 Featured Examples

17-262

The next figure shows the output of the MVDR beamformer. An MVDR beamformer preserves the
signal arriving along a desired direction, while trying to suppress signals coming from other
directions. In this example, both interference signals were suppressed and the pulse at 45 degrees
azimuth was preserved.

 Conventional and Adaptive Beamformers

17-263

The MVDR beamformer is, however, very sensitive to the beamforming direction. If the target signal
is received along a direction slightly different from the desired direction, the MVDR beamformer
suppresses it. This occurs because the MVDR beamformer treats all the signals, except the one along
the desired direction, as undesired interferences. This effect is sometimes referred to as "signal self-
nulling". The following display shows what happens if we change the target signal's direction in the
Signal directions block to 43 instead of 45. Notice how the received pulses have been
suppressed as compared to the reference pulse.

17 Featured Examples

17-264

You can use an LCMV beamformer to prevent signal self-nulling by broadening the region
surrounding the signal direction where you want to preserve the signal. In this example, three
separate but closely-spaced constraints are imposed that preserve the response in directions
corresponding to 43, 45, and 47 degrees in azimuth. The desired responses in these directions are all
set to one. As shown in the figure below, the pulse is preserved.

 Conventional and Adaptive Beamformers

17-265

17 Featured Examples

17-266

Direction of Arrival with Beamscan and MVDR
This example shows how to use beamscan and minimum variance distortionless response (MVDR)
techniques for direction of arrival (DOA) estimation in Simulink®. It is based on the MATLAB®
example “Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC” on page 17-205.

Available Example Implementations

This example includes two Simulink® models:

• Beamscan and MVDR Direction of Arrival Estimation on a ULA :
slexBeamscanMVDRDOAExample.slx

• Beamscan and MVDR Direction of Arrival Estimation on a URA :
slex2DBeamscanMVDRDOAExample.slx

Beamscan and MVDR Direction of Arrival Estimation on a ULA

This example simulates the reception of two narrowband incident signals on a 10-element uniformly
linear antenna array (ULA). Both signal sources are located at 0 degrees elevation. One signal source
moves from 30 degrees azimuth to 50 degrees and back. The other signal source, with 3 dB less
power, moves in the opposite direction. After simulating the reception of the signals and adding noise,
the beamscan and MVDR spectra are calculated. Because a ULA is symmetric around its axis, a DOA
algorithm cannot uniquely determine azimuth and elevation. Therefore, the results returned by these
DOA estimators are in the form of broadside angles. In this example because the elevation of the
sources is at 0 degrees and the scanning region is between -90 to 90 degrees, the broadside and
azimuth angles are the same.

The model consists of signal simulation followed by DOA processing. The blocks used in the model
are:

Signal simulation

 Direction of Arrival with Beamscan and MVDR

17-267

matlab:slexBeamscanMVDRDOAExample
matlab:slex2DBeamscanMVDRDOAExample

• Random Source - The blocks labeled Signal1 and Signal2 generate Gaussian vectors to
simulate the transmitted power of the narrowband plane waves. The signals are buffered at 300
samples per frame.

• Concatenate - Concatenates the outputs of the Random Source blocks into a 2 column matrix.
• Signal directions - Signal From Workspace block reads from the workspace, the arrival

directions in degrees of each signals. The block outputs a vector of 2 angles, once per frame.
• Narrowband Rx Array - Simulates the signals received at the ULA. The first input to this block

is a matrix with 2 columns. Each column corresponds to one of the received plane waves. The
second input (Ang) is a 2-element vector that specifies the incident direction at the antenna array
of the corresponding plane waves. The antenna array's configuration is contained in a MATLAB®
workspace variable created by a helper script. This variable is used in the Sensor Array tab of
the dialog. Using a variable makes it easier to share the antenna array's configuration across
several blocks.

• Receiver Preamp - Adds thermal noise to the received signal.

DOA processing

• ULA MVDR Spectrum - Calculates the spatial spectrum of the incoming narrowband signals using
the MVDR algorithm. This block also calculates the direction of arrivals of the incoming signals.

• ULA Beamscan Spectrum - Calculates the spatial spectrum of the incoming narrowband signals
by scanning a region using a narrowband conventional beamformer. This block also calculates the
direction of arrivals of the incoming signals.

Exploring the Example

Several dialog parameters of the model are calculated by the helper function
helperslexBeamscanMVDRDOAParam. To open the function from the model, click on Modify
Simulation Parameters block. This function is executed once when the model is loaded. It exports
to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters,
either change the values in the structure at the command prompt or edit the helper function and
rerun it to update the parameter structure.

Results and Displays

The beamscan spectrum is updated as the sources move towards each other. The spectrum shows two
wide peaks with different magnitudes moving in opposite directions.

17 Featured Examples

17-268

When the sources are approximately 10 degrees apart the peaks merge and the DOA of the signals
are not clearly distinguished. The calculated DOA will start drifting from the actual values, as shown
in the displays. When two signals arrive from directions separated by less than the beamwidth, their
DOA's cannot be resolved accurately using the beamscan method.

 Direction of Arrival with Beamscan and MVDR

17-269

The MVDR spectrum, on the other hand, has a higher resolution. The peaks in the spectrum are
narrower and can be distinguished even when the sources are very close to each other. The MVDR
algorithm is very sensitive to the sources' locations. It tries to filter out signals that are not located
precisely at one of the scan angles specified on the ULA MVDR Spectrum block. The peaks are
greatest when the sources are located at one of the specified scan angles. They will pulsate as the
sources move from one of the specified scan angles to another.

17 Featured Examples

17-270

Beamscan and MVDR Direction of Arrival Estimation on a URA

This example replaces the ULA configuration of the previous example with a 10 by 5 uniformly
rectangular antenna array (URA). One signal source moves from 30 degrees azimuth, 10 degrees
elevation to 50 degrees azimuth, -5 degrees elevation. The other signal source, with 3 dB less power,
moves in the opposite direction. Rectangular arrays allow the DOA estimators to determine both the
azimuth and elevation. Matrix viewers are used instead of vector scopes to visualize the 2
dimensional spatial spectrum. Everything else is similar to the previous example.

 Direction of Arrival with Beamscan and MVDR

17-271

Exploring the Example

The helper function used for this example is helperslex2DBeamscanMVDRDOAParam. To open the
function from the model, click on Modify Simulation Parameters block.

Results and Displays

The results are similar to the previous example. The beamscan spectrum is updated as the sources
move towards each other. The spectrum shows two wide peaks with different magnitudes moving in
opposite directions.

17 Featured Examples

17-272

When the sources are approximately 10 degrees apart, the peaks merge and the DOA's of the signals
are not clearly distinguished.

 Direction of Arrival with Beamscan and MVDR

17-273

Here the MVDR spectrum can still distinguish both peaks.

17 Featured Examples

17-274

 Direction of Arrival with Beamscan and MVDR

17-275

Constant False Alarm Rate (CFAR) Detection
This example introduces constant false alarm rate (CFAR) detection and shows how to use
CFARDetector and CFARDetector2D in the Phased Array System Toolbox™ to perform cell averaging
CFAR detection.

Introduction

One important task a radar system performs is target detection. The detection itself is fairly
straightforward. It compares the signal to a threshold. Therefore, the real work on detection is
coming up with an appropriate threshold. In general, the threshold is a function of both the
probability of detection and the probability of false alarm.

In many phased array systems, because of the cost associated with a false detection, it is desirable to
have a detection threshold that not only maximizes the probability of detection but also keeps the
probability of false alarm below a preset level.

There is extensive literature on how to determine the detection threshold. Readers might be
interested in the “Signal Detection in White Gaussian Noise” on page 17-304 and “Signal Detection
Using Multiple Samples” on page 17-311 examples for some well known results. However, all these
classical results are based on theoretical probabilities and are limited to white Gaussian noise with
known variance (power). In real applications, the noise is often colored and its power is unknown.

CFAR technology addresses these issues. In CFAR, when the detection is needed for a given cell,
often termed as the cell under test (CUT), the noise power is estimated from neighboring cells. Then
the detection threshold, T, is given by

T = αPn

where Pn is the noise power estimate and α is a scaling factor called the threshold factor.

From the equation, it is clear that the threshold adapts to the data. It can be shown that with the
appropriate threshold factor, α, the resulting probability of false alarm can be kept at a constant,
hence the name CFAR.

Cell Averaging CFAR Detection

The cell averaging CFAR detector is probably the most widely used CFAR detector. It is also used as a
baseline comparison for other CFAR techniques. In a cell averaging CFAR detector, noise samples are
extracted from both leading and lagging cells (called training cells) around the CUT. The noise
estimate can be computed as [1]

Pn = 1
N ∑

m = 1

N
xm

where N is the number of training cells and xm is the sample in each training cell. If xm happens to be
the output of a square law detector, then Pn represents the estimated noise power. In general, the
number of leading and lagging training cells are the same. Guard cells are placed adjacent to the
CUT, both leading and lagging it. The purpose of these guard cells is to avoid signal components from
leaking into the training cell, which could adversely affect the noise estimate.

The following figure shows the relation among these cells for the 1-D case.

17 Featured Examples

17-276

With the above cell averaging CFAR detector, assuming the data passed into the detector is from a
single pulse, i.e., no pulse integration involved, the threshold factor can be written as [1]

α = N(Pf a
−1/N − 1)

where Pf a is the desired false alarm rate.

CFAR Detection Using Automatic Threshold Factor

In the rest of this example, we show how to use Phased Array System Toolbox to perform a cell
averaging CFAR detection. For simplicity and without losing any generality, we still assume that the
noise is white Gaussian. This enables the comparison between the CFAR and classical detection
theory.

We can instantiate a CFAR detector using the following command:

cfar = phased.CFARDetector('NumTrainingCells',20,'NumGuardCells',2);

In this detector we use 20 training cells and 2 guard cells in total. This means that there are 10
training cells and 1 guard cell on each side of the CUT. As mentioned above, if we assume that the
signal is from a square law detector with no pulse integration, the threshold can be calculated based
on the number of training cells and the desired probability of false alarm. Assuming the desired false
alarm rate is 0.001, we can configure the CFAR detector as follows so that this calculation can be
carried out.

exp_pfa = 1e-3;
cfar.ThresholdFactor = 'Auto';
cfar.ProbabilityFalseAlarm = exp_pfa;

The configured CFAR detector is shown below.

cfar

cfar =
 phased.CFARDetector with properties:

 Method: 'CA'
 NumGuardCells: 2
 NumTrainingCells: 20
 ThresholdFactor: 'Auto'
 ProbabilityFalseAlarm: 1.0000e-03
 OutputFormat: 'CUT result'

 Constant False Alarm Rate (CFAR) Detection

17-277

 ThresholdOutputPort: false
 NoisePowerOutputPort: false

We now simulate the input data. Since the focus is to show that the CFAR detector can keep the false
alarm rate under a certain value, we just simulate the noise samples in those cells. Here are the
settings:

• The data sequence is 23 samples long, and the CUT is cell 12. This leaves 10 training cells and 1
guard cell on each side of the CUT.

• The false alarm rate is calculated using 100 thousand Monte Carlo trials.

rs = RandStream('mt19937ar','Seed',2010);
npower = db2pow(-10); % Assume 10dB SNR ratio

Ntrials = 1e5;
Ncells = 23;
CUTIdx = 12;

% Noise samples after a square law detector
rsamp = randn(rs,Ncells,Ntrials)+1i*randn(rs,Ncells,Ntrials);
x = abs(sqrt(npower/2)*rsamp).^2;

To perform the detection, pass the data through the detector. In this example, there is only one CUT,
so the output is a logical vector containing the detection result for all the trials. If the result is true, it
means that a target is present in the corresponding trial. In our example, all detections are false
alarms because we are only passing in noise. The resulting false alarm rate can then be calculated
based on the number of false alarms and the number of trials.

x_detected = cfar(x,CUTIdx);
act_pfa = sum(x_detected)/Ntrials

act_pfa = 9.4000e-04

The result shows that the resulting probability of false alarm is below 0.001, just as we specified.

CFAR Detection Using Custom Threshold Factor

As explained in the earlier part of this example, there are only a few cases in which the CFAR
detector can automatically compute the appropriate threshold factor. For example, using the previous
scenario, if we employ a 10-pulses noncoherent integration before the data goes into the detector, the
automatic threshold can no longer provide the desired false alarm rate.

npower = db2pow(-10); % Assume 10dB SNR ratio
xn = 0;
for m = 1:10
 rsamp = randn(rs,Ncells,Ntrials)+1i*randn(rs,Ncells,Ntrials);
 xn = xn + abs(sqrt(npower/2)*rsamp).^2; % noncoherent integration
end
x_detected = cfar(xn,CUTIdx);
act_pfa = sum(x_detected)/Ntrials

act_pfa = 0

One may be puzzled why we think a resulting false alarm rate of 0 is worse than a false alarm rate of
0.001. After all, isn't a false alarm rate of 0 a great thing? The answer to this question lies in the fact
that when the probability of false alarm is decreased, so is the probability of detection. In this case,

17 Featured Examples

17-278

because the true false alarm rate is far below the allowed value, the detection threshold is set too
high. The same probability of detection can be achieved with our desired probability of false alarm at
lower cost; for example, with lower transmitter power.

In most cases, the threshold factor needs to be estimated based on the specific environment and
system configuration. We can configure the CFAR detector to use a custom threshold factor, as shown
below.

release(cfar);
cfar.ThresholdFactor = 'Custom';

Continuing with the pulse integration example and using empirical data, we found that we can use a
custom threshold factor of 2.35 to achieve the desired false alarm rate. Using this threshold, we see
that the resulting false alarm rate matches the expected value.

cfar.CustomThresholdFactor = 2.35;
x_detected = cfar(xn,CUTIdx);
act_pfa = sum(x_detected)/Ntrials

act_pfa = 9.6000e-04

CFAR Detection Threshold

A CFAR detection occurs when the input signal level in a cell exceeds the threshold level. The
threshold level for each cell depends on the threshold factor and the noise power in that derived from
training cells. To maintain a constant false alarm rate, the detection threshold will increase or
decrease in proportion to the noise power in the training cells. Configure the CFAR detector to output
the threshold used for each detection using the ThresholdOutputPort property. Use an automatic
threshold factor and 200 training cells.

release(cfar);
cfar.ThresholdOutputPort = true;
cfar.ThresholdFactor = 'Auto';
cfar.NumTrainingCells = 200;

Next, create a square-law input signal with increasing noise power.

rs = RandStream('mt19937ar','Seed',2010);
Npoints = 1e4;
rsamp = randn(rs,Npoints,1)+1i*randn(rs,Npoints,1);
ramp = linspace(1,10,Npoints)';
xRamp = abs(sqrt(npower*ramp./2).*rsamp).^2;

Compute detections and thresholds for all cells in the signal.

[x_detected,th] = cfar(xRamp,1:length(xRamp));

Next, compare the CFAR threshold to the input signal.

plot(1:length(xRamp),xRamp,1:length(xRamp),th,...
 find(x_detected),xRamp(x_detected),'o')
legend('Signal','Threshold','Detections','Location','Northwest')
xlabel('Time Index')
ylabel('Level')

 Constant False Alarm Rate (CFAR) Detection

17-279

Here, the threshold increases with the noise power of the signal to maintain the constant false alarm
rate. Detections occur where the signal level exceeds the threshold.

Comparison Between CFAR and Classical Neyman-Pearson Detector

In this section, we compare the performance of a CFAR detector with the classical detection theory
using the Neyman-Pearson principle. Returning to the first example and assuming the true noise
power is known, the theoretical threshold can be calculated as

T_ideal = npower*db2pow(npwgnthresh(exp_pfa));

The false alarm rate of this classical Neyman-Pearson detector can be calculated using this
theoretical threshold.

act_Pfa_np = sum(x(CUTIdx,:)>T_ideal)/Ntrials

act_Pfa_np = 9.5000e-04

Because we know the noise power, classical detection theory also produces the desired false alarm
rate. The false alarm rate achieved by the CFAR detector is similar.

release(cfar);
cfar.ThresholdOutputPort = false;
cfar.NumTrainingCells = 20;
x_detected = cfar(x,CUTIdx);
act_pfa = sum(x_detected)/Ntrials

act_pfa = 9.4000e-04

17 Featured Examples

17-280

Next, assume that both detectors are deployed to the field and that the noise power is 1 dB more than
expected. In this case, if we use the theoretical threshold, the resulting probability of false alarm is
four times more than what we desire.

npower = db2pow(-9); % Assume 9dB SNR ratio
rsamp = randn(rs,Ncells,Ntrials)+1i*randn(rs,Ncells,Ntrials);
x = abs(sqrt(npower/2)*rsamp).^2;
act_Pfa_np = sum(x(CUTIdx,:)>T_ideal)/Ntrials

act_Pfa_np = 0.0041

On the contrary, the CFAR detector's performance is not affected.

x_detected = cfar(x,CUTIdx);
act_pfa = sum(x_detected)/Ntrials

act_pfa = 0.0011

Hence, the CFAR detector is robust to noise power uncertainty and better suited to field applications.

Finally, use a CFAR detection in the presence of colored noise. We first apply the classical detection
threshold to the data.

npower = db2pow(-10);
fcoeff = maxflat(10,'sym',0.2);
x = abs(sqrt(npower/2)*filter(fcoeff,1,rsamp)).^2; % colored noise
act_Pfa_np = sum(x(CUTIdx,:)>T_ideal)/Ntrials

act_Pfa_np = 0

Note that the resulting false alarm rate cannot meet the requirement. However, using the CFAR
detector with a custom threshold factor, we can obtain the desired false alarm rate.

release(cfar);
cfar.ThresholdFactor = 'Custom';
cfar.CustomThresholdFactor = 12.85;
x_detected = cfar(x,CUTIdx);
act_pfa = sum(x_detected)/Ntrials

act_pfa = 0.0010

CFAR Detection for Range-Doppler Images

In the previous sections, the noise estimate was computed from training cells leading and lagging the
CUT in a single dimension. We can also perform CFAR detection on images. Cells correspond to pixels
in the images, and guard cells and training cells are placed in bands around the CUT. The detection
threshold is computed from cells in the rectangular training band around the CUT.

 Constant False Alarm Rate (CFAR) Detection

17-281

In the figure above, the guard band size is [2 2] and the training band size is [4 3]. The size indices
refer to the number of cells on each side of the CUT in the row and columns dimensions, respectively.
The guard band size can also be defined as 2, since the size is the same along row and column
dimensions.

Next, create a two-dimensional CFAR detector. Use a probability of false alarm of 1e-5 and specify a
guard band size of 5 cells and a training band size of 10 cells.

cfar2D = phased.CFARDetector2D('GuardBandSize',5,'TrainingBandSize',10,...
 'ProbabilityFalseAlarm',1e-5);

Next, load and plot a range-doppler image. The image includes returns from two stationary targets
and one target moving away from the radar.

[resp,rngGrid,dopGrid] = helperRangeDoppler;

17 Featured Examples

17-282

Use CFAR to search the range-Doppler space for objects, and plot a map of the detections. Search
from -10 to 10 kHz and from 1000 to 4000 m. First, define the cells under test for this region.

[~,rangeIndx] = min(abs(rngGrid-[1000 4000]));
[~,dopplerIndx] = min(abs(dopGrid-[-1e4 1e4]));
[columnInds,rowInds] = meshgrid(dopplerIndx(1):dopplerIndx(2),...
 rangeIndx(1):rangeIndx(2));
CUTIdx = [rowInds(:) columnInds(:)]';

Compute a detection result for each cell under test. Each pixel in the search region is a cell in this
example. Plot a map of the detection results for the range-Doppler image.

detections = cfar2D(resp,CUTIdx);
helperDetectionsMap(resp,rngGrid,dopGrid,rangeIndx,dopplerIndx,detections)

 Constant False Alarm Rate (CFAR) Detection

17-283

The three objects are detected. A data cube of range-Doppler images over time can likewise be
provided as the input signal to cfar2D, and detections will be calculated in a single step.

Summary

In this example, we presented the basic concepts behind CFAR detectors. In particular, we explored
how to use the Phased Array System Toolbox to perform cell averaging CFAR detection on signals and
range-Doppler images. The comparison between the performance offered by a cell averaging CFAR
detector and a detector equipped with the theoretically calculated threshold shows clearly that the
CFAR detector is more suitable for real field applications.

Reference

[1] Mark Richards, Fundamentals of Radar Signal Processing, McGraw Hill, 2005

17 Featured Examples

17-284

Detector Performance Analysis Using ROC Curves
This example shows how you can assess the performance of both coherent and noncoherent systems
using receiver operating characteristic (ROC) curves. It assumes the detector operates in an additive
complex white Gaussian noise environment.

ROC curves are often used to assess the performance of a radar or sonar detector. ROC curves are
plots of the probability of detection (Pd) vs. the probability of false alarm (Pfa) for a given signal-to-
noise ratio (SNR).

Introduction

The probability of detection (Pd) is the probability of saying that "1" is true given that event "1"
occurred. The probability of false alarm (Pfa) is the probability of saying that "1" is true given that the
"0" event occurred. In applications such as sonar and radar, the "1" event indicates that a target is
present, and the "0" event indicates that a target is not present.

A detector's performance is measured by its ability to achieve a certain probability of detection and
probability of false alarm for a given SNR. Examining a detector's ROC curves provides insight into
its performance. We can use the rocsnr function to calculate and plot ROC curves.

Single Pulse Detection

Given an SNR value, you can calculate the Pd and Pfa values that a linear or square-law detector can
achieve using a single pulse. Assuming we have an SNR value of 8 dB and our requirements dictate a
Pfa value of at most 1%, what value of Pd can the detector achieve? We can use the rocsnr function to
calculate the Pd and Pfa values and then determine what value of Pd corresponds to Pfa = 0.01. Note
that by default the rocsnr function assumes coherent detection.

[Pd,Pfa] = rocsnr(8);

idx = find(Pfa==0.01); % find index for Pfa=0.01

Using the index determined above we can find the Pd value that corresponds to Pfa = 0.01.

Pd(idx)

ans = 0.8899

One feature of the rocsnr function is that you can specify a vector of SNR values and rocsnr
calculates the ROC curve for each of these SNR values. Instead of individually calculating Pd and Pfa
values for a given SNR, we can view the results in a plot of ROC curves. The rocsnr function plots the
ROC curves by default if no output arguments are specified. Calling the rocsnr function with an input
vector of four SNR values and no output arguments produces a plot of the ROC curves.

SNRvals = [2 4 8 9.4];
rocsnr(SNRvals);

 Detector Performance Analysis Using ROC Curves

17-285

In the plot we can select the data cursor button in the toolbar (or in the Tools menu) and then select
the SNR = 8 dB curve at the point where Pd = 0.9 to verify that Pfa is approximately 0.01.

Multiple Pulse Detection

One way to improve a detector's performance is to average over several pulses. This is particularly
useful in cases where the signal of interest is known and occurs in additive complex white noise.
Although this still applies to both linear and square-law detectors, the result for square-law detectors
could be off by about 0.2 dB. Let's continue our example by assuming an SNR of 8 dB and averaging
over two pulses.

rocsnr(8,'NumPulses',2);

17 Featured Examples

17-286

By inspecting the plot we can see that averaging over two pulses resulted in a higher probability of
detection for a given false alarm rate. With an SNR of 8 dB and averaging over two pulses, you can
constrain the probability of false alarm to be at most 0.0001 and achieve a probability of detection of
0.9. Recall that for a single pulse, we had to allow the probability of false alarm to be as much as 1%
to achieve the same probability of detection.

Noncoherent Detector

To this point, we have assumed we were dealing with a known signal in complex white Gaussian
noise. The rocsnr function by default assumes a coherent detector. To analyze the performance of a
detector for the case where the signal is known except for the phase, you can specify a noncoherent
detector. Using the same SNR values as before, let's analyze the performance of a noncoherent
detector.

rocsnr(SNRvals,'SignalType','NonfluctuatingNoncoherent');

 Detector Performance Analysis Using ROC Curves

17-287

Focus on the ROC curve corresponding to an SNR of 8dB. By inspecting the graph with the data
cursor, you can see that to achieve a probability of detection of 0.9, you must tolerate a false-alarm
probability of up to 0.05. Without using phase information, we need a higher SNR to achieve the
same Pd for a given Pfa. For noncoherent linear detectors, we can use Albersheim's equation to
determine what value of SNR will achieve our desired Pd and Pfa.

SNR_valdB = albersheim(0.9,.01) % Pd=0.9 and Pfa=0.01

SNR_valdB = 9.5027

Plotting the ROC curve for the SNR value approximated by Albersheim's equation, we can see that
the detector will achieve Pd = 0.9 and Pfa = 0.01. Note that the Albersheim's technique applies only
to noncoherent detectors.

rocsnr(SNR_valdB,'SignalType','NonfluctuatingNoncoherent');

17 Featured Examples

17-288

Detection of Fluctuating Targets

All the discussions above assume that the target is nonfluctuating, which means that the target's
statistical characteristics do not change over time. However, in real scenarios, targets can accelerate
and decelerate as well as roll and pitch. These factors cause the target's radar cross section (RCS) to
vary over time. A set of statistical models called Swerling models are often used to describe the
random variation in target RCS.

There are four Swerling models, namely Swerling 1-4. The nonfluctuating target is often termed
either Swerling 0 or Swerling 5. Each Swerling model describes how a target's RCS varies over time
and the probability distribution of the variation.

Because the target RCS is varying, the ROC curves for fluctuating targets are not the same as the
nonfluctuating ones. In addition, because Swerling targets add random phase into the received
signal, it is harder to use a coherent detector for a Swerling target. Therefore, noncoherent detection
techniques are often used for Swerling targets.

Let us now compare the ROC curves for a nonfluctuating target and a Swerling 1 target. In particular,
we want to explore what the SNR requirements are for both situations if we want to achieve the same
Pd and Pfa. For such a comparison, it is often easy to plot the ROC curve as Pd against SNR with
varying Pfa. We can use the rocpfa function to plot ROC curve in this form.

Let us assume that we are doing noncoherent detection with 10 integrated pulses, with the desired
Pfa being at most 1e-8. We first plot the ROC curve for a nonfluctuating target.

rocpfa(1e-8,'NumPulses',10,'SignalType','NonfluctuatingNoncoherent')

 Detector Performance Analysis Using ROC Curves

17-289

We then plot the ROC curve for a Swerling 1 target for comparison.

rocpfa(1e-8,'NumPulses',10,'SignalType','Swerling1')

17 Featured Examples

17-290

From the figures, we can see that for a Pd of 0.9, we require an SNR of about 6 dB if the target is
nonfluctuating. However, if the target is a Swerling case 1 model, the required SNR jumps to more
than 14 dB, an 8 dB difference. This will greatly impact the design of the system.

As in the case of nonfluctuating targets, we have approximation equations to help determine the
required SNR without having to plot all the curves. The equation used for fluctuating targets is
Shnidman's equation. For the scenario we used to plot the ROC curves, the SNR requirements can be
derived using the shnidman function.

snr_sw1_db = shnidman(0.9,1e-8,10,1) % Pd=0.9, Pfa=1e-8, 10 pulses,

snr_sw1_db = 14.7131

 % Swerling case 1

The calculated SNR requirement matches the value derived from the curve.

Summary

ROC curves are useful for analyzing detector performance, both for coherent and noncoherent
systems. We used the rocsnr function to analyze the effectiveness of a linear detector for various SNR
values. We also reviewed the improvement in detector performance achieved by averaging multiple
samples. Lastly we showed how we can use the rocsnr and rocpfa functions to analyze detector
performance when using a noncoherent detector for both nonfluctuating and fluctuating targets.

 Detector Performance Analysis Using ROC Curves

17-291

Doppler Estimation
This example shows a monostatic pulse radar detecting the radial velocity of moving targets at
specific ranges. The speed is derived from the Doppler shift caused by the moving targets. We first
identify the existence of a target at a given range and then use Doppler processing to determine the
radial velocity of the target at that range.

Radar System Setup

First, we define a radar system. Since the focus of this example is on Doppler processing, we use the
radar system built in the example “Simulating Test Signals for a Radar Receiver” on page 17-378.
Readers are encouraged to explore the details of radar system design through that example.

load BasicMonostaticRadarExampleData;

System Simulation

Targets

Doppler processing exploits the Doppler shift caused by the moving target. We now define three
targets by specifying their positions, radar cross sections (RCS), and velocities.

tgtpos = [[1200; 1600; 0],[3543.63; 0; 0],[1600; 0; 1200]];
tgtvel = [[60; 80; 0],[0;0;0],[0; 100; 0]];
tgtmotion = phased.Platform('InitialPosition',tgtpos,'Velocity',tgtvel);

tgtrcs = [1.3 1.7 2.1];
fc = radiator.OperatingFrequency;
target = phased.RadarTarget('MeanRCS',tgtrcs,'OperatingFrequency',fc);

Note that the first and third targets are both located at a range of 2000 m and are both traveling at a
speed of 100 m/s. The difference is that the first target is moving along the radial direction, while the
third target is moving in the tangential direction. The second target is not moving.

Environment

We also need to setup the propagation environment for each target. Since we are using a monostatic
radar, we use the two way propagation model.

fs = waveform.SampleRate;

channel = phased.FreeSpace(...
 'SampleRate',fs,...
 'TwoWayPropagation',true,...
 'OperatingFrequency',fc);

Signal Synthesis

With the radar system, the environment, and the targets defined, we can now simulate the received
signal as echoes reflected from the targets. The simulated data is a data matrix with the fast time
(time within each pulse) along each column and the slow time (time between pulses) along each row.

We need to set the seed for noise generation at the receiver so that we can reproduce the same
results.

receiver.SeedSource = 'Property';
receiver.Seed = 2009;

17 Featured Examples

17-292

https://www.mathworks.com/discovery/radar-system-design.html

prf = waveform.PRF;
num_pulse_int = 10;

fast_time_grid = unigrid(0,1/fs,1/prf,'[)');
slow_time_grid = (0:num_pulse_int-1)/prf;

% Pre-allocate array for improved processing speed
rxpulses = zeros(numel(fast_time_grid),num_pulse_int);

for m = 1:num_pulse_int

 % Update sensor and target positions
 [sensorpos,sensorvel] = sensormotion(1/prf);
 [tgtpos,tgtvel] = tgtmotion(1/prf);

 % Calculate the target angles as seen by the sensor
 [tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);

 % Simulate propagation of pulse in direction of targets
 pulse = waveform();
 [txsig,txstatus] = transmitter(pulse);
 txsig = radiator(txsig,tgtang);
 txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);

 % Reflect pulse off of targets
 tgtsig = target(txsig);

 % Receive target returns at sensor
 rxsig = collector(tgtsig,tgtang);
 rxpulses(:,m) = receiver(rxsig,~(txstatus>0));
end

Doppler Estimation

Range Detection

To be able to estimate the Doppler shift of the targets, we first need to locate the targets through
range detection. Because the Doppler shift spreads the signal power into both I and Q channels, we
need to rely on the signal energy to do the detection. This means that we use noncoherent detection
schemes.

The detection process is described in detail in the aforementioned example so we simply perform the
necessary steps here to estimate the target ranges.

% calculate initial threshold
pfa = 1e-6;
% in loaded system, noise bandwidth is half of the sample rate
noise_bw = receiver.SampleRate/2;
npower = noisepow(noise_bw,...
 receiver.NoiseFigure,receiver.ReferenceTemperature);
threshold = npower * db2pow(npwgnthresh(pfa,num_pulse_int,'noncoherent'));

% apply matched filter and update the threshold
matchingcoeff = getMatchedFilter(waveform);
matchedfilter = phased.MatchedFilter(...
 'Coefficients',matchingcoeff,...
 'GainOutputPort',true);

 Doppler Estimation

17-293

[rxpulses, mfgain] = matchedfilter(rxpulses);
threshold = threshold * db2pow(mfgain);

% compensate the matched filter delay
matchingdelay = size(matchingcoeff,1)-1;
rxpulses = buffer(rxpulses(matchingdelay+1:end),size(rxpulses,1));

% apply time varying gain to compensate the range dependent loss
prop_speed = radiator.PropagationSpeed;
range_gates = prop_speed*fast_time_grid/2;
lambda = prop_speed/fc;

tvg = phased.TimeVaryingGain(...
 'RangeLoss',2*fspl(range_gates,lambda),...
 'ReferenceLoss',2*fspl(prop_speed/(prf*2),lambda));

rxpulses = tvg(rxpulses);

% detect peaks from the integrated pulse
[~,range_detect] = findpeaks(pulsint(rxpulses,'noncoherent'),...
 'MinPeakHeight',sqrt(threshold));
range_estimates = round(range_gates(range_detect))

range_estimates = 1×2

 2000 3550

These estimates suggest the presence of targets in the range of 2000 m and 3550 m.

Doppler Spectrum

Once we successfully estimated the ranges of the targets, we can then estimate the Doppler
information for each target.

Doppler estimation is essentially a spectrum estimation process. Therefore, the first step in Doppler
processing is to generate the Doppler spectrum from the received signal.

The received signal after the matched filter is a matrix whose columns correspond to received pulses.
Unlike range estimation, Doppler processing processes the data across the pulses (slow time), which
is along the rows of the data matrix. Since we are using 10 pulses, there are 10 samples available for
Doppler processing. Because there is one sample from each pulse, the sampling frequency for the
Doppler samples is the pulse repetition frequency (PRF).

As predicted by the Fourier theory, the maximum unambiguous Doppler shift a pulse radar system
can detect is half of its PRF. This also translates to the maximum unambiguous speed a radar system
can detect. In addition, the number of pulses determines the resolution in the Doppler spectrum,
which determines the resolution of the speed estimates.

max_speed = dop2speed(prf/2,lambda)/2

max_speed = 224.6888

speed_res = 2*max_speed/num_pulse_int

speed_res = 44.9378

As shown in the calculation above, in this example, the maximum detectable speed is 225m/s, either
approaching (-225) or departing (+225). The resulting Doppler resolution is about 45 m/s, which

17 Featured Examples

17-294

means that the two speeds must be at least 45 m/s apart to be separable in the Doppler spectrum. To
improve the ability to discriminate between different target speeds, more pulses are needed.
However, the number of pulses available is also limited by the radial velocity of the target. Since the
Doppler processing is limited to a given range, all pulses used in the processing have to be collected
before the target moves from one range bin to the next.

Because the number of Doppler samples are in general limited, it is common to zero pad the
sequence to interpolate the resulting spectrum. This will not improve the resolution of the resulting
spectrum, but can improve the estimation of the locations of the peaks in the spectrum.

The Doppler spectrum can be generated using a periodogram. We zero pad the slow time sequence to
256 points.

num_range_detected = numel(range_estimates);
[p1, f1] = periodogram(rxpulses(range_detect(1),:).',[],256,prf, ...
 'power','centered');
[p2, f2] = periodogram(rxpulses(range_detect(2),:).',[],256,prf, ...
 'power','centered');

The speed corresponding to each sample in the spectrum can then be calculated. Note that we need
to take into consideration of the round trip effect.

speed_vec = dop2speed(f1,lambda)/2;

Doppler Estimation

To estimate the Doppler shift associated with each target, we need to find the locations of the peaks
in each Doppler spectrum. In this example, the targets are present at two different ranges, so the
estimation process needs to be repeated for each range.

Let's first plot the Doppler spectrum corresponding to the range of 2000 meters.

periodogram(rxpulses(range_detect(1),:).',[],256,prf,'power','centered');

 Doppler Estimation

17-295

Note that we are only interested in detecting the peaks, so the spectrum values themselves are not
critical. From the plot of Doppler spectrum, we notice that 5 dB below the maximum peak is a good
threshold. Therefore, we use -5 as our threshold on the normalized Doppler spectrum.

spectrum_data = p1/max(p1);
[~,dop_detect1] = findpeaks(pow2db(spectrum_data),'MinPeakHeight',-5);
sp1 = speed_vec(dop_detect1)

sp1 = 2×1

 -103.5675
 3.5108

The results show that there are two targets at the 2000 m range: one with a velocity of 3.5 m/s and
the other with -104 m/s. The value -104 m/s can be easily associated with the first target, since the
first target is departing at a radial velocity of 100 m/s, which, given the Doppler resolution of this
example, is very close to the estimated value. The value 3.5 m/s requires more explanation. Since the
third target is moving along the tangential direction, there is no velocity component in the radial
direction. Therefore, the radar cannot detect the Doppler shift of the third target. The true radial
velocity of the third target, hence, is 0 m/s and the estimate of 3.5 m/s is very close to the true value.

Note that these two targets cannot be discerned using only range estimation because their range
values are the same.

The same operations are then applied to the data corresponding to the range of 3550 meters.

17 Featured Examples

17-296

periodogram(rxpulses(range_detect(2),:).',[],256,prf,'power','centered');

spectrum_data = p2/max(p2);
[~,dop_detect2] = findpeaks(pow2db(spectrum_data),'MinPeakHeight',-5);
sp2 = speed_vec(dop_detect2)

sp2 = 0

This result shows an estimated speed of 0 m/s, which matches the fact that the target at this range is
not moving.

Summary

This example showed a simple way to estimate the radial speed of moving targets using a pulse radar
system. We generated the Doppler spectrum from the received signal and estimated the peak
locations from the spectrum. These peak locations correspond to the target's radial speed. The
limitations of the Doppler processing are also discussed in the example.

 Doppler Estimation

17-297

Range Estimation Using Stretch Processing
This example shows how to estimate the range of a target using stretch processing in a radar system
that uses a linear FM pulse waveform.

Introduction

Linear FM waveform is a popular choice in modern radar systems because it can achieve high range
resolution by sweeping through a wide bandwidth. However, when the bandwidth is on the order of
hundreds of megahertz, or even gigahertz, it becomes difficult to perform matched filtering or pulse
compression in the digital domain because high-quality A/D converters are hard to find at such data
rates.

Stretch processing, sometimes also referred to as deramp, is a technique that can be used in such
situations. Stretch processing is performed in the analog domain.

The received signal is first mixed with a replica of the transmitted pulse. Note that the replica
matches the return from the reference range. Once mixed, the resulting signal contains a frequency
component that corresponds to the range offset measured from this reference range. Hence, the
exact range can be estimated by performing a spectral analysis on the signal at the output of the
mixer.

In addition, instead of processing the entire range span covered by the pulse, the processing focuses
on a small window around a predefined reference range. Because of the limited range span, the
output data of the stretch processor can be sampled at a lower rate, relaxing the bandwidth
requirement for A/D converters

The following sections show an example of range estimation using stretch processing.

Simulation Setup

The radar system in this example uses a linear FM waveform with a 3 MHz sweeping bandwidth. The
waveform can be used to achieve a range resolution of 50 m and a maximum unambiguous range of 8
km. The sample rate is set to 6 MHz, i.e., twice the sweeping bandwidth. For more information about
the radar system, see “Waveform Design to Improve Range Performance of an Existing System” on
page 17-167.

Three targets are located at 2000.66, 6532.63, and 6845.04 meters from the radar, respectively. Ten
pulses are simulated at the receiver. These pulses contain echoes from the targets.

[rx_pulses, waveform] = helperStretchSimulate;
fs = waveform.SampleRate;

A time frequency plot of the received pulse is shown below. A coherent pulse integration is done
before the plot to improve the signal-to-noise ratio (SNR). In the figure, the return from the first
target can be clearly seen between 14 and 21 ms while the return from the second and third targets
are much weaker, appearing after 45 ms.

helperStretchSignalSpectrogram(pulsint(rx_pulses,'coherent'),fs,...
 8,4,'Received Signal');

17 Featured Examples

17-298

Stretch Processing

To perform stretch processing, first determine a reference range. In this example, the goal is to
search targets around 6700 m away from the radar, in a 500-meter window. A stretch processor can
be formed using the waveform, the desired reference range and the range span.

refrng = 6700;
rngspan = 500;
prop_speed = physconst('lightspeed');
stretchproc = getStretchProcessor(waveform,refrng,rngspan,prop_speed)

stretchproc =
 phased.StretchProcessor with properties:

 SampleRate: 5.9958e+06
 PulseWidth: 6.6713e-06
 PRFSource: 'Property'
 PRF: 1.8737e+04
 SweepSlope: 4.4938e+11
 SweepInterval: 'Positive'
 PropagationSpeed: 299792458
 ReferenceRange: 6700
 RangeSpan: 500

Next, pass the received pulses through the stretch processor.

y_stretch = stretchproc(rx_pulses);

 Range Estimation Using Stretch Processing

17-299

Now, coherently integrate the pulses to improve the SNR.

y = pulsint(y_stretch,'coherent');

The spectrogram of the signal after stretch processing is shown below. Note that the second and third
target echoes no longer appear as a ramp in the plot. Instead, their time-frequency signatures appear
at constant frequencies, around 0.5 and -0.5 MHz. Hence, the signal is deramped. In addition, there
is no return present from the first target. In fact, any signal outside the ranges of interest has been
suppressed. This is because the stretch processor only allows target returns within the range window
to pass. This process is often referred to as range gating in a real system.

helperStretchSignalSpectrogram(y,fs,16,12,'Deramped Signal');

Range Estimation

To estimate the target range, plot the spectrum of the signal.

periodogram(y,[],2048,stretchproc.SampleRate,'centered');

17 Featured Examples

17-300

From the figure, it is clear that there are two dominant frequency components in the deramped
signal, which correspond to two targets. The frequencies of these peaks can be used to determine the
true range values of these targets.

[p, f] = periodogram(y,[],2048,stretchproc.SampleRate,'centered');

[~,rngidx] = findpeaks(pow2db(p/max(p)),'MinPeakHeight',-5);
rngfreq = f(rngidx);
re = stretchfreq2rng(rngfreq,...
 stretchproc.SweepSlope,stretchproc.ReferenceRange,prop_speed)

re = 2×1
103 ×

 6.8514
 6.5174

The estimated ranges are 6518 and 6852 meters, matching the true ranges of 6533 and 6845 meters.

Reduced Sample Rate

As mentioned in the introduction section, an attractive feature of stretch processing is that it reduces
the bandwidth requirement for successive processing stages. In this example, the range span of
interest is 500 meters. The required bandwidth for the successive processing stages can be computed
as

 Range Estimation Using Stretch Processing

17-301

rngspan_bw = ...
 2*rngspan/prop_speed*waveform.SweepBandwidth/waveform.PulseWidth

rngspan_bw = 1.4990e+06

Following the same design rule as in the original system, where twice the bandwidth is used as the
sampling frequency, the new required sampling frequency becomes

fs_required = 2*rngspan_bw

fs_required = 2.9979e+06

dec_factor = round(fs/fs_required)

dec_factor = 2

The resulting decimator factor is 2. This means that after performing stretch processing in the analog
domain, signals can be sampled at only half of the sampling frequency compared to the case where
the stretch processing is not used. Thus, the requirement on the A/D converter has been relaxed.

To verify this benefit in simulation, the next section shows that the same ranges can be estimated
with the signal decimated after stretch processing.

% Design a decimation filter
decimator = design(fdesign.decimator(dec_factor,'lowpass',...
 'N,F3dB',10,1/dec_factor),'SystemObject',true);

% Decimate
y_stretch = decimator(y_stretch);

This time, the power spectral density is plotted against ranges.

y = pulsint(y_stretch,'coherent');
[p, f] = periodogram(y,[],2048,fs_required,'centered');
rng_bin = stretchfreq2rng(f,...
 stretchproc.SweepSlope,stretchproc.ReferenceRange,prop_speed);
plot(rng_bin,pow2db(p));
xlabel('Range (m)'); ylabel('Power/frequency (dB/Hz)'); grid on;
title('Periodogram Power Spectral Density Estimate');

17 Featured Examples

17-302

[~,rngidx] = findpeaks(pow2db(p/max(p)),'MinPeakHeight',-5);
re = rng_bin(rngidx)

re = 2×1
103 ×

 6.8504
 6.5232

The true range values are 6533 and 6845 meters. Without decimation, the range estimates are 6518
and 6852 meters. With decimation, the range estimates are 6523 and 6851 meters. Therefore, the
range estimation yields the same result with roughly only half of the computations compared to the
nondecimated case.

Summary

This example shows how to use stretch processing to estimate the target range when a linear FM
waveform is used. It also shows that stretch processing reduces the bandwidth requirement.

Reference

[1] Mark Richards, Fundamentals of Radar Signal Processing, McGraw-Hill, 2005.

 Range Estimation Using Stretch Processing

17-303

Signal Detection in White Gaussian Noise
This example discusses the detection of a deterministic signal in complex, white, Gaussian noise. This
situation is frequently encountered in radar, sonar and communication applications.

Overview

There are many different kinds of detectors available for use in different applications. A few of the
most popular ones are the Bayesian detector, maximum likelihood (ML) detector and Neyman-
Pearson (NP) detector. In radar and sonar applications, NP is the most popular choice since it can
ensure the probability of false alarm (Pfa) to be at a certain level.

In this example, we limit our discussion to the scenario where the signal is deterministic and the
noise is white and Gaussian distributed. Both signal and noise are complex.

The example discusses the following topics and their interrelations: coherent detection, noncoherent
detection, matched filtering and receiver operating characteristic (ROC) curves.

Signal and Noise Model

The received signal is assumed to follow the model

x(t) = s(t) + n(t)

where s(t) is the signal and n(t) is the noise. Without losing the generality, we assume that the signal
power is equal to 1 watt and the noise power is determined accordingly based on the signal to noise
ratio (SNR). For example, for an SNR of 10 dB, the noise power, i.e., noise variance will be 0.1 watt.

Matched Filter

A matched filter is often used at the receiver front end to enhance the SNR. From the discrete signal
point of view, matched filter coefficients are simply given by the complex conjugated reversed signal
samples.

When dealing with complex signals and noises, there are two types of receivers. The first kind is a
coherent receiver, which assumes that both the amplitude and phase of the received signal are
known. This results in a perfect match between the matched filter coefficients and the signal s.
Therefore, the matched filter coefficients can be considered as the conjugate of s. The matched filter
operation can then be modeled as

y = s*x = s*(s + n) = |s |2 + s*n .

Note that although the general output y is still a complex quantity, the signal is completely
characterized by |s |2 , which is a real number and contained in the real part of y. Hence, the detector
following the matched filter in a coherent receiver normally uses only the real part of the received
signal. Such a receiver can normally provide the best performance. However, the coherent receiver is
vulnerable to phase errors. In addition, a coherent receiver also requires additional hardware to
perform the phase detection. For a noncoherent receiver, the received signal is modeled as a copy of
the original signal with a random phase error. With a noncoherent received signal, the detection after
the matched filter is normally based on the power or magnitude of the signal since you need both real
and imaginary parts to completely define the signal.

17 Featured Examples

17-304

Detector

The objective function of the NP decision rule can be written as

J = Pd + g(Pf a− a),

i.e., to maximize the probability of the detection, Pd, while limiting the probability of false alarm, Pfa
at a specified level a. The variable g in the equation is the Lagrange multiplier. The NP detector can
be formed as a likelihood ratio test (LRT) as follows:

py(y |H1)
py(y |H0)

H1
>
<
H0

Th .

In this particular NP situation, since the false alarm is caused by the noise alone, the threshold Th is
determined by the noise to ensure the fixed Pfa. The general form of the LRT shown above is often
difficult to evaluate. In real applications, we often use an easy to compute quantity from the signal,
i.e., sufficient statistic, to replace the ratio of two probability density functions. For example, the
sufficient statistics, z may be as simple as

z = | y | ,

then the simplified detector becomes

z
H1
>
<
H0

T .

T is the threshold to the sufficient statistic z, acting just like the threshold Th to the LRT. Therefore,
the threshold is not only related to the probability distributions, but also depends on the choice of
sufficient statistic.

Single Sample Detection Using Coherent Receiver

We will first explore an example of detecting a signal in noise using just one sample.

Assume the signal is a unit power sample and the SNR is 3 dB. Using a 100000-trial Monte-Carlo
simulation, we generate the signal and noise as

% fix the random number generator
rstream = RandStream.create('mt19937ar','seed',2009);

Ntrial = 1e5; % number of Monte-Carlo trials
snrdb = 3; % SNR in dB
snr = db2pow(snrdb); % SNR in linear scale
spower = 1; % signal power is 1
npower = spower/snr; % noise power
namp = sqrt(npower/2); % noise amplitude in each channel
s = ones(1,Ntrial); % signal
n = namp*(randn(rstream,1,Ntrial)+1i*randn(rstream,1,Ntrial)); % noise

Note that the noise is complex, white and Gaussian distributed.

If the received signal contains the target, it is given by

x = s + n;

 Signal Detection in White Gaussian Noise

17-305

The matched filter in this case is trivial, since the signal itself is a unit sample.

mf = 1;

In this case, the matched filter gain is 1, therefore, there is no SNR gain.

Now we do the detection and examine the performance of the detector. For a coherent receiver, the
received signal after the matched filter is given by

y = mf'*x; % apply the matched filter

The sufficient statistic, i.e., the value used to compare to the detection threshold, for a coherent
detector is the real part of the received signal after the matched filter, i.e.,

z = real(y);

Let's assume that the we want to fix the Pfa to 1e-3. Given the sufficient statistic, z, the decision rule
becomes

z
H1
>
<
H0

T

where the threshold T is related to Pfa as

Pf a = 1
2 1− erf T

NM

In the equation, N is the signal power and M is the matched filter gain. Note that T is the threshold of
the signal after the matched filter and NM represents the noise power after the matched filter, so

T
NM can be considered as the ratio between the signal and noise magnitude, i.e., it is related to the

signal to noise ratio, SNR. Since SNR is normally referred to as the ratio between the signal and
noise power, considering the units of each quantity in this expression, we can see that

T
NM = SNR .

Since N and M are fixed once the noise and signal waveform are chosen, there is a correspondence
between T and SNR. Given T is a threshold of the signal, SNR can be considered as a threshold of the
signal to noise ratio. Therefore, the threshold equation can then be rewritten in the form of

Pf a = 1
2 1− erf SNR .

The required SNR threshold given a complex, white Gaussian noise for the NP detector can be
calculated using the npwgnthresh function as follows:

Pfa = 1e-3;
snrthreshold = db2pow(npwgnthresh(Pfa, 1,'coherent'));

Note that this threshold, although also in the form of an SNR value, is different to the SNR of the
received signal. The threshold SNR is a calculated value based on the desired detection performance,
in this case the Pfa; while the received signal SNR is the physical characteristic of the signal
determined by the propagation environment, the waveform, the transmit power, etc.

17 Featured Examples

17-306

The true threshold T can then be derived from this SNR threshold as

T = NM ⋅ SNR .

mfgain = mf'*mf;
% To match the equation in the text above
% npower - N
% mfgain - M
% snrthreshold - SNR
threshold = sqrt(npower*mfgain*snrthreshold);

The detection is performed by comparing the signal to the threshold. Since the original signal, s, is
presented in the received signal, a successful detection occurs when the received signal passes the
threshold, i.e. z>T. The capability of the detector to detect a target is often measured by the Pd. In a
Monte-Carlo simulation, Pd can be calculated as the ratio between the number of times the signal
passes the threshold and the number of total trials.

Pd = sum(z>threshold)/Ntrial

Pd = 0.1390

On the other hand, a false alarm occurs when the detection shows that there is a target but there
actually isn't one, i.e., the received signal passes the threshold when there is only noise present. The
error probability of the detector to detect a target when there isn't one is given by Pfa.

x = n;
y = mf'*x;
z = real(y);
Pfa = sum(z>threshold)/Ntrial

Pfa = 9.0000e-04

which meets our requirement.

To see the relation among SNR, Pd and Pfa in a graph, we can plot the theoretical ROC curve using
the rocsnr function for a SNR value of 3 dB as

rocsnr(snrdb,'SignalType','NonfluctuatingCoherent','MinPfa',1e-4);

 Signal Detection in White Gaussian Noise

17-307

It can be seen from the figure that the measured Pd=0.1390 and Pfa=0.0009 obtained above for the
SNR value of 3 dB match a theoretical point on the ROC curve.

Single Sample Detection Using Noncoherent Receiver

A noncoherent receiver does not know the phase of the received signal, therefore, for target present
case, the signal x contains a phase term and is defined as

% simulate the signal
x = s.*exp(1i*2*pi*rand(rstream,1,Ntrial)) + n;
y = mf'*x;

When the noncoherent receiver is used, the quantity used to compare with the threshold is the power
(or magnitude) of the received signal after the matched filter. In this simulation, we choose the
magnitude as the sufficient statistic.

z = abs(y);

Given our choice of the sufficient statistic z, the threshold is related to Pfa by the equation

Pf a = exp − T2

NM = exp(− SNR) .

The signal to noise ratio threshold SNR for an NP detector can be calculated using npwgnthresh as
follows:

snrthreshold = db2pow(npwgnthresh(Pfa, 1,'noncoherent'));

17 Featured Examples

17-308

The threshold, T, is derived from SNR as before

mfgain = mf'*mf;
threshold = sqrt(npower*mfgain*snrthreshold);

Again, Pd can then be obtained using

Pd = sum(z>threshold)/Ntrial

Pd = 0.0583

Note that this resulting Pd is inferior to the performance we get from a coherent receiver.

For the target absent case, the received signal contains only noise. We can calculate the Pfa using
Monte-Carlo simulation as

x = n;
y = mf'*x;
z = abs(y);
Pfa = sum(z>threshold)/Ntrial

Pfa = 9.5000e-04

The ROC curve for a noncoherent receiver is plotted as

rocsnr(snrdb,'SignalType','NonfluctuatingNoncoherent','MinPfa',1e-4);

We can see that the performance of the noncoherent receiver detector is inferior to that of the
coherent receiver.

 Signal Detection in White Gaussian Noise

17-309

Summary

This example shows how to simulate and perform different detection techniques using MATLAB®.
The example illustrates the relationship among several frequently encountered variables in signal
detection, namely, probability of detection (Pd), probability of false alarm (Pfa) and signal to noise
ratio (SNR). In particular, the example calculates the performance of the detector using Monte-Carlo
simulations and verifies the results of the metrics with the receiver operating characteristic (ROC)
curves.

There are two SNR values we encounter in detecting a signal. The first one is the SNR of a single
data sample. This is the SNR value appeared in a ROC curve plot. A point on ROC gives the required
single sample SNR necessary to achieve the corresponding Pd and Pfa. However, it is NOT the SNR
threshold used for detection. Using the Neyman-Pearson decision rule, the SNR threshold, the second
SNR value we see in the detection, is determined by the noise distribution and the desired Pfa level.
Therefore, such an SNR threshold indeed corresponds to the Pfa axis in a ROC curve. If we fix the
SNR of a single sample, as depicted in the above ROC curve plots, each point on the curve will
correspond to a Pfa value, which in turn translates to an SNR threshold value. Using this particular
SNR threshold to perform the detection will then result in the corresponding Pd.

Note that an SNR threshold may not be the threshold used directly in the actual detector. The actual
detector normally uses an easy to compute sufficient statistic quantity to perform the detection. Thus,
the true threshold has to be derived from the aforementioned SNR threshold accordingly so that it is
consistent with the choice of sufficient statistics.

This example performs the detection using only one received signal sample. Hence, the resulting Pd
is fairly low and there is no processing gain achieved by the matched filter. To improve Pd and to take
advantage of the processing gain of the matched filter, we can use multiple samples, or even multiple
pulses, of the received signal. For more information about how to detect a signal using multiple
samples or pulses, please refer to the example “Signal Detection Using Multiple Samples” on page
17-311.

17 Featured Examples

17-310

Signal Detection Using Multiple Samples
This example shows how to detect a signal in complex, white Gaussian noise using multiple received
signal samples. A matched filter is used to take advantage of the processing gain.

Introduction

The example, “Signal Detection in White Gaussian Noise” on page 17-304, introduces a basic signal
detection problem. In that example, only one sample of the received signal is used to perform the
detection. This example involves more samples in the detection process to improve the detection
performance.

As in the previous example, assume that the signal power is 1 and the single sample signal to noise
ratio (SNR) is 3 dB. The number of Monte Carlo trials is 100000. The desired probability of false
alarm (Pfa) level is 0.001.

Ntrial = 1e5; % number of Monte Carlo trials
Pfa = 1e-3; % Pfa

snrdb = 3; % SNR in dB
snr = db2pow(snrdb); % SNR in linear scale
npower = 1/snr; % noise power
namp = sqrt(npower/2); % noise amplitude in each channel

Signal Detection Using Longer Waveform

As discussed in the previous example, the threshold is determined based on Pfa. Therefore, as long as
the threshold is chosen, the Pfa is fixed, and vice versa. Meanwhile, one certainly prefers to have a
higher probability of detection (Pd). One way to achieve that is to use multiple samples to perform the
detection. For example, in the previous case, the SNR at a single sample is 3 dB. If one can use
multiple samples, then the matched filter can produce an extra gain in SNR and thus improve the
performance. In practice, one can use a longer waveform to achieve this gain. In the case of discrete
time signal processing, multiple samples can also be obtained by increasing the sampling frequency.

Assume that the waveform is now formed with two samples

Nsamp = 2;
wf = ones(Nsamp,1);
mf = conj(wf(end:-1:1)); % matched filter

For a coherent receiver, the signal, noise and threshold are given by

% fix the random number generator
rstream = RandStream.create('mt19937ar','seed',2009);

s = wf*ones(1,Ntrial);
n = namp*(randn(rstream,Nsamp,Ntrial)+1i*randn(rstream,Nsamp,Ntrial));
snrthreshold = db2pow(npwgnthresh(Pfa, 1,'coherent'));
mfgain = mf'*mf;
threshold = sqrt(npower*mfgain*snrthreshold); % Final threshold T

If the target is present

x = s + n;
y = mf'*x;
z = real(y);
Pd = sum(z>threshold)/Ntrial

 Signal Detection Using Multiple Samples

17-311

Pd = 0.3947

If the target is absent

x = n;
y = mf'*x;
z = real(y);
Pfa = sum(z>threshold)/Ntrial

Pfa = 0.0011

Notice that the SNR is improved by the matched filter.

snr_new = snr*mf'*mf;
snrdb_new = pow2db(snr_new)

snrdb_new = 6.0103

Plot the ROC curve with this new SNR value.

rocsnr(snrdb_new,'SignalType','NonfluctuatingCoherent','MinPfa',1e-4);

One can see from the figure that the point given by Pfa and Pd falls right on the curve. Therefore, the
SNR corresponding to the ROC curve is the SNR of a single sample at the output of the matched
filter. This shows that, although one can use multiple samples to perform the detection, the single
sample threshold in SNR (snrthreshold in the program) does not change compared to the simple
sample case. There is no change because the threshold value is essentially determined by Pfa.
However, the final threshold, T, does change because of the extra matched filter gain. The resulting

17 Featured Examples

17-312

Pfa remains the same compared to the case where only one sample is used to do the detection.
However, the extra matched gain improved the Pd from 0.1390 to 0.3947.

One can run similar cases for the noncoherent receiver to verify the relation among Pd, Pfa and SNR.

Signal Detection Using Pulse Integration

Radar and sonar applications frequently use pulse integration to further improve the detection
performance. If the receiver is coherent, the pulse integration is just adding real parts of the matched
filtered pulses. Thus, the SNR improvement is linear when one uses the coherent receiver. If one
integrates 10 pulses, then the SNR is improved 10 times. For a noncoherent receiver, the relationship
is not that simple. The following example shows the use of pulse integration with a noncoherent
receiver.

Assume an integration of 2 pulses. Then, construct the received signal and apply the matched filter to
it.

PulseIntNum = 2;
Ntotal = PulseIntNum*Ntrial;
s = wf*exp(1i*2*pi*rand(rstream,1,Ntotal)); % noncoherent
n = sqrt(npower/2)*...
 (randn(rstream,Nsamp,Ntotal)+1i*randn(rstream,Nsamp,Ntotal));

If the target is present

x = s + n;
y = mf'*x;
y = reshape(y,Ntrial,PulseIntNum); % reshape to align pulses in columns

One can integrate the pulses using either of two possible approaches. Both approaches are related to
the approximation of the modified Bessel function of the first kind, which is encountered in modeling
the likelihood ratio test (LRT) of the noncoherent detection process using multiple pulses. The first
approach is to sum abs(y)^2 across the pulses, which is often referred to as a square law detector.
The second approach is to sum together abs(y) from all pulses, which is often referred to as a linear
detector. For small SNR, square law detector is preferred while for large SNR, using linear detector
is advantageous. We use square law detector in this simulation. However, the difference between the
two kinds of detectors is normally within 0.2 dB.

For this example, choose the square law detector, which is more popular than the linear detector. To
perform the square law detector, one can use the pulsint function. The function treats each column of
the input data matrix as an individual pulse. The pulsint function performs the operation of

y = |x1 |2 +⋯+ |xn|2 .

z = pulsint(y,'noncoherent');

The relation between the threshold T and the Pfa, given this new sufficient statistics, z, is given by

Pf a = 1− I T2/(NM)
L , L− 1 = 1− I SNR

L , L− 1 .

where

I(u, K) =∫0 u K + 1 e−ττK

K! dτ

 Signal Detection Using Multiple Samples

17-313

is Pearson's form of the incomplete gamma function and L is the number of pulses used for pulse
integration. Using a square law detector, one can calculate the SNR threshold involving the pulse
integration using the npwgnthresh function as before.

snrthreshold = db2pow(npwgnthresh(Pfa,PulseIntNum,'noncoherent'));

The resulting threshold for the sufficient statistics, z, is given by

mfgain = mf'*mf;
threshold = sqrt(npower*mfgain*snrthreshold);

The probability of detection is obtained by

Pd = sum(z>threshold)/Ntrial

Pd = 0.5343

Then, calculate the Pfa when the received signal is noise only using the noncoherent detector with 2
pulses integrated.

x = n;
y = mf'*x;
y = reshape(y,Ntrial,PulseIntNum);
z = pulsint(y,'noncoherent');
Pfa = sum(z>threshold)/Ntrial

Pfa = 0.0011

To plot the ROC curve with pulse integration, one has to specify the number of pulses used in
integration in rocsnr function

rocsnr(snrdb_new,'SignalType','NonfluctuatingNoncoherent',...
 'MinPfa',1e-4,'NumPulses',PulseIntNum);

17 Featured Examples

17-314

Again, the point given by Pfa and Pd falls on the curve. Thus, the SNR in the ROC curve specifies the
SNR of a single sample used for the detection from one pulse.

Such an SNR value can also be obtained from Pd and Pfa using Albersheim's equation. The result
obtained from Albersheim's equation is just an approximation, but is fairly good over frequently used
Pfa, Pd and pulse integration range.

Note: Albersheim's equation has many assumptions, such as the target is nonfluctuating (Swirling
case 0 or 5), the noise is complex, white Gaussian, the receiver is noncoherent and the linear detector
is used for detection (square law detector for nonfluctuating target is also ok).

To calculate the necessary single sample SNR to achieve a certain Pd and Pfa, use the albersheim
function as

snr_required = albersheim(Pd,Pfa,PulseIntNum)

snr_required = 6.0009

This calculated required SNR value matches the new SNR value of 6 dB.

To see the improvement achieved in Pd by pulse integration, plot the ROC curve when there is no
pulse integration used.

rocsnr(snrdb_new,'SignalType','NonfluctuatingNoncoherent',...
 'MinPfa',1e-4,'NumPulses',1);

 Signal Detection Using Multiple Samples

17-315

From the figure, one can see that without pulse integration, Pd can only be around 0.24 with Pfa at
1e-3. With 2-pulse integration, as illustrated in the above Monte Carlo simulation, for the same Pfa,
the Pd is around 0.53.

Summary

This example showed how using multiple signal sample in detection can improve the probability of
detection while maintaining a desired probability of false alarm level. In particular, it showed using
either longer waveform or pulse integration technique to improve Pd. The example illustrates the
relation among Pd, Pfa, ROC curve and Albersheim's equation. The performance is calculated using
Monte Carlo simulations.

17 Featured Examples

17-316

Antenna Array Beam Scanning Visualization on a Map
This example shows how to visualize the changing pattern and coverage map of an antenna array as
it scans a sweep of angles. The antenna array is created using Antenna Toolbox™ and Phased Array
System Toolbox™. The array is designed to be directional and radiate in the xy-plane to generate a
maximum coverage region in the geographic azimuth. Transmitter and receiver sites are created and
shown on a map, and the pattern and coverage map are displayed as the antenna array is steered.

Design a Reflector-Backed Dipole Antenna Element

Use Antenna Toolbox to design a reflector-backed dipole antenna element. Design the element and its
exciter for 10 GHz, and specify tilt to direct radiation in the xy-plane, which corresponds to the
geographic azimuth.

% Design reflector-backed dipole antenna element
fq = 10e9; % 10 GHz
myelement = design(reflector,fq);
myelement.Exciter = design(myelement.Exciter,fq);

% Tilt antenna element to radiate in xy-plane, with boresight along x-axis
myelement.Tilt = 90;
myelement.TiltAxis = 'y';
myelement.Exciter.Tilt = 90;
myelement.Exciter.TiltAxis = 'y';

Create a 7-by-7 Rectangular Antenna Array

Use Phased Array System Toolbox to create a 7-by-7 rectangular array from the antenna element.
Specify the array normal to direct radiation in the x-axis direction.

% Create 7-by-7 antenna array
nrow = 7;
ncol = 7;
myarray = phased.URA('Size',[nrow ncol],'Element',myelement);

% Define element spacing to be half-wavelength at 10 GHz, and specify
% array plane as yz-plane, which directs radiation in x-axis direction
lambda = physconst('lightspeed')/fq;
drow = lambda/2;
dcol = lambda/2;
myarray.ElementSpacing = [drow dcol];
myarray.ArrayNormal = 'x';

% Display radiation pattern
f = figure;
az = -180:1:180;
el = -90:1:90;
pattern(myarray,fq,az,el)

 Antenna Array Beam Scanning Visualization on a Map

17-317

Create Transmitter Site at Washington Monument

Create a transmitter site at the Washington Monument in Washington, DC, using the antenna array.
The transmitter frequency matches the antenna's design frequency, and the transmitter output power
is 1 W. Set antenna height to 169 m, which is the height of the monument.

tx = txsite('Name','Washington Monument',...
 'Latitude',38.88949, ...
 'Longitude',-77.03523, ...
 'Antenna',myarray,...
 'AntennaHeight',169', ...
 'TransmitterFrequency',fq,...
 'TransmitterPower',1);

Show Transmitter Site on a Map

Launch Site Viewer and show the transmitter site, which centers the view at the Washington
Monument. The default map shows satellite imagery, and the site marker is shown at the site's
antenna height.

if isvalid(f)
 close(f)
end
viewer = siteviewer;
show(tx)

17 Featured Examples

17-318

Show Antenna Radiation Pattern on a Map

Visualize the orientation of the antenna by showing the radiation pattern in Site Viewer.

pattern(tx);

Select the site marker to view the color legend of the pattern.

 Antenna Array Beam Scanning Visualization on a Map

17-319

Create Receiver Sites

Create an array of receiver sites in the Washington, DC, area. These are used as place markers for
sites of interest to assess the coverage of the transmitter site.

% Define names for receiver sites
rxNames = {...
 'Brentwood Hamilton Field', ...
 'Nationals Park', ...
 'Union Station', ...
 'Georgetown University', ...
 'Arlington Cemetery'};

% Define coordinates for receiver sites
rxLocations = [...
 38.9080 -76.9958; ...
 38.8731 -77.0075; ...
 38.8976 -77.0062; ...
 38.9076 -77.0722; ...

17 Featured Examples

17-320

 38.8783 -77.0685];

% Create array of receiver sites. Each receiver has a sensitivity of -75 dBm.
rxs = rxsite('Name',rxNames, ...
 'Latitude',rxLocations(:,1), ...
 'Longitude',rxLocations(:,2), ...
 'ReceiverSensitivity',-75);

Show receiver sites on a map.

show(rxs)

Set the map imagery using the Basemap property. Alternatively, open the map imagery picker in Site
Viewer by clicking the second button from the right. Select "Streets" to see streets and labels on the
map.

viewer.Basemap = "streets";

 Antenna Array Beam Scanning Visualization on a Map

17-321

Scan the Array and Update the Radiation Pattern

Scan the antenna beam by applying a taper for a range of angles. For each angle, update the
radiation pattern in Site Viewer. This approach of scanning the beam produces different patterns than
physically rotating the antenna, as could be achieved by setting AntennaAngle of the transmitter
site. This step is used to validate the orientation of the antenna's main beam.

% Get the starting array taper
startTaper = myarray.Taper;

% Define angles over which to perform sweep
azsweep = -30:10:30;

% Set up tapering window and steering vector
N = nrow*ncol;
nbar = 5;
sll = -20;
sltaper = taylorwin(N,nbar,sll)';
steeringVector = phased.SteeringVector('SensorArray',myarray);

% Sweep the angles and show the antenna pattern for each
for az = azsweep
 sv = steeringVector(fq,[az; 0]);
 myarray.Taper = sltaper.*sv';

 % Update the radiation pattern. Use a larger size so the pattern is visible among the antenna sites.
 pattern(tx, 'Size', 2500,'Transparency',1);
end

17 Featured Examples

17-322

Display Transmitter Coverage Map

Define three signal strength levels and corresponding colors to display on the coverage map. Each
color is visible where the received power for a mobile receiver meets the corresponding signal
strength. The received power includes the total power transmitted from the rectangular antenna
array.

The default orientation of the transmitter site points the antenna x-axis east, so that is the direction of
maximum coverage.

% Reset the taper to the starting taper
myarray.Taper = startTaper;

% Define signal strength levels (dBm) and corresponding colors
strongSignal = -65;
mediumSignal = -70;
weakSignal = -75;
sigstrengths = [strongSignal mediumSignal weakSignal];
sigcolors = {'red' 'yellow' 'green'};

 Antenna Array Beam Scanning Visualization on a Map

17-323

% Show the tx pattern
pattern(tx,'Size',500)

% Display coverage map out to 6 km
maxRange = 6000;
coverage(tx, ...
 'SignalStrengths',sigstrengths, ...
 'Colors',sigcolors, ...
 'MaxRange',maxRange)

The coverage map shows no coverage at the transmitter site and a couple of pockets of coverage
along the boresight direction before the main coverage area. The radiation pattern provides insight
into the coverage map by showing how the antenna power projects onto the map locations around the
transmitter.

17 Featured Examples

17-324

Scan the Array and Update the Coverage Display

Scan the antenna beam by applying a taper for a range of angles. For each angle, update the
coverage map. This method of beamscanning is the same method used above. The final map includes
two receiver sites of interest within the coverage region.

% Repeat the sweep but show the pattern and coverage map
for az = azsweep
 % Calculate and assign taper from steering vector
 sv = steeringVector(fq,[az; 0]);
 myarray.Taper = sltaper.*sv';

 % Update the tx pattern
 pattern(tx,'Size',500)

 % Update coverage map
 coverage(tx, ...
 'SignalStrengths',sigstrengths, ...
 'Colors',sigcolors, ...

 Antenna Array Beam Scanning Visualization on a Map

17-325

 'MaxRange',maxRange)
end

17 Featured Examples

17-326

SINR Map for a 5G Urban Macro-Cell Test Environment
This example shows how to construct a 5G urban macro-cell test environment and visualize the
signal-to-interference-plus-noise ratio (SINR) on a map. The test environment is based on the
guidelines defined in Report ITU-R M.[IMT-2020.EVAL] [1] for evaluating 5G radio technologies. This
report defines several test environments and usage scenarios in Section 8.2. The test environment in
this example is based on the urban environment with high user density and traffic loads focusing on
pedestrian and vehicular users (Dense Urban-eMBB). The test environment includes a hexagonal cell
network as well as a custom antenna array that is implemented using Phased Array System
Toolbox™.

Define Network Layout

The test environment guidelines for 5G technologies reuse the test network layout for 4G
technologies defined in Section 8.3 of Report ITU-R M.2135-1 [2], which is shown below. The layout
consists of 19 sites placed in a hexagonal layout, each with 3 cells. The distance between adjacent
sites is the inter-site distance (ISD) and depends on the test usage scenario. For the Dense Urban-
eMBB test environment, the ISD is 200 m.

Create the locations corresponding to cell sites in the network layout, using MathWorks® Glasgow as
the center location.

% Define center location site (cells 1-3)
centerSite = txsite('Name','MathWorks Glasgow', ...
 'Latitude',55.862787,...
 'Longitude',-4.258523);

% Initialize arrays for distance and angle from center location to each cell site, where
% each site has 3 cells
numCellSites = 19;
siteDistances = zeros(1,numCellSites);
siteAngles = zeros(1,numCellSites);

% Define distance and angle for inner ring of 6 sites (cells 4-21)
isd = 200; % Inter-site distance
siteDistances(2:7) = isd;

 SINR Map for a 5G Urban Macro-Cell Test Environment

17-327

siteAngles(2:7) = 30:60:360;

% Define distance and angle for middle ring of 6 sites (cells 22-39)
siteDistances(8:13) = 2*isd*cosd(30);
siteAngles(8:13) = 0:60:300;

% Define distance and angle for outer ring of 6 sites (cells 40-57)
siteDistances(14:19) = 2*isd;
siteAngles(14:19) = 30:60:360;

Define Cell Parameters

Each cell site has three transmitters corresponding to each cell. Create arrays to define the names,
latitudes, longitudes, and antenna angles of each cell transmitter.

% Initialize arrays for cell transmitter parameters
numCells = numCellSites*3;
cellLats = zeros(1,numCells);
cellLons = zeros(1,numCells);
cellNames = strings(1,numCells);
cellAngles = zeros(1,numCells);

% Define cell sector angles
cellSectorAngles = [30 150 270];

% For each cell site location, populate data for each cell transmitter
cellInd = 1;
for siteInd = 1:numCellSites
 % Compute site location using distance and angle from center site
 [cellLat,cellLon] = location(centerSite, siteDistances(siteInd), siteAngles(siteInd));

 % Assign values for each cell
 for cellSectorAngle = cellSectorAngles
 cellNames(cellInd) = "Cell " + cellInd;
 cellLats(cellInd) = cellLat;
 cellLons(cellInd) = cellLon;
 cellAngles(cellInd) = cellSectorAngle;
 cellInd = cellInd + 1;
 end
end

Create Transmitter Sites

Create transmitter sites using parameters defined above as well as configuration parameters defined
for Dense Urban-eMBB. Launch Site Viewer and set the map imagery using the Basemap property.
Alternatively, open the basemap picker in Site Viewer by clicking the second button from the right.
Select "Topographic" to choose a basemap with topography, streets, and labels.

% Define transmitter parameters using Table 8-2 (b) of Report ITU-R M.[IMT-2020.EVAL]
fq = 4e9; % Carrier frequency (4 GHz) for Dense Urban-eMBB
antHeight = 25; % m
txPowerDBm = 44; % Total transmit power in dBm
txPower = 10.^((txPowerDBm-30)/10); % Convert dBm to W

% Create cell transmitter sites
txs = txsite('Name',cellNames, ...
 'Latitude',cellLats, ...
 'Longitude',cellLons, ...

17 Featured Examples

17-328

 'AntennaAngle',cellAngles, ...
 'AntennaHeight',antHeight, ...
 'TransmitterFrequency',fq, ...
 'TransmitterPower',txPower);

% Launch Site Viewer
viewer = siteviewer;

% Show sites on a map
show(txs);
viewer.Basemap = 'topographic';

Create Antenna Element

Section 8.5 of ITU-R report [1] defines antenna characteristics for base station antennas. The antenna
is modeled as having one or more antenna panels, where each panel has one or more antenna
elements. Use Phased Array System Toolbox to implement the antenna element pattern defined in the
report.

 SINR Map for a 5G Urban Macro-Cell Test Environment

17-329

% Define pattern parameters
azvec = -180:180;
elvec = -90:90;
Am = 30; % Maximum attenuation (dB)
tilt = 0; % Tilt angle
az3dB = 65; % 3 dB bandwidth in azimuth
el3dB = 65; % 3 dB bandwidth in elevation

% Define antenna pattern
[az,el] = meshgrid(azvec,elvec);
azMagPattern = -12*(az/az3dB).^2;
elMagPattern = -12*((el-tilt)/el3dB).^2;
combinedMagPattern = azMagPattern + elMagPattern;
combinedMagPattern(combinedMagPattern<-Am) = -Am; % Saturate at max attenuation
phasepattern = zeros(size(combinedMagPattern));

% Create antenna element
antennaElement = phased.CustomAntennaElement(...
 'AzimuthAngles',azvec, ...
 'ElevationAngles',elvec, ...
 'MagnitudePattern',combinedMagPattern, ...
 'PhasePattern',phasepattern);

% Display radiation pattern
f = figure;
pattern(antennaElement,fq);

17 Featured Examples

17-330

Display SINR Map for Single Antenna Element

Visualize SINR for the test scenario using a single antenna element and the free space propagation
model. For each location on the map within the range of the transmitter sites, the signal source is the
cell with the greatest signal strength, and all other cells are sources of interference. Areas with no
color within the network indicate areas where the SINR is below the default threshold of -5 dB.

% Assign the antenna element for each cell transmitter
for tx = txs
 tx.Antenna = antennaElement;
end

% Define receiver parameters using Table 8-2 (b) of Report ITU-R M.[IMT-2020.EVAL]
bw = 20e6; % 20 MHz bandwidth
rxNoiseFigure = 7; % dB
rxNoisePower = -174 + 10*log10(bw) + rxNoiseFigure;
rxGain = 0; % dBi
rxAntennaHeight = 1.5; % m

% Display SINR map
if isvalid(f)
 close(f)
end
sinr(txs,'freespace', ...
 'ReceiverGain',rxGain, ...
 'ReceiverAntennaHeight',rxAntennaHeight, ...
 'ReceiverNoisePower',rxNoisePower, ...
 'MaxRange',isd, ...
 'Resolution',isd/20)

 SINR Map for a 5G Urban Macro-Cell Test Environment

17-331

Create 8-by-8 Rectangular Antenna Array

Define an antenna array to increase directional gain and increase peak SINR values. Use Phased
Array System Toolbox to create an 8-by-8 uniform rectangular array.

% Define array size
nrow = 8;
ncol = 8;

% Define element spacing
lambda = physconst('lightspeed')/fq;
drow = lambda/2;
dcol = lambda/2;

% Define taper to reduce sidelobes
dBdown = 30;
taperz = chebwin(nrow,dBdown);
tapery = chebwin(ncol,dBdown);
tap = taperz*tapery.'; % Multiply vector tapers to get 8-by-8 taper values

17 Featured Examples

17-332

% Create 8-by-8 antenna array
cellAntenna = phased.URA('Size',[nrow ncol], ...
 'Element',antennaElement, ...
 'ElementSpacing',[drow dcol], ...
 'Taper',tap, ...
 'ArrayNormal','x');

% Display radiation pattern
f = figure;
pattern(cellAntenna,fq);

Display SINR Map for 8-by-8 Antenna Array

Visualize SINR for the test scenario using a uniform rectangular antenna array and the free space
propagation model. Apply a mechanical downtilt to illuminate the intended ground area around each
transmitter.

% Assign the antenna array for each cell transmitter, and apply downtilt.
% Without downtilt, pattern is too narrow for transmitter vicinity.
downtilt = 15;
for tx = txs
 tx.Antenna = cellAntenna;
 tx.AntennaAngle = [tx.AntennaAngle; -downtilt];
end

% Display SINR map
if isvalid(f)

 SINR Map for a 5G Urban Macro-Cell Test Environment

17-333

 close(f)
end
sinr(txs,'freespace', ...
 'ReceiverGain',rxGain, ...
 'ReceiverAntennaHeight',rxAntennaHeight, ...
 'ReceiverNoisePower',rxNoisePower, ...
 'MaxRange',isd, ...
 'Resolution',isd/20)

Display SINR Map Using Close-In Propagation Model

Visualize SINR for the test scenario using the Close-In propagation model [3], which models path loss
for 5G urban micro-cell and macro-cell scenarios. This model produces an SINR map that shows
reduced interference effects compared to the free space propagation model.

sinr(txs,'close-in', ...
 'ReceiverGain',rxGain, ...
 'ReceiverAntennaHeight',rxAntennaHeight, ...
 'ReceiverNoisePower',rxNoisePower, ...

17 Featured Examples

17-334

 'MaxRange',isd, ...
 'Resolution',isd/20)

Use Rectangular Patch Antenna as Array Element

The analysis above used an antenna element that was defined using the equations specified in the
ITU-R report [1]. The antenna element needs to provide a maximum gain of 9.5 dBi and a front-to-
back ratio of approximately 30 dB. Now replace the equation-based antenna element definition with a
real antenna model using a standard half-wavelength rectangular microstrip patch antenna. The
antenna element provides a gain of about 9 dBi, although with a lower front-to-back ratio.

% Design half-wavelength rectangular microstrip patch antenna
patchElement = design(patchMicrostrip,fq);
patchElement.Width = patchElement.Length;
patchElement.Tilt = 90;
patchElement.TiltAxis = [0 1 0];

% Display radiation pattern

 SINR Map for a 5G Urban Macro-Cell Test Environment

17-335

f = figure;
pattern(patchElement,fq)

Display SINR Map Using the Patch Antenna Element in the 8-by-8 Array

Update the SINR map for the Close-In propagation model [3] using the patch antenna as the array
element. This analysis should capture the effect of deviations from an equation-based antenna
specification as per the ITU-R report [1], including:

• Variations in peak gain
• Variations in pattern symmetry with spatial angles
• Variations in front-to-back ratios

% Assign the patch antenna as the array element
cellAntenna.Element = patchElement;

% Display SINR map
if isvalid(f)
 close(f)
end
sinr(txs,'close-in',...
 'ReceiverGain',rxGain, ...
 'ReceiverAntennaHeight',rxAntennaHeight, ...
 'ReceiverNoisePower',rxNoisePower, ...
 'MaxRange',isd, ...
 'Resolution',isd/20)

17 Featured Examples

17-336

Summary

This example shows how to construct a 5G urban macro-cell test environment consisting of a
hexagonal network of 19 cell sites, each containing 3 sectored cells. The signal-to-interference-plus-
noise ratio (SINR) is visualized on a map for different antennas. The following observations are made:

• A rectangular antenna array can provide greater directionality and therefore peak SINR values
than use of a single antenna element.

• The outward-facing lobes on the perimeter of the SINR map represent areas where less
interference occurs. A more realistic modelling technique would be to replicate, or wrap around,
cell sites to expand the geometry so that perimeter areas experience similar interference as
interior areas.

• Using a rectangular antenna array, a propagation model that estimates increased path loss also
results in higher SINR values due to less interference.

• Two antenna elements are tried in the antenna array: an equation-based element using Phased
Array System Toolbox and a patch antenna element using Antenna Toolbox™. These produce
similar SINR maps.

 SINR Map for a 5G Urban Macro-Cell Test Environment

17-337

References

[1] Report ITU-R M.[IMT-2020.EVAL], "Guidelines for evaluation of radio interface technologies for
IMT-2020", 2017. https://www.itu.int/md/R15-SG05-C-0057

[2] Report ITU-R M.2135-1, "Guidelines for evaluation of radio interface technologies for IMT-
Advanced", 2009. https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2135-1-2009-PDF-E.pdf

[3] Sun, S.,Rapport, T.S., Thomas, T., Ghosh, A., Nguyen, H., Kovacs, I., Rodriguez, I., Koymen, O.,and
Prartyka, A. "Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale
propagation path loss models for 5G wireless communications." IEEE Transactions on Vehicular
Technology, Vol 65, No.5, pp.2843-2860, May 2016.

17 Featured Examples

17-338

Improve SNR and Capacity of Wireless Communication Using
Antenna Arrays

The goal of a wireless communication system is to serve as many users with the highest possible data
rate given constraints such as radiation power limit and operating budget. To improve the data rate,
the key is to improve the signal to noise ratio (SNR). To serve more users, the key is to reuse the
resources. Over the last several decades, numerous algorithms have been adopted to improve the
SNR and reuse the resources in time, frequency, and coding spaces. This example shows how the
adoption of antenna arrays can help improve the SNR and capacity of a wireless link.

Introduction

Antenna arrays have become part of the standard configuration in 5G wireless communication
systems. Because there are multiple elements in an antenna array, such wireless communications
systems are often referred to as multiple input multiple output (MIMO) systems. Antenna arrays can
help improve the SNR by exploring the redundancy across the multiple transmit and receive
channels. They also make it possible to reuse the spatial information in the system to improve the
coverage.

For this example, assume the system is deployed at 60 GHz, which is a frequency being considered
for the 5G system.

c = 3e8; % propagation speed
fc = 60e9; % carrier frequency
lambda = c/fc; % wavelength

rng(6466);

With no loss in generality, place the transmitter at the origin and place the receiver approximately 1.6
km away.

txcenter = [0;0;0];
rxcenter = [1500;500;0];

Throughout this example, the scatteringchanmtx function will be used to create a channel matrix
for different transmit and receive array configurations. The function simulates multiple scatterers
between the transmit and receive arrays. The signal travels from the transmit array to all the
scatterers first and then bounces off the scatterers and arrives at the receive array. Therefore, each
scatterer defines a signal path between the transmit and the receive array and the resulting channel
matrix describes a multipath environment. The function works with antenna arrays of arbitrary size
at any designated frequency band.

Improve SNR by Array Gain for Line of Sight Propagation

The simplest wireless channel is a line of sight (LOS) propagation. Although simple, such channels
can often be found in rural areas. Adopting an antenna array under such situations can improve the
signal to noise ratio at the receiver and in turn improve the communication link's bit error rate (BER).

SISO LOS Channel

Before discussing the performance of a MIMO system, it is useful to build a baseline with a single
input single output (SISO) communication system. A SISO LOS channel has a direct path from the
transmitter to the receiver. Such a channel can be modeled as a special case of the multipath
channel.

 Improve SNR and Capacity of Wireless Communication Using Antenna Arrays

17-339

[~,txang] = rangeangle(rxcenter,txcenter);
[~,rxang] = rangeangle(txcenter,rxcenter);

txsipos = [0;0;0];
rxsopos = [0;0;0];

g = 1; % gain for the path
sisochan = scatteringchanmtx(txsipos,rxsopos,txang,rxang,g);

Using BPSK modulation, the bit error rate (BER) for such a SISO channel can be plotted as

Nsamp = 1e6;
x = randi([0 1],Nsamp,1);

ebn0_param = -10:2:10;
Nsnr = numel(ebn0_param);

ber_siso = helperMIMOBER(sisochan,x,ebn0_param)/Nsamp;
helperBERPlot(ebn0_param,ber_siso);
legend('SISO')

SIMO LOS Channel

With the baseline established for a SISO system, this section focuses on the single input multiple
output (SIMO) system. In such a system, there is one transmit antenna but multiple receive antennas.
Again, it is assumed that there is a direct path between the transmitter and the receiver.

17 Featured Examples

17-340

Assume the receive array is a 4-element ULA with half-wavelength spacing, then the SIMO channel
can be modeled as

rxarray = phased.ULA('NumElements',4,'ElementSpacing',lambda/2);
rxmopos = getElementPosition(rxarray)/lambda;

simochan = scatteringchanmtx(txsipos,rxmopos,txang,rxang,g);

In the SIMO system, because the received signals across receive array elements are coherent, it is
possible to steer the receive array toward the transmitter to improve the SNR. Note that this assumes
that the signal incoming direction is known to the receiver. In reality, the angle is often obtained
using direction of arrival estimation algorithms.

rxarraystv = phased.SteeringVector('SensorArray',rxarray,...
 'PropagationSpeed',c);
wr = conj(rxarraystv(fc,rxang));
ber_simo = helperMIMOBER(simochan,x,ebn0_param,1,wr)/Nsamp;
helperBERPlot(ebn0_param,[ber_siso(:) ber_simo(:)]);
legend('SISO','SIMO')

The BER curve shows a gain of 6 dB provided by the receive array.

MISO LOS Channel

The multiple input single output (MISO) system works in a similar way. In this case, the transmitter is
a 4-element ULA with half-wavelength spacing.

 Improve SNR and Capacity of Wireless Communication Using Antenna Arrays

17-341

txarray = phased.ULA('NumElements',4,'ElementSpacing',lambda/2);
txmipos = getElementPosition(txarray)/lambda;

misochan = scatteringchanmtx(txmipos,rxsopos,txang,rxang,g);

A line of sight MISO system achieves best SNR when the transmitter has the knowledge of the
receiver and steers the beam toward the receiver. In addition, to do a fair comparison with the SISO
system, the total transmitter power should be the same under both situations.

txarraystv = phased.SteeringVector('SensorArray',txarray,...
 'PropagationSpeed',c);
wt = txarraystv(fc,txang)';
ber_miso = helperMIMOBER(misochan,x,ebn0_param,wt,1)/Nsamp;
helperBERPlot(ebn0_param,[ber_siso(:) ber_simo(:) ber_miso(:)]);
legend('SISO','SIMO','MISO')

Note that with the pre-steering, the performance of MISO matches the performance of a SIMO
system, gaining 6 dB in SNR. It may not be as intuitive compared to the SIMO case because the total
transmit power does not increase. However, by replacing a single isotropic antenna with a 4-element
transmit array, a 6 dB gain is achieved.

MIMO LOS Channel

Because a SIMO system provides an array gain from the received array and a MISO system provides
an array gain from the transmit array, a MIMO system with an LOS propagation can benefit from both
the transmit and receive array gain.

17 Featured Examples

17-342

Assume a MIMO system with a 4-element transmit array and a 4-element receive array.

mimochan = scatteringchanmtx(txmipos,rxmopos,txang,rxang,g);

To achieve the best SNR, the transmit array and the receive array need to be steered toward each
other. With this configuration, the BER curve can be computed as

wt = txarraystv(fc,txang)';
wr = conj(rxarraystv(fc,rxang));
ber_mimo = helperMIMOBER(mimochan,x,ebn0_param,wt,wr)/Nsamp;
helperBERPlot(ebn0_param,[ber_siso(:) ber_simo(:) ber_mimo(:)]);
legend('SISO','SIMO','MIMO')

As expected, the BER curve shows that both the transmit array and the receive array contributes a 6
dB array gain, resulting in a total gain of 12 dB over the SISO case.

Improve SNR by Diversity Gain for Multipath Channel

All the channels in the previous sections are line-of-sight channels. Although such channels are found
in some wireless communication systems, in general wireless communications occurs in multipath
fading environments. The rest of this example explores how using arrays can help in a multipath
environment.

SISO Multipath Channel

Assume there are 10 randomly placed scatterers in the channel, then there will be 10 paths from the
transmitter to the receiver, as illustrated in the following figure.

 Improve SNR and Capacity of Wireless Communication Using Antenna Arrays

17-343

Nscat = 10;

[~,~,~,scatpos] = ...
 helperComputeRandomScatterer(txcenter,rxcenter,Nscat);
helperPlotSpatialMIMOScene(txsipos,rxsopos,...
 txcenter,rxcenter,scatpos);

For simplicity, assume that signals traveling along all paths arrive within the same symbol period so
the channel is frequency flat.

To simulate the BER curve for a fading channel, the channel needs to change over time. Assume we
have 1000 frames and each frame has 10000 bits. The baseline SISO multipath channel BER curve is
constructed as

Nframe = 1e3;
Nbitperframe = 1e4;
Nsamp = Nframe*Nbitperframe;

x = randi([0 1],Nbitperframe,1);

nerr = zeros(1,Nsnr);

for m = 1:Nframe
 sisompchan = scatteringchanmtx(txsipos,rxsopos,Nscat);
 wr = sisompchan'/norm(sisompchan);
 nerr = nerr+helperMIMOBER(sisompchan,x,ebn0_param,1,wr);
end

17 Featured Examples

17-344

ber_sisomp = nerr/Nsamp;
helperBERPlot(ebn0_param,[ber_siso(:) ber_sisomp(:)]);
legend('SISO LOS','SISO Multipath');

Compared to the BER curve derived from an LOS channel, the BER falls off much slower with the
increase of energy per bit to noise power spectral density ratio (Eb/N0) due to the fading caused by
the multipath propagation.

SIMO Multipath Channel

As more receive antennas are used in the receive array, more copies of the received signals are
available at the receiver. Again, assume a 4-element ULA at the receiver.

The optimal combining weights can be derived by matching the channel response. Such a combining
scheme is often termed as maximum ratio combining (MRC). Although in theory such scheme
requires the knowledge of the channel, in practice the channel response can often be estimated at the
receive array.

nerr = zeros(1,Nsnr);

for m = 1:Nframe
 simompchan = scatteringchanmtx(txsipos,rxmopos,Nscat);
 wr = simompchan'/norm(simompchan);
 nerr = nerr+helperMIMOBER(simompchan,x,ebn0_param,1,wr);
end
ber_simomp = nerr/Nsamp;

 Improve SNR and Capacity of Wireless Communication Using Antenna Arrays

17-345

helperBERPlot(ebn0_param,[ber_sisomp(:) ber_simomp(:)]);
legend('SISO Multipath','SIMO Multipath');

Note that the received signal is no longer weighted by a steering vector toward a specific direction.
Instead, the receiving array weights in this case are given by the complex conjugate of the channel
response. Otherwise it is possible that multipath could make the received signal out of phase with the
transmitted signal. This assumes that the channel response is known to the receiver. If the channel
response is unknown, pilot signals can be used to estimate the channel response.

It can be seen from the BER curve that not only the SIMO system provides some SNR gains compared
to the SISO system, but the slope of the BER curve of the SIMO system is also steeper compared to
the BER curve of the SISO system. The gain resulted from the slope change is often referred to as the
diversity gain.

MISO Multipath Channel

Things get more interesting when there is multipath propagation in a MISO system. First, if the
channel is known to the transmitter, then the strategy to improve the SNR is similar to maximum
ratio combining. The signal radiated from each element of the transmit array should be weighted so
that the propagated signal can be added coherently at the receiver.

nerr = zeros(1,Nsnr);

for m = 1:Nframe
 misompchan = scatteringchanmtx(txmipos,rxsopos,Nscat);
 wt = misompchan'/norm(misompchan);
 nerr = nerr+helperMIMOBER(misompchan,x,ebn0_param,wt,1);

17 Featured Examples

17-346

end
ber_misomp = nerr/Nsamp;

helperBERPlot(ebn0_param,[ber_sisomp(:) ber_simomp(:) ber_misomp(:)]);
legend('SISO Multipath','SIMO Multipath','MISO Multipath');

Note the transmit diversity gain shown in the BER curve. Compared to the SIMO multipath channel
case, the performance of a MISO multipath system is not as good. This is because there is only one
copy of the received signal yet the transmit power gets spread among multiple paths. It is certainly
possible to amplify the signal at the transmit side to achieve an equivalent gain, but that introduces
additional cost.

If the channel is not known to the transmitter, there are still ways to explore the diversity via space
time coding. For example, Alamouti code is a well known coding scheme that can be used to achieve
diversity gain when the channel is not known. Interested readers are encouraged to explore the
Introduction to MIMO Systems example in Communications Toolbox™.

MIMO Multipath Channel

The rest of this example focuses on a multipath MIMO channel. In particular, this section illustrates
the case where the number of scatterers in the environment is larger than the number of elements in
the transmit and receive arrays. Such an environment is often termed as a rich scattering
environment.

Before diving into the specific performance measures, it is helpful to get a quick illustration of what
the channel looks like. The following helper function creates a 4x4 MIMO channel where both
transmitter and receiver are 4-element ULAs.

 Improve SNR and Capacity of Wireless Communication Using Antenna Arrays

17-347

[txang,rxang,scatg,scatpos] = ...
 helperComputeRandomScatterer(txcenter,rxcenter,Nscat);
mimompchan = scatteringchanmtx(txmipos,rxmopos,txang,rxang,scatg);

There are multiple paths available between the transmit array and the receive array because of the
existence of the scatterers. Each path consists of a single bounce off the corresponding scatterer.

helperPlotSpatialMIMOScene(txmipos,rxmopos,txcenter,rxcenter,scatpos);

There are two ways to take advantage of a MIMO channel. The first way is to explore the diversity
gain offered by a MIMO channel. Assuming the channel is known, the following figure shows the
diversity gain with the BER curve.

nerr = zeros(1,Nsnr);

for m = 1:Nframe
 mimompchan = scatteringchanmtx(txmipos,rxmopos,Nscat);
 [u,s,v] = svd(mimompchan);
 wt = u(:,1)';
 wr = v(:,1);
 nerr = nerr+helperMIMOBER(mimompchan,x,ebn0_param,wt,wr);
end
ber_mimomp = nerr/Nsamp;

helperBERPlot(ebn0_param,[ber_sisomp(:) ber_simomp(:) ber_mimomp(:)]);
legend('SISO Multipath','SIMO Multipath','MIMO Multipath');

17 Featured Examples

17-348

Compare the BER curve from a MIMO channel with the BER curve obtained from a SIMO system. In
the multipath case, the diversity gain from a MIMO channel is not necessarily better than the
diversity gain provided by a SIMO channel. This is because to obtain the best diversity gain, only the
dominant mode in a MIMO channel is used yet there are other modes in the channel that are not
used. So is there an alternative way to utilize the channel?

Improve Capacity by Spatial Multiplexing for MIMO Multipath Channel

The answer to the previous question lies in a scheme called spatial multiplexing. The idea behind
spatial multiplexing is that a MIMO multipath channel with a rich scatterer environment can send
multiple data streams simultaneously across the channel. For example, the channel matrix of a 4x4
MIMO channel becomes full rank because of the scatterers. This means that it is possible to send as
many as 4 data streams at once. The goal of spatial multiplexing is less about increasing the SNR but
more about increasing the information throughput.

The idea of spatial multiplexing is to separate the channel matrix to multiple mode so that the data
stream sent from different elements in the transmit array can be independently recovered from the
received signal. To achieve this, the data stream is precoded before the transmission and then
combined after the reception. The precoding and combining weights can be computed from the
channel matrix by

[wp,wc] = diagbfweights(mimompchan);

To see why the combination of the precoding and combining weights can help transmit multiple data
streams at the same time, examine the product of the weights and the channel matrix.

wp*mimompchan*wc

 Improve SNR and Capacity of Wireless Communication Using Antenna Arrays

17-349

ans =

 10.3543 + 0.0000i -0.0000 + 0.0000i 0.0000 - 0.0000i -0.0000 - 0.0000i
 0.0000 + 0.0000i 6.0693 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i
 -0.0000 + 0.0000i -0.0000 + 0.0000i 2.4446 + 0.0000i -0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.1049 - 0.0000i

Note that the product is a diagonal matrix, which means that the information received by each
receive array element is simply a scaled version of the transmit array element. So it behaves like
multiple orthogonal subchannels within the original channel. The first subchannel corresponds to the
dominant transmit and receive directions so there is no loss in the diversity gain. In addition, it is now
possible to use other subchannels to carry information too, as shown in the BER curve for the first
two subchannels.

Ntx = 4;
Nrx = 4;

x = randi([0 1],Nbitperframe,Ntx);

nerr = zeros(Nrx,Nsnr);

for m = 1:Nframe
 mimompchan = scatteringchanmtx(txmipos,rxmopos,Nscat);
 [wp,wc] = diagbfweights(mimompchan);
 nerr = nerr+helperMIMOMultistreamBER(mimompchan,x,ebn0_param,wp,wc);
end
ber_mimompdiag = nerr/Nsamp;
helperBERPlot(ebn0_param,[ber_sisomp(:) ber_mimomp(:)...
 ber_mimompdiag(1,:).' ber_mimompdiag(2,:).']);
legend('SISO LOS','MIMO Multipath','MIMO Multipath Stream 1',...
 'MIMO Multipath Stream 2');

17 Featured Examples

17-350

Although the second stream cannot provide a gain as high as the first stream as it uses a less
dominant subchannel, the overall information throughput is improved. Therefore, next section
measures the performance by the channel capacity instead of the BER curve.

The most intuitive way to transmit data in a MIMO system is to uniformly split the power among
transmit elements. However, the capacity of the channel can be further improved if the channel is
known at the transmitter. In this case, the transmitter could use the waterfill algorithm to make the
choice of transmitting only in the subchannels where a satisfying SNR can be obtained. The following
figure shows the comparison of the system capacity between the two power distribution schemes. The
result confirms that the waterfill algorithm provides a better system capacity compared to the
uniform power distribution. The difference gets smaller when the system level SNR improves.

C_mimo_cu = zeros(1,Nsnr);
C_mimo_ck = zeros(1,Nsnr);
Ntrial = 1000;
for m = 1:Nsnr
 for n = 1:Ntrial
 mimompchan = scatteringchanmtx(txmipos,rxmopos,Nscat);
 N0 = db2pow(-ebn0_param(m));
 [~,~,~,~,cu] = diagbfweights(mimompchan,1,N0,'uniform');
 [~,~,~,~,ck] = diagbfweights(mimompchan,1,N0,'waterfill');
 C_mimo_cu(m) = C_mimo_cu(m)+cu;
 C_mimo_ck(m) = C_mimo_ck(m)+ck;
 end
end
C_mimo_cu = C_mimo_cu/Ntrial;
C_mimo_ck = C_mimo_ck/Ntrial;

 Improve SNR and Capacity of Wireless Communication Using Antenna Arrays

17-351

plot(ebn0_param,C_mimo_cu(:),'-*',ebn0_param,C_mimo_ck(:),'-^');
xlabel('SNR (dB)');
ylabel('Capacity (bps/Hz)');
legend('Uniform Power Distribution','Waterfill Power Distribution');
grid on;

For more details on spatial multiplexing and its detection techniques, refer to the Spatial Multiplexing
example in Communications Toolbox.

From Beamforming to Precoding

Finally, it is worth looking at how these different ways of using arrays relate to each other. Starting
from the LOS channel, as mentioned in the previous sections, the benefit provided by the array is an
improvement in the SNR.

[~,txang] = rangeangle(rxcenter,txcenter);
[~,rxang] = rangeangle(txcenter,rxcenter);

mimochan = scatteringchanmtx(txmipos,rxmopos,txang,rxang,1);

wt = txarraystv(fc,txang)';
wr = conj(rxarraystv(fc,rxang));

helperPlotSpatialMIMOScene(txmipos,rxmopos,txcenter,rxcenter,...
 (txcenter+rxcenter)/2,wt,wr)

17 Featured Examples

17-352

It is clear from the sketch that in this case, the transmit and receive weights form two beams that
point to each other. Thus, the array gain is achieved by the beamforming technique. On the other
hand, if one tries to create a similar sketch for a MIMO channel, it looks like the following figure.

[txang,rxang,scatg,scatpos] = ...
 helperComputeRandomScatterer(txcenter,rxcenter,Nscat);
mimompchan = scatteringchanmtx(txmipos,rxmopos,txang,rxang,scatg);

[wp,wc] = diagbfweights(mimompchan);
helperPlotSpatialMIMOScene(txmipos,rxmopos,txcenter,rxcenter,...
 scatpos,wp(1,:),wc(:,1))

 Improve SNR and Capacity of Wireless Communication Using Antenna Arrays

17-353

Note that the figure only depicts the pattern for the first data stream but nevertheless it is clear that
the pattern no longer necessarily has a dominant main beam. However, if the number of scatterers is
reduced to one, then the scene becomes

[txang,rxang,scatg,scatpos] = ...
 helperComputeRandomScatterer(txcenter,rxcenter,1);
mimompchan = scatteringchanmtx(txmipos,rxmopos,txang,rxang,scatg);

[wp,wc] = diagbfweights(mimompchan);
helperPlotSpatialMIMOScene(txmipos,rxmopos,txcenter,rxcenter,...
 scatpos,wp(1,:),wc(:,1))

17 Featured Examples

17-354

Therefore, the LOS channel case, or more precisely, the one scatterer case, can be considered as a
special case of the precoding. When there is only one path available between the transmit and receive
arrays, the precoding degenerates to a beamforming scheme.

Summary

This example explains how array processing can be used to improve the quality of a MIMO wireless
communication system. Depending on the nature of the channel, the arrays can be used to either
improve the SNR via array gain or diversity gain, or improve the capacity via spatial multiplexing.
The example also shows how to use functions like scatteringchanmtx and diagbfweights to
simulate those scenarios. For more information on MIMO systems modeling, interested readers may
refer to examples provided in Communications Toolbox.

Reference

[1] David Tse and Pramod Viswanath, Fundamentals of Wireless Communications, Cambridge, 2005

[2] Arogyswami Paulraj, Introduction to Space-Time Wireless Communication, Cambridge, 2003

 Improve SNR and Capacity of Wireless Communication Using Antenna Arrays

17-355

Introduction to Hybrid Beamforming
This example introduces the basic concept of hybrid beamforming and shows how to simulate such a
system.

Introduction

Modern wireless communication systems use spatial multiplexing to improve the data throughput
within the system in a scatterer rich environment. In order to send multiple data streams through the
channel, a set of precoding and combining weights are derived from the channel matrix. Then each
data stream can be independently recovered. Those weights contain both magnitude and phase terms
and are normally applied in the digital domain. One example of simulating such a system can be
found in the “Improve SNR and Capacity of Wireless Communication Using Antenna Arrays” on page
17-339 example. In the system diagram shown below, each antenna is connected to a unique transmit
and receive (TR) module.

The ever growing demand for high data rate and more user capacity increases the need to use the
spectrum more efficiently. As a result, the next generation, 5G, wireless systems will use millimeter
wave (mmWave) band to take advantage of its wider bandwidth. In addition, 5G systems deploy large
scale antenna arrays to mitigate severe propagation loss in the mmWave band. However, these
configurations bring their unique technical challenges.

Compared to current wireless systems, the wavelength in the mmWave band is much smaller.
Although this allows an array to contain more elements with the same physical dimension, it becomes
much more expensive to provide one TR module for each antenna element. Hence, as a compromise,
a TR switch is often used to supply multiple antenna elements. This is the same concept as the
subarray configuration used in the radar community. One such configuration is shown in the following
figure.

17 Featured Examples

17-356

The figure above shows that on the transmit side, the number of TR switches, NTRF, is smaller than
the number of antenna elements, NT. To provide more flexibility, each antenna element can be
connected to one or more TR modules. In addition, analog phase shifters can be inserted between
each TR module and antenna to provide some limited steering capability.

The configuration on the receiver side is similar, as shown in the figure. The maximum number of
data streams, Ns, that can be supported by this system is the smaller of NTRF and NRRF.

In this configuration, it is no longer possible to apply digital weights on each antenna element.
Instead, the digital weights can only be applied at each RF chain. At the element level, the signal is
adjusted by analog phase shifters, which only changes the phase of the signal. Thus, the precoding or
combining are actually done in two stages. Because this approach performs beamforming in both
digital and analog domains, it is referred to as hybrid beamforming.

System Setup

This section simulates a 64 x 16 MIMO hybrid beamforming system, with a 64-element square array
with 4 RF chains on the transmitter side and a 16-element square array with 4 RF chains on the
receiver side.

Nt = 64;
NtRF = 4;

Nr = 16;
NrRF = 4;

In this simulation, it is assumed that each antenna is connected to all RF chains. Thus, each antenna
is connected to 4 phase shifters. Such an array can be modeled by partitioning the array aperture
into 4 completely connected subarrays.

rng(4096);
c = 3e8;
fc = 28e9;
lambda = c/fc;
txarray = phased.PartitionedArray(...
 'Array',phased.URA([sqrt(Nt) sqrt(Nt)],lambda/2),...
 'SubarraySelection',ones(NtRF,Nt),'SubarraySteering','Custom');
rxarray = phased.PartitionedArray(...

 Introduction to Hybrid Beamforming

17-357

 'Array',phased.URA([sqrt(Nr) sqrt(Nr)],lambda/2),...
 'SubarraySelection',ones(NrRF,Nr),'SubarraySteering','Custom');

To maximize the spectral efficiency, each RF chain can be used to send an independent data stream.
In this case, the system can support up to 4 streams.

Next, assume a scattering environment with 6 scattering clusters randomly distributed in space.
Within each cluster, there are 8 closely located scatterers with an angle spread of 5 degrees, for a
total of 48 scatterers. The path gain for each scatterer is obtained from a complex circular symmetric
Gaussian distribution.

Ncl = 6;
Nray = 8;
Nscatter = Nray*Ncl;
angspread = 5;
% compute randomly placed scatterer clusters
txclang = [rand(1,Ncl)*120-60;rand(1,Ncl)*60-30];
rxclang = [rand(1,Ncl)*120-60;rand(1,Ncl)*60-30];
txang = zeros(2,Nscatter);
rxang = zeros(2,Nscatter);
% compute the rays within each cluster
for m = 1:Ncl
 txang(:,(m-1)*Nray+(1:Nray)) = randn(2,Nray)*sqrt(angspread)+txclang(:,m);
 rxang(:,(m-1)*Nray+(1:Nray)) = randn(2,Nray)*sqrt(angspread)+rxclang(:,m);
end

g = (randn(1,Nscatter)+1i*randn(1,Nscatter))/sqrt(Nscatter);

The channel matrix can be formed as

txpos = getElementPosition(txarray)/lambda;
rxpos = getElementPosition(rxarray)/lambda;
H = scatteringchanmtx(txpos,rxpos,txang,rxang,g);

Hybrid Weights Computation

In a spatial multiplexing system with all digital beamforming, the signal is modulated by a set of
precoding weights, propagated through the channel, and recovered by a set of combining weights.
Mathematically, this process can be described by Y = (X*F*H+N)*W where X is an Ns-column matrix
whose columns are data streams, F is an Ns × Nt matrix representing the precoding weights, W is an
Nr × Ns matrix representing the combining weights, N is an Nr-column matrix whose columns are the
receiver noise at each element, and Y is an Ns-column matrix whose columns are recovered data
streams. Since the goal of the system is to achieve better spectral efficiency, obtaining the precoding
and combining weights can be considered as an optimization problem where the optimal precoding
and combining weights make the product of F*H*W' a diagonal matrix so each data stream can be
recovered independently.

In a hybrid beamforming system, the signal flow is similar. Both the precoding weights and the
combining weights are combinations of baseband digital weights and RF band analog weights. The
baseband digital weights convert the incoming data streams to input signals at each RF chain and the
analog weights then convert the signal at each RF chain to the signal radiated or collected at each
antenna element. Note that the analog weights can only contain phase shifts.

Mathematically, it can be written as F=Fbb*Frf and W=Wbb*Wrf, where Fbb is an Ns × NtRF matrix,
Frf an NtRF × Nt matrix, Wbb an NrRF × Ns matrix, and Wrf an Nr × NrRF matrix. Since both Frf
and Wrf can only be used to modify the signal phase, there are extra constraints in the optimization

17 Featured Examples

17-358

process to identify the optimal precoding and combining weights. Ideally, the resulting combination of
Fbb*Frf and Wrf*Wbb are close approximations of F and W that are obtained without those
constraints.

Unfortunately, optimizing all four matrix variables simultaneously is quite difficult. Therefore, many
algorithms are proposed to arrive at suboptimal weights with a reasonable computational load. This
example uses the approach proposed in [1] which decouples the optimizations for the precoding and
combining weights. It first uses the orthogonal matching pursuit algorithm to derive the precoding
weights. Once the precoding weights are computed, the result is then used to obtain the
corresponding combining weights.

Assuming the channel is known, the unconstrained optimal precoding weights can be obtained by
diagonalizing the channel matrix and extracting the first NtRF dominating modes. The transmit beam
pattern can be plotted as

F = diagbfweights(H);
F = F(1:NtRF,:);
pattern(txarray,fc,-90:90,-90:90,'Type','efield',...
 'ElementWeights',F','PropagationSpeed',c);

The response pattern above shows that even in a multipath environment, there are limited number of
dominant directions.

The hybrid weights, on the other hand, can be computed as

At = steervec(txpos,txang);
Ar = steervec(rxpos,rxang);

 Introduction to Hybrid Beamforming

17-359

Ns = NtRF;
[Fbb,Frf] = omphybweights(H,Ns,NtRF,At);

The beam pattern of the hybrid weights is shown below:

pattern(txarray,fc,-90:90,-90:90,'Type','efield',...
 'ElementWeights',Frf'*Fbb','PropagationSpeed',c);

Compared to the beam pattern obtained using the optimal weights, the beam pattern using the hybrid
weights is similar, especially for dominant beams. This means that the data streams can be
successfully transmitted through those beams using hybrid weights.

Spectral Efficiency Comparison

One of the system level performance metrics of a 5G system is the spectral efficiency. The next
section compares the spectral efficiency achieved using the optimal weights with that of the proposed
hybrid beamforming weights. The simulation assumes 1 or 2 data streams as outlined in [1]. The
transmit antenna array is assumed to be at a base station, with a focused beamwidth of 60 degrees in
azimuth and 20 degrees in elevation. The signal can arrive at the receive array from any direction.
The resulting spectral efficiency curve is obtained from 50 Monte-Carlo trials for each SNR.

snr_param = -40:5:0;
Nsnr = numel(snr_param);
Ns_param = [1 2];
NNs = numel(Ns_param);

17 Featured Examples

17-360

NtRF = 4;
NrRF = 4;

Ropt = zeros(Nsnr,NNs);
Rhyb = zeros(Nsnr,NNs);
Niter = 50;

for m = 1:Nsnr
 snr = db2pow(snr_param(m));
 for n = 1:Niter
 % Channel realization
 txang = [rand(1,Nscatter)*60-30;rand(1,Nscatter)*20-10];
 rxang = [rand(1,Nscatter)*180-90;rand(1,Nscatter)*90-45];
 At = steervec(txpos,txang);
 Ar = steervec(rxpos,rxang);
 g = (randn(1,Nscatter)+1i*randn(1,Nscatter))/sqrt(Nscatter);
 H = scatteringchanmtx(txpos,rxpos,txang,rxang,g);

 for k = 1:NNs
 Ns = Ns_param(k);
 % Compute optimal weights and its spectral efficiency
 [Fopt,Wopt] = helperOptimalHybridWeights(H,Ns,1/snr);
 Ropt(m,k) = Ropt(m,k)+helperComputeSpectralEfficiency(H,Fopt,Wopt,Ns,snr);

 % Compute hybrid weights and its spectral efficiency
 [Fbb,Frf,Wbb,Wrf] = omphybweights(H,Ns,NtRF,At,NrRF,Ar,1/snr);
 Rhyb(m,k) = Rhyb(m,k)+helperComputeSpectralEfficiency(H,Fbb*Frf,Wrf*Wbb,Ns,snr);
 end
 end
end
Ropt = Ropt/Niter;
Rhyb = Rhyb/Niter;

plot(snr_param,Ropt(:,1),'--sr',...
 snr_param,Ropt(:,2),'--b',...
 snr_param,Rhyb(:,1),'-sr',...
 snr_param,Rhyb(:,2),'-b');
xlabel('SNR (dB)');
ylabel('Spectral Efficiency (bits/s/Hz');
legend('Ns=1 optimal','Ns=2 optimal','Ns=1 hybrid', 'Ns=2 hybrid',...
 'Location','best');
grid on;

 Introduction to Hybrid Beamforming

17-361

This figure shows that the spectral efficiency improves significantly when we increase the number of
data streams. In addition, the hybrid beamforming can perform close to what optimal weights can
offer using less hardware.

Summary

This example introduces the basic concept of hybrid beamforming and shows how to split the
precoding and combining weights using orthogonal matching pursuit algorithm. It shows that hybrid
beamforming can closely match the performance offered by optimal digital weights.

References

[1] Omar El Ayach, et al. Spatially Sparse Precoding in Millimeter wave MIMO Systems, IEEE
Transactions on Wireless Communications, Vol. 13, No. 3, March 2014.

17 Featured Examples

17-362

MIMO-OFDM Precoding with Phased Arrays
This example shows how phased arrays are used in a MIMO-OFDM communication system employing
beamforming. Using components from Communications Toolbox™ and Phased Array System
Toolbox™, it models the radiating elements that comprise a transmitter and the front-end receiver
components, for a MIMO-OFDM communication system. With user-specified parameters, you can
validate the performance of the system in terms of bit error rate and constellations for different
spatial locations and array sizes.

The example uses functions and System objects™ from Communications Toolbox and Phased Array
System Toolbox and requires

• WINNER II Channel Model for Communications Toolbox

Introduction

MIMO-OFDM systems are the norm in current wireless systems (e.g. 5G NR, LTE, WLAN) due to their
robustness to frequency-selective channels and high data rates enabled. With ever-increasing
demands on data rates supported, these systems are getting more complex and larger in
configurations with increasing number of antenna elements, and resources (subcarriers) allocated.

With antenna arrays and spatial multiplexing, efficient techniques to realize the transmissions are
necessary [6]. Beamforming is one such technique, that is employed to improve the signal to noise
ratio (SNR) which ultimately improves the system performance, as measured here in terms of bit
error rate (BER) [1].

This example illustrates an asymmetric MIMO-OFDM single-user system where the maximum number
of antenna elements on transmit and receive ends can be 1024 and 32 respectively, with up to 16
independent data streams. It models a spatial channel where the array locations and antenna
patterns are incorporated into the overall system design. For simplicity, a single point-to-point link
(one base station communicating with one mobile user) is modeled. The link uses channel sounding to
provide the transmitter with the channel information it needs for beamforming.

The example offers the choice of a few spatially defined channel models, specifically a WINNER II
Channel model and a scattering-based model, both of which account for the transmit/receive spatial
locations and antenna patterns.

s = rng(61); % Set RNG state for repeatability

System Parameters

Define parameters for the system. These parameters can be modified to explore their impact on the
system.

% Single-user system with multiple streams
prm.numUsers = 1; % Number of users
prm.numSTS = 16; % Number of independent data streams, 4/8/16/32/64
prm.numTx = 32; % Number of transmit antennas
prm.numRx = 16; % Number of receive antennas
prm.bitsPerSubCarrier = 6; % 2: QPSK, 4: 16QAM, 6: 64QAM, 8: 256QAM
prm.numDataSymbols = 10; % Number of OFDM data symbols

prm.fc = 4e9; % 4 GHz system
prm.chanSRate = 100e6; % Channel sampling rate, 100 Msps
prm.ChanType = 'Scattering'; % Channel options: 'WINNER', 'Scattering',

 MIMO-OFDM Precoding with Phased Arrays

17-363

 % 'ScatteringFcn', 'StaticFlat'
prm.NFig = 5; % Noise figure, dB

% Array locations and angles
prm.posTx = [0;0;0]; % BS/Transmit array position, [x;y;z], meters
prm.mobileRange = 300; % meters
% Angles specified as [azimuth;elevation], az=[-90 90], el=[-90 90]
prm.mobileAngle = [33; 0]; % degrees
prm.steeringAngle = [30; -20]; % Transmit steering angle (close to mobileAngle)
prm.enSteering = true; % Enable/disable steering

Parameters to define the OFDM modulation employed for the system are specified below.

prm.FFTLength = 256;
prm.CyclicPrefixLength = 64;
prm.numCarriers = 234;
prm.NumGuardBandCarriers = [7 6];
prm.PilotCarrierIndices = [26 54 90 118 140 168 204 232];
nonDataIdx = [(1:prm.NumGuardBandCarriers(1))'; prm.FFTLength/2+1; ...
 (prm.FFTLength-prm.NumGuardBandCarriers(2)+1:prm.FFTLength)'; ...
 prm.PilotCarrierIndices.';];
prm.CarriersLocations = setdiff((1:prm.FFTLength)',sort(nonDataIdx));

numTx = prm.numTx;
numRx = prm.numRx;
numSTS = prm.numSTS;
prm.numFrmBits = numSTS*prm.numDataSymbols*prm.numCarriers* ...
 prm.bitsPerSubCarrier*1/3-6; % Account for termination bits

prm.modMode = 2^prm.bitsPerSubCarrier; % Modulation order
% Account for channel filter delay
prm.numPadZeros = 3*(prm.FFTLength+prm.CyclicPrefixLength);

% Get transmit and receive array information
prm.numSTSVec = numSTS;
[isTxURA,expFactorTx,isRxURA,expFactorRx] = helperArrayInfo(prm,true);

The processing for channel sounding, data transmission and reception modeled in the example are
shown in the following block diagrams.

The free space path loss is calculated based on the base station and mobile station positions for the
spatially-aware system modeled.

prm.cLight = physconst('LightSpeed');
prm.lambda = prm.cLight/prm.fc;
% Mobile position

17 Featured Examples

17-364

[xRx,yRx,zRx] = sph2cart(deg2rad(prm.mobileAngle(1)),...
 deg2rad(prm.mobileAngle(2)),prm.mobileRange);
prm.posRx = [xRx;yRx;zRx];
[toRxRange,toRxAng] = rangeangle(prm.posTx,prm.posRx);
spLoss = fspl(toRxRange,prm.lambda);
gainFactor = 1;

Channel Sounding

For a spatially multiplexed system, availability of channel information at the transmitter allows for
precoding to be applied to maximize the signal energy in the direction and channel of interest. Under
the assumption of a slowly varying channel, this is facilitated by sounding the channel first, wherein
for a reference transmission, the receiver estimates the channel and feeds this information back to
the transmitter.

For the chosen system, a preamble signal is sent over all transmitting antenna elements, and
processed at the receiver accounting for the channel. The receiver components perform pre-
amplification, OFDM demodulation, frequency domain channel estimation, and calculation of the
feedback weights based on channel diagonalization using singular value decomposition (SVD) per
data subcarrier.

% Generate the preamble signal
preambleSigSTS = helperGenPreamble(prm);
% repeat over numTx
preambleSig = zeros(size(preambleSigSTS,1),numTx);
for i = 1:numSTS
 preambleSig(:,(i-1)*expFactorTx+(1:expFactorTx)) = ...
 repmat(preambleSigSTS(:,i),1,expFactorTx);
end

% Transmit preamble over channel
[rxPreSig,chanDelay] = helperApplyChannel(preambleSig,prm,spLoss);

% Front-end amplifier gain and thermal noise
rxPreAmp = phased.ReceiverPreamp(...
 'Gain',gainFactor*spLoss, ... % account for path loss
 'NoiseFigure',prm.NFig, ...
 'ReferenceTemperature',290, ...
 'SampleRate',prm.chanSRate);
rxPreSigAmp = rxPreAmp(rxPreSig);
rxPreSigAmp = rxPreSigAmp * ... % scale power
 (sqrt(prm.FFTLength-sum(prm.NumGuardBandCarriers)-1)/(prm.FFTLength));

% OFDM Demodulation
demodulatorOFDM = comm.OFDMDemodulator(...
 'FFTLength',prm.FFTLength, ...
 'NumGuardBandCarriers',prm.NumGuardBandCarriers.', ...
 'RemoveDCCarrier',true, ...
 'PilotOutputPort',true, ...
 'PilotCarrierIndices',prm.PilotCarrierIndices.', ...
 'CyclicPrefixLength',prm.CyclicPrefixLength, ...
 'NumSymbols',numSTS, ... % preamble symbols alone
 'NumReceiveAntennas',numRx);

rxOFDM = demodulatorOFDM(...
 rxPreSigAmp(chanDelay+1:end-(prm.numPadZeros-chanDelay),:));

 MIMO-OFDM Precoding with Phased Arrays

17-365

% Channel estimation from preamble
% numCarr, numSTS, numRx
hD = helperMIMOChannelEstimate(rxOFDM(:,1:numSTS,:),prm);

% Calculate the feedback weights
v = diagbfweights(hD);

For conciseness in presentation, front-end synchronization including carrier and timing recovery are
assumed. The weights computed using diagbfweights are hence fed back to the transmitter, for
subsequent application for the actual data transmission.

Data Transmission

Next, we configure the system's data transmitter. This processing includes channel coding, bit
mapping to complex symbols, splitting of the individual data stream to multiple transmit streams,
precoding of the transmit streams, OFDM modulation with pilot mapping and replication for the
transmit antennas employed.

% Convolutional encoder
encoder = comm.ConvolutionalEncoder(...
 'TrellisStructure',poly2trellis(7,[133 171 165]), ...
 'TerminationMethod','Terminated');

% Generate mapped symbols from bits
txBits = randi([0, 1],prm.numFrmBits,1);
encodedBits = encoder(txBits);

% Bits to QAM symbol mapping
mappedSym = qammod(encodedBits,prm.modMode,'InputType','Bit', ...
 'UnitAveragePower',true);

% Map to layers: per symbol, per data stream
gridData = reshape(mappedSym,prm.numCarriers,prm.numDataSymbols,numSTS);

% Apply precoding weights to the subcarriers, assuming perfect feedback
preData = complex(zeros(prm.numCarriers,prm.numDataSymbols,numSTS));
for symIdx = 1:prm.numDataSymbols
 for carrIdx = 1:prm.numCarriers
 Q = squeeze(v(carrIdx,:,:));
 normQ = Q * sqrt(numTx)/norm(Q,'fro');
 preData(carrIdx,symIdx,:) = ...
 squeeze(gridData(carrIdx,symIdx,:)).' * normQ;
 end
end

% OFDM modulation of the data
modulatorOFDM = comm.OFDMModulator(...
 'FFTLength',prm.FFTLength,...
 'NumGuardBandCarriers',prm.NumGuardBandCarriers.',...
 'InsertDCNull',true, ...
 'PilotInputPort',true,...
 'PilotCarrierIndices',prm.PilotCarrierIndices.',...
 'CyclicPrefixLength',prm.CyclicPrefixLength,...
 'NumSymbols',prm.numDataSymbols,...
 'NumTransmitAntennas',numSTS);

% Multi-antenna pilots
pilots = helperGenPilots(prm.numDataSymbols,numSTS);

17 Featured Examples

17-366

txOFDM = modulatorOFDM(preData,pilots);
txOFDM = txOFDM * (prm.FFTLength/ ...
 sqrt(prm.FFTLength-sum(prm.NumGuardBandCarriers)-1)); % scale power

% Generate preamble with the feedback weights and prepend to data
preambleSigD = helperGenPreamble(prm,v);
txSigSTS = [preambleSigD;txOFDM];

% Repeat over numTx
txSig = zeros(size(txSigSTS,1),numTx);
for i = 1:numSTS
 txSig(:,(i-1)*expFactorTx+(1:expFactorTx)) = ...
 repmat(txSigSTS(:,i),1,expFactorTx);
end

For precoding, the preamble signal is regenerated to enable channel estimation. It is prepended to
the data portion to form the transmission packet which is then replicated over the transmit antennas.

Transmit Beam Steering

Phased Array System Toolbox offers components appropriate for the design and simulation of phased
arrays used in wireless communications systems.

For the spatially aware system, the signal transmitted from the base station is steered towards the
direction of the mobile, so as to focus the radiated energy in the desired direction. This is achieved by
applying a phase shift to each antenna element to steer the transmission.

The example uses a linear or rectangular array at the transmitter, depending on the number of data
streams and number of transmit antennas selected.

% Gain per antenna element
amplifier = phased.Transmitter('PeakPower',1/numTx,'Gain',0);

% Amplify to achieve peak transmit power for each element
for n = 1:numTx
 txSig(:,n) = amplifier(txSig(:,n));
end

% Transmit antenna array definition
if isTxURA
 % Uniform Rectangular array
 arrayTx = phased.URA([expFactorTx,numSTS],[0.5 0.5]*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement('BackBaffled',true));
else
 % Uniform Linear array
 arrayTx = phased.ULA(numTx, ...
 'ElementSpacing',0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement('BackBaffled',true));
end

% For evaluating weights for steering
SteerVecTx = phased.SteeringVector('SensorArray',arrayTx, ...
 'PropagationSpeed',prm.cLight);

% Generate weights for steered direction
wT = SteerVecTx(prm.fc,prm.steeringAngle);

 MIMO-OFDM Precoding with Phased Arrays

17-367

% Radiate along the steered direction, without signal combining
radiatorTx = phased.Radiator('Sensor',arrayTx, ...
 'WeightsInputPort',true, ...
 'PropagationSpeed',prm.cLight, ...
 'OperatingFrequency',prm.fc, ...
 'CombineRadiatedSignals',false);

if prm.enSteering
 txSteerSig = radiatorTx(txSig,repmat(prm.mobileAngle,1,numTx), ...
 conj(wT));
else
 txSteerSig = txSig;
end

% Visualize the array
h = figure('Position',figposition([10 55 22 35]),'MenuBar','none');
h.Name = 'Transmit Array Geometry';
viewArray(arrayTx);

% Visualize the transmit pattern and steering
h = figure('Position',figposition([32 55 22 30]),'MenuBar','none');
h.Name = 'Transmit Array Response Pattern';
pattern(arrayTx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wT);
h = figure('Position',figposition([54 55 22 35]),'MenuBar','none');
h.Name = 'Transmit Array Azimuth Pattern';
patternAzimuth(arrayTx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wT);
if isTxURA
 h = figure('Position',figposition([76 55 22 35]),'MenuBar','none');
 h.Name = 'Transmit Array Elevation Pattern';
 patternElevation(arrayTx,prm.fc,'PropagationSpeed',prm.cLight, ...
 'Weights',wT);
end

17 Featured Examples

17-368

 MIMO-OFDM Precoding with Phased Arrays

17-369

The plots indicate the array geometry and the transmit array response in multiple views. The
response shows the transmission direction as specified by the steering angle.

17 Featured Examples

17-370

The example assumes the steering angle known and close to the mobile angle. In actual systems, this
would be estimated from angle-of-arrival estimation at the receiver as a part of the channel sounding
or initial beam tracking procedures.

Signal Propagation

The example offers three options for spatial MIMO channels and a simpler static-flat MIMO channel
for evaluation purposes.

The WINNER II channel model [5] is a spatially defined MIMO channel that allows you to specify the
array geometry and location information. It is configured to use the typical urban microcell indoor
scenario with very low mobile speeds.

The two scattering based channels use a single-bounce path through each scatterer where the
number of scatterers is user-specified. For this example, the number of scatterers is set to 100. The
'Scattering' option models the scatterers placed randomly within a circle in between the transmitter
and receiver, while the 'ScatteringFcn' models their placement completely randomly.

The models allow path loss modeling and both line-of-sight (LOS) and non-LOS propagation
conditions. The example assumes non-LOS propagation and isotropic antenna element patterns with
linear geometry.

% Apply a spatially defined channel to the steered signal
[rxSig,chanDelay] = helperApplyChannel(txSteerSig,prm,spLoss,preambleSig);

The same channel is used for both sounding and data transmission, with the data transmission having
a longer duration controlled by the number of data symbols parameter, prm.numDataSymbols.

Receive Beam Steering

The receiver steers the incident signals to align with the transmit end steering, per receive element.
Thermal noise and receiver gain are applied. Uniform linear or rectangular arrays with isotropic
responses are modeled to match the channel and transmitter arrays.

rxPreAmp = phased.ReceiverPreamp(...
 'Gain',gainFactor*spLoss, ... % accounts for path loss
 'NoiseFigure',prm.NFig, ...
 'ReferenceTemperature',290, ...
 'SampleRate',prm.chanSRate);

% Front-end amplifier gain and thermal noise
rxSigAmp = rxPreAmp(rxSig);
rxSigAmp = rxSigAmp * ... % scale power
 (sqrt(prm.FFTLength - sum(prm.NumGuardBandCarriers)-1)/(prm.FFTLength));

% Receive array
if isRxURA
 % Uniform Rectangular array
 arrayRx = phased.URA([expFactorRx,numSTS],0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement('BackBaffled',true));
else
 % Uniform Linear array
 arrayRx = phased.ULA(numRx, ...
 'ElementSpacing',0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement);
end

 MIMO-OFDM Precoding with Phased Arrays

17-371

% For evaluating receive-side steering weights
SteerVecRx = phased.SteeringVector('SensorArray',arrayRx, ...
 'PropagationSpeed',prm.cLight);

% Generate weights for steered direction towards mobile
wR = SteerVecRx(prm.fc,toRxAng);

% Steer along the mobile receive direction
if prm.enSteering
 rxSteerSig = rxSigAmp.*(wR');
else
 rxSteerSig = rxSigAmp;
end

% Visualize the array
h = figure('Position',figposition([10 20 22 35]),'MenuBar','none');
h.Name = 'Receive Array Geometry';
viewArray(arrayRx);

% Visualize the receive pattern and steering
h = figure('Position',figposition([32 20 22 30]));
h.Name = 'Receive Array Response Pattern';
pattern(arrayRx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wR);
h = figure('Position',figposition([54 20 22 35]),'MenuBar','none');
h.Name = 'Receive Array Azimuth Pattern';
patternAzimuth(arrayRx,prm.fc,'PropagationSpeed',prm.cLight,'Weights',wR);
if isRxURA
 figure('Position',figposition([76 20 22 35]),'MenuBar','none');
 h.Name = 'Receive Array Elevation Pattern';
 patternElevation(arrayRx,prm.fc,'PropagationSpeed',prm.cLight, ...
 'Weights',wR);
end

17 Featured Examples

17-372

 MIMO-OFDM Precoding with Phased Arrays

17-373

The receive antenna pattern mirrors the transmission steering.

Signal Recovery

The receive antenna array passes the propagated signal to the receiver to recover the original
information embedded in the signal. Similar to the transmitter, the receiver used in a MIMO-OFDM
system contains many components, including OFDM demodulator, MIMO equalizer, QAM
demodulator, and channel decoder.

demodulatorOFDM = comm.OFDMDemodulator(...
 'FFTLength',prm.FFTLength, ...
 'NumGuardBandCarriers',prm.NumGuardBandCarriers.', ...
 'RemoveDCCarrier',true, ...
 'PilotOutputPort',true, ...
 'PilotCarrierIndices',prm.PilotCarrierIndices.', ...
 'CyclicPrefixLength',prm.CyclicPrefixLength, ...
 'NumSymbols',numSTS+prm.numDataSymbols, ... % preamble & data
 'NumReceiveAntennas',numRx);

% OFDM Demodulation
rxOFDM = demodulatorOFDM(...
 rxSteerSig(chanDelay+1:end-(prm.numPadZeros-chanDelay),:));

% Channel estimation from the mapped preamble
hD = helperMIMOChannelEstimate(rxOFDM(:,1:numSTS,:),prm);

% MIMO Equalization
[rxEq,CSI] = helperMIMOEqualize(rxOFDM(:,numSTS+1:end,:),hD);

% Soft demodulation
scFact = ((prm.FFTLength-sum(prm.NumGuardBandCarriers)-1) ...
 /prm.FFTLength^2)/numTx;

17 Featured Examples

17-374

nVar = noisepow(prm.chanSRate,prm.NFig,290)/scFact;
rxSymbs = rxEq(:)/sqrt(numTx);
rxLLRBits = qamdemod(rxSymbs,prm.modMode,'UnitAveragePower',true, ...
 'OutputType','approxllr','NoiseVariance',nVar);

% Apply CSI prior to decoding
rxLLRtmp = reshape(rxLLRBits,prm.bitsPerSubCarrier,[], ...
 prm.numDataSymbols,numSTS);
csitmp = reshape(CSI,1,[],1,numSTS);
rxScaledLLR = rxLLRtmp.*csitmp;

% Soft-input channel decoding
decoder = comm.ViterbiDecoder(...
 'InputFormat','Unquantized', ...
 'TrellisStructure',poly2trellis(7, [133 171 165]), ...
 'TerminationMethod','Terminated', ...
 'OutputDataType','double');
rxDecoded = decoder(rxScaledLLR(:));

% Decoded received bits
rxBits = rxDecoded(1:prm.numFrmBits);

For the MIMO system modeled, the displayed receive constellation of the equalized symbols offers a
qualitative assessment of the reception. The actual bit error rate offers the quantitative figure by
comparing the actual transmitted bits with the received decoded bits.

% Display received constellation
constDiag = comm.ConstellationDiagram(...
 'SamplesPerSymbol',1, ...
 'ShowReferenceConstellation',true, ...
 'ReferenceConstellation', ...
 qammod((0:prm.modMode-1)',prm.modMode,'UnitAveragePower',true), ...
 'ColorFading',false, ...
 'Position',figposition([20 20 35 40]), ...
 'Title','Equalized Symbols', ...
 'EnableMeasurements',true, ...
 'MeasurementInterval',length(rxSymbs));
constDiag(rxSymbs);

% Compute and display bit error rate
ber = comm.ErrorRate;
measures = ber(txBits,rxBits);
fprintf('BER = %.5f; No. of Bits = %d; No. of errors = %d\n', ...
 measures(1),measures(3),measures(2));

rng(s); % Restore RNG state

BER = 0.00000; No. of Bits = 74874; No. of errors = 0

 MIMO-OFDM Precoding with Phased Arrays

17-375

Conclusion and Further Exploration

The example highlighted the use of phased antenna arrays for a beamformed MIMO-OFDM system. It
accounted for the spatial geometry and location of the arrays at the base station and mobile station
for a single user system. Using channel sounding, it illustrated how precoding is realized in current
wireless systems and how steering of antenna arrays is modeled.

Within the set of configurable parameters, you can vary the number of data streams, transmit/receive
antenna elements, station or array locations and geometry, channel models and their configurations
to study the parameters' individual or combined effects on the system. E.g. vary just the number of
transmit antennas to see the effect on the main lobe of the steered beam and the resulting system
performance.

The example also made simplifying assumptions for front-end synchronization, channel feedback,
user velocity and path loss models, which need to be further considered for a practical system.
Individual systems also have their own procedures which must be folded in to the modeling [2, 3, 4].

Explore the following helper functions used:

• helperApplyChannel.m
• helperArrayInfo.m
• helperGenPilots.m
• helperGenPreamble.m
• helperGetP.m

17 Featured Examples

17-376

• helperMIMOChannelEstimate.m
• helperMIMOEqualize.m

Selected Bibliography

1 Perahia, Eldad, and Robert Stacey. Next Generation Wireless LANS: 802.11n and 802.11ac.
Cambridge University Press, 2013.

2 IEEE® Std 802.11™-2012 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

3 3GPP TS 36.213. "Physical layer procedures." 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-
UTRA). URL: https://www.3gpp.org.

4 3GPP TS 36.101. "User Equipment (UE) Radio Transmission and Reception." 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal
Terrestrial Radio Access (E-UTRA). URL: https://www.3gpp.org.

5 Kyosti, Pekka, Juha Meinila, et al. WINNER II Channel Models. D1.1.2, V1.2. IST-4-027756
WINNER II, September 2007.

6 George Tsoulos, Ed., "MIMO System Technology for Wireless Communications", CRC Press, Boca
Raton, FL, 2006.

 MIMO-OFDM Precoding with Phased Arrays

17-377

https://www.3gpp.org
https://www.3gpp.org

Simulating Test Signals for a Radar Receiver
This example shows how to simulate received signal of a monostatic pulse radar to estimate the
target range. A monostatic radar has the transmitter collocated with the receiver. The transmitter
generates a pulse which hits the target and produces an echo received by the receiver. By measuring
the location of the echoes in time, we can estimate the range of a target.

This example focuses on a pulse radar system design which can achieve a set of design specifications.
It outlines the steps to translate design specifications, such as the probability of detection and the
range resolution, into radar system parameters, such as the transmit power and the pulse width. It
also models the environment and targets to synthesize the received signal. Finally, signal processing
techniques are applied to the received signal to detect the ranges of the targets.

Design Specifications

The design goal of this pulse radar system is to detect non-fluctuating targets with at least one square
meter radar cross section (RCS) at a distance up to 5000 meters from the radar with a range
resolution of 50 meters. The desired performance index is a probability of detection (Pd) of 0.9 and
probability of false alarm (Pfa) below 1e-6. Since coherent detection requires phase information and,
therefore is more computationally expensive, we adopt a noncoherent detection scheme. In addition,
this example assumes a free space environment.

pd = 0.9; % Probability of detection
pfa = 1e-6; % Probability of false alarm
max_range = 5000; % Maximum unambiguous range
range_res = 50; % Required range resolution
tgt_rcs = 1; % Required target radar cross section

Monostatic Radar System Design

We need to define several characteristics of the radar system such as the waveform, the receiver, the
transmitter, and the antenna used to radiate and collect the signal.

Waveform

We choose a rectangular waveform in this example. The desired range resolution determines the
bandwidth of the waveform, which, in the case of a rectangular waveform, determines the pulse
width.

Another important parameter of a pulse waveform is the pulse repetition frequency (PRF). The PRF is
determined by the maximum unambiguous range.

prop_speed = physconst('LightSpeed'); % Propagation speed
pulse_bw = prop_speed/(2*range_res); % Pulse bandwidth
pulse_width = 1/pulse_bw; % Pulse width
prf = prop_speed/(2*max_range); % Pulse repetition frequency
fs = 2*pulse_bw; % Sampling rate
waveform = phased.RectangularWaveform(...
 'PulseWidth',1/pulse_bw,...
 'PRF',prf,...
 'SampleRate',fs);

Note that we set the sampling rate as twice the bandwidth.

Receiver Noise Characteristics

17 Featured Examples

17-378

https://www.mathworks.com/discovery/radar-system-design.html

We assume that the only noise present at the receiver is the thermal noise, so there is no clutter
involved in this simulation. The power of the thermal noise is related to the receiver bandwidth. The
receiver's noise bandwidth is set to be the same as the bandwidth of the waveform. This is often the
case in real systems. We also assume that the receiver has a 20 dB gain and a 0 dB noise figure.

noise_bw = pulse_bw;

receiver = phased.ReceiverPreamp(...
 'Gain',20,...
 'NoiseFigure',0,...
 'SampleRate',fs,...
 'EnableInputPort',true);

Note that because we are modeling a monostatic radar, the receiver cannot be turned on until the
transmitter is off. Therefore, we set the EnableInputPort property to true so that a synchronization
signal can be passed from the transmitter to the receiver.

Transmitter

The most critical parameter of a transmitter is the peak transmit power. The required peak power is
related to many factors including the maximum unambiguous range, the required SNR at the
receiver, and the pulse width of the waveform. Among these factors, the required SNR at the receiver
is determined by the design goal of Pd and Pfa, as well as the detection scheme implemented at the
receiver.

The relation between Pd, Pfa and SNR can be best represented by a receiver operating
characteristics (ROC) curve. We can generate the curve where Pd is a function of Pfa for varying
SNRs using the following command:

snr_db = [-inf, 0, 3, 10, 13];
rocsnr(snr_db,'SignalType','NonfluctuatingNoncoherent');

 Simulating Test Signals for a Radar Receiver

17-379

The ROC curves show that to satisfy the design goals of Pfa = 1e-6 and Pd = 0.9, the received signal's
SNR must exceed 13 dB. This is a fairly high requirement and is not very practical. To make the radar
system more feasible, we can use a pulse integration technique to reduce the required SNR. If we
choose to integrate 10 pulses, the curve can be generated as

num_pulse_int = 10;
rocsnr([0 3 5],'SignalType','NonfluctuatingNoncoherent',...
 'NumPulses',num_pulse_int);

17 Featured Examples

17-380

We can see that the required power has dropped to around 5 dB. Further reduction of SNR can be
achieved by integrating more pulses, but the number of pulses available for integration is normally
limited due to the motion of the target or the heterogeneity of the environment.

The approach above reads out the SNR value from the curve, but it is often desirable to calculate only
the required value. For the noncoherent detection scheme, the calculation of the required SNR is, in
theory, quite complex. Fortunately, there are good approximations available, such as Albersheim's
equation. Using Albersheim's equation, the required SNR can be derived as

snr_min = albersheim(pd, pfa, num_pulse_int)

snr_min =

 4.9904

Once we obtain the required SNR at the receiver, the peak power at the transmitter can be calculated
using the radar equation. Here we assume that the transmitter has a gain of 20 dB.

To calculate the peak power using the radar equation, we also need to know the wavelength of the
propagating signal, which is related to the operating frequency of the system. Here we set the
operating frequency to 10 GHz.

tx_gain = 20;

fc = 10e9;

 Simulating Test Signals for a Radar Receiver

17-381

lambda = prop_speed/fc;

peak_power = ((4*pi)^3*noisepow(1/pulse_width)*max_range^4*...
 db2pow(snr_min))/(db2pow(2*tx_gain)*tgt_rcs*lambda^2)

peak_power =

 5.2265e+03

Note that the resulting power is about 5 kW, which is very reasonable. In comparison, if we had not
used the pulse integration technique, the resulting peak power would have been 33 kW, which is
huge.

With all this information, we can configure the transmitter.

transmitter = phased.Transmitter(...
 'Gain',tx_gain,...
 'PeakPower',peak_power,...
 'InUseOutputPort',true);

Again, since this example models a monostatic radar system, the InUseOutputPort is set to true to
output the status of the transmitter. This status signal can then be used to enable the receiver.

Radiator and Collector

In a radar system, the signal propagates in the form of an electromagnetic wave. Therefore, the
signal needs to be radiated and collected by the antenna used in the radar system. This is where the
radiator and the collector come into the picture.

In a monostatic radar system, the radiator and the collector share the same antenna, so we will first
define the antenna. To simplify the design, we choose an isotropic antenna. Note that the antenna
needs to be able to work at the operating frequency of the system (10 GHz), so we set the antenna's
frequency range to 5-15 GHz.

We assume that the antenna is stationary.

antenna = phased.IsotropicAntennaElement(...
 'FrequencyRange',[5e9 15e9]);

sensormotion = phased.Platform(...
 'InitialPosition',[0; 0; 0],...
 'Velocity',[0; 0; 0]);

With the antenna and the operating frequency, we define both the radiator and the collector.

radiator = phased.Radiator(...
 'Sensor',antenna,...
 'OperatingFrequency',fc);

collector = phased.Collector(...
 'Sensor',antenna,...
 'OperatingFrequency',fc);

This completes the configuration of the radar system. In the following sections, we will define other
entities, such as the target and the environment that are needed for the simulation. We will then
simulate the signal return and perform range detection on the simulated signal.

17 Featured Examples

17-382

System Simulation

Targets

To test our radar's ability to detect targets, we must define the targets first. Let us assume that there
are 3 stationary, non-fluctuating targets in space. Their positions and radar cross sections are given
below.

tgtpos = [[2024.66;0;0],[3518.63;0;0],[3845.04;0;0]];
tgtvel = [[0;0;0],[0;0;0],[0;0;0]];
tgtmotion = phased.Platform('InitialPosition',tgtpos,'Velocity',tgtvel);

tgtrcs = [1.6 2.2 1.05];
target = phased.RadarTarget('MeanRCS',tgtrcs,'OperatingFrequency',fc);

Propagation Environment

To simulate the signal, we also need to define the propagation channel between the radar system and
each target.

channel = phased.FreeSpace(...
 'SampleRate',fs,...
 'TwoWayPropagation',true,...
 'OperatingFrequency',fc);

Because this example uses a monostatic radar system, the channels are set to simulate two way
propagation delays.

Signal Synthesis

We are now ready to simulate the entire system.

The synthesized signal is a data matrix with the fast time (time within each pulse) along each column
and the slow time (time between pulses) along each row. To visualize the signal, it is helpful to define
both the fast time grid and slow time grid.

fast_time_grid = unigrid(0,1/fs,1/prf,'[)');
slow_time_grid = (0:num_pulse_int-1)/prf;

The following loop simulates 10 pulses of the receive signal.

We set the seed for the noise generation in the receiver so that we can reproduce the same results.

receiver.SeedSource = 'Property';
receiver.Seed = 2007;

% Pre-allocate array for improved processing speed
rxpulses = zeros(numel(fast_time_grid),num_pulse_int);

for m = 1:num_pulse_int

 % Update sensor and target positions
 [sensorpos,sensorvel] = sensormotion(1/prf);
 [tgtpos,tgtvel] = tgtmotion(1/prf);

 % Calculate the target angles as seen by the sensor
 [tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);

 Simulating Test Signals for a Radar Receiver

17-383

 % Simulate propagation of pulse in direction of targets
 pulse = waveform();
 [txsig,txstatus] = transmitter(pulse);
 txsig = radiator(txsig,tgtang);
 txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);

 % Reflect pulse off of targets
 tgtsig = target(txsig);

 % Receive target returns at sensor
 rxsig = collector(tgtsig,tgtang);
 rxpulses(:,m) = receiver(rxsig,~(txstatus>0));
end

Range Detection

Detection Threshold

The detector compares the signal power to a given threshold. In radar applications, the threshold is
often chosen so that the Pfa is below a certain level. In this case, we assume the noise is white
Gaussian and the detection is noncoherent. Since we are also using 10 pulses to do the pulse
integration, the signal power threshold is given by

npower = noisepow(noise_bw,receiver.NoiseFigure,...
 receiver.ReferenceTemperature);
threshold = npower * db2pow(npwgnthresh(pfa,num_pulse_int,'noncoherent'));

We plot the first two received pulses with the threshold

num_pulse_plot = 2;
helperRadarPulsePlot(rxpulses,threshold,...
 fast_time_grid,slow_time_grid,num_pulse_plot);

17 Featured Examples

17-384

The threshold in these figures is for display purpose only. Note that the second and third target
returns are much weaker than the first return because they are farther away from the radar.
Therefore, the received signal power is range dependent and the threshold is unfair to targets located
at different ranges.

Matched Filter

The matched filter offers a processing gain which improves the detection threshold. It convolves the
received signal with a local, time-reversed, and conjugated copy of transmitted waveform. Therefore,
we must specify the transmitted waveform when creating our matched filter. The received pulses are
first passed through a matched filter to improve the SNR before doing pulse integration, threshold
detection, etc.

matchingcoeff = getMatchedFilter(waveform);
matchedfilter = phased.MatchedFilter(...
 'Coefficients',matchingcoeff,...
 'GainOutputPort',true);
[rxpulses, mfgain] = matchedfilter(rxpulses);

The matched filter introduces an intrinsic filter delay so that the locations of the peak (the maximum
SNR output sample) are no longer aligned with the true target locations. To compensate for this
delay, in this example, we will move the output of the matched filter forward and pad the zeros at the
end. Note that in real systems, because the data is collected continuously, there is really no end of it.

matchingdelay = size(matchingcoeff,1)-1;
rxpulses = buffer(rxpulses(matchingdelay+1:end),size(rxpulses,1));

 Simulating Test Signals for a Radar Receiver

17-385

The threshold is then increased by the matched filter processing gain.

threshold = threshold * db2pow(mfgain);

The following plot shows the same two pulses after they pass through the matched filter.

helperRadarPulsePlot(rxpulses,threshold,...
 fast_time_grid,slow_time_grid,num_pulse_plot);

After the matched filter stage, the SNR is improved. However, because the received signal power is
dependent on the range, the return of a close target is still much stronger than the return of a target
farther away. Therefore, as the above figure shows, the noise from a close range bin also has a
significant chance of surpassing the threshold and shadowing a target farther away. To ensure the
threshold is fair to all the targets within the detectable range, we can use a time varying gain to
compensate for the range dependent loss in the received echo.

To compensate for the range dependent loss, we first calculate the range gates corresponding to each
signal sample and then calculate the free space path loss corresponding to each range gate. Once
that information is obtained, we apply a time varying gain to the received pulse so that the returns
are as if from the same reference range (the maximum detectable range).

range_gates = prop_speed*fast_time_grid/2;

tvg = phased.TimeVaryingGain(...
 'RangeLoss',2*fspl(range_gates,lambda),...
 'ReferenceLoss',2*fspl(max_range,lambda));

17 Featured Examples

17-386

rxpulses = tvg(rxpulses);

Now let's plot the same two pulses after the range normalization

helperRadarPulsePlot(rxpulses,threshold,...
 fast_time_grid,slow_time_grid,num_pulse_plot);

The time varying gain operation results in a ramp in the noise floor. However, the target return is now
range independent. A constant threshold can now be used for detection across the entire detectable
range.

Notice that at this stage, the threshold is above the maximum power level contained in each pulse.
Therefore, nothing can be detected at this stage yet. We need to perform pulse integration to ensure
the power of returned echoes from the targets can surpass the threshold while leaving the noise floor
below the bar. This is expected since it is the pulse integration which allows us to use the lower
power pulse train.

Noncoherent Integration

We can further improve the SNR by noncoherently integrating (video integration) the received pulses.

rxpulses = pulsint(rxpulses,'noncoherent');

helperRadarPulsePlot(rxpulses,threshold,...
 fast_time_grid,slow_time_grid,1);

 Simulating Test Signals for a Radar Receiver

17-387

After the video integration stage, the data is ready for the final detection stage. It can be seen from
the figure that all three echoes from the targets are above the threshold, and therefore can be
detected.

Range Detection

Finally, the threshold detection is performed on the integrated pulses. The detection scheme
identifies the peaks and then translates their positions into the ranges of the targets.

[~,range_detect] = findpeaks(rxpulses,'MinPeakHeight',sqrt(threshold));

The true ranges and the detected ranges of the targets are shown below:

true_range = round(tgtrng)
range_estimates = round(range_gates(range_detect))

true_range =

 2025 3519 3845

range_estimates =

 2025 3525 3850

17 Featured Examples

17-388

Note that these range estimates are only accurate up to the range resolution (50 m) that can be
achieved by the radar system.

Summary

In this example, we designed a radar system based on a set of given performance goals. From these
performance goals, many design parameters of the radar system were calculated. The example also
showed how to use the designed radar to perform a range detection task. In this example, the radar
used a rectangular waveform. Interested readers can refer to “Waveform Design to Improve Range
Performance of an Existing System” on page 17-167 for an example using a chirp waveform.

 Simulating Test Signals for a Radar Receiver

17-389

Electronic Scanning Using a Uniform Rectangular Array
This example simulates a phased array radar that periodically scans a predefined surveillance region.
A 900-element rectangular array is used in this monostatic radar. Steps are introduced to derive the
radar parameters according to specifications. After synthesizing the received pulses, detection and
range estimation are performed. Finally, Doppler estimation is used to obtain the speed of each
target.

Radar Definition

First we create a phased array radar. We reuse most of the subsystems built in the example
“Simulating Test Signals for a Radar Receiver” on page 17-378. Readers are encouraged to explore
the details of radar system design through that example. A major difference is that we use a 30-by-30
uniform rectangular array (URA) in place of the original single antenna.

The existing radar design meets the following specifications.

pd = 0.9; % Probability of detection
pfa = 1e-6; % Probability of false alarm
max_range = 5000; % Maximum unambiguous range
tgt_rcs = 1; % Required target radar cross section
int_pulsenum = 10; % Number of pulses to integrate

Load the radar system and retrieve system parameters.

load BasicMonostaticRadarExampleData;

fc = radiator.OperatingFrequency; % Operating frequency (Hz)
v = radiator.PropagationSpeed; % Wave propagation speed (m/s)
lambda = v/fc; % Wavelength (m)
fs = waveform.SampleRate; % Sampling frequency (Hz)
prf = waveform.PRF; % Pulse repetition frequency (Hz)

Next, we define a 30-by-30 uniform rectangular array.

ura = phased.URA('Element',antenna,...
 'Size',[30 30],'ElementSpacing',[lambda/2, lambda/2]);
% Configure the antenna elements such that they only transmit forward
ura.Element.BackBaffled = true;

% Visualize the response pattern.
pattern(ura,fc,'PropagationSpeed',physconst('LightSpeed'),...
 'Type','powerdb');

17 Featured Examples

17-390

https://www.mathworks.com/discovery/radar-system-design.html

Associate the array with the radiator and collector.

radiator.Sensor = ura;
collector.Sensor = ura;

% We need to set the WeightsInputPort property to true to enable it to
% accept transmit beamforming weights
radiator.WeightsInputPort = true;

Now we need to recalculate the transmit power. The original transmit power was calculated based on
a single antenna. For a 900-element array, the power required for each element is much less.

% Calculate the array gain
arraygain = phased.ArrayGain('SensorArray',ura,'PropagationSpeed',v);
ag = arraygain(fc,[0;0]);

% Calculate the peak power
snr_min = albersheim(pd, pfa, int_pulsenum);
peak_power = ((4*pi)^3*noisepow(1/waveform.PulseWidth)*max_range^4*...
 db2pow(snr_min))/(db2pow(2*(transmitter.Gain+ag))*tgt_rcs*lambda^2)

peak_power = 0.0065

The new peak power is 0.0065 Watts.

% Set the peak power of the transmitter
transmitter.PeakPower = peak_power;

 Electronic Scanning Using a Uniform Rectangular Array

17-391

We also need to design the scanning schedule of the phased array. To simplify the example, we only
search in the azimuth dimension. We require the radar to search from 45 degrees to -45 degrees in
azimuth. The revisit time should be less than 1 second, meaning that the radar should revisit the
same azimuth angle within 1 second.

initialAz = 45; endAz = -45;
volumnAz = initialAz - endAz;

To determine the required number of scans, we need to know the beamwidth of the array response.
We use an empirical formula to estimate the 3-dB beamwidth.

G = 4π
θ2

where G is the array gain and θ is the 3-dB beamwidth.

% Calculate 3-dB beamwidth
theta = radtodeg(sqrt(4*pi/db2pow(ag)))

theta = 6.7703

The 3-dB beamwidth is 6.77 degrees. To allow for some beam overlap in space, we choose the scan
step to be 6 degrees.

scanstep = -6;
scangrid = initialAz+scanstep/2:scanstep:endAz;
numscans = length(scangrid);
pulsenum = int_pulsenum*numscans;

% Calculate revisit time
revisitTime = pulsenum/prf

revisitTime = 0.0050

The resulting revisit time is 0.005 second, well below the prescribed upper limit of 1 second.

Target Definition

We want to simulate the pulse returns from two non-fluctuating targets, both at 0 degrees elevation.
The first target is approaching to the radar, while the second target is moving away from the radar.

tgtpos = [[3532.63; 800; 0],[2020.66; 0; 0]];
tgtvel = [[-100; 50; 0],[60; 80; 0]];
tgtmotion = phased.Platform('InitialPosition',tgtpos,'Velocity',tgtvel);

tgtrcs = [1.6 2.2];
target = phased.RadarTarget('MeanRCS',tgtrcs,'OperatingFrequency',fc);

% Calculate the range, angle, and speed of the targets
[tgtrng,tgtang] = rangeangle(tgtmotion.InitialPosition,...
 sensormotion.InitialPosition);

numtargets = length(target.MeanRCS);

Pulse Synthesis

Now that all subsystems are defined, we can proceed to simulate the received signals. The total
simulation time corresponds to one pass through the surveillance region. Because the reflected

17 Featured Examples

17-392

signals are received by an array, we use a beamformer pointing to the steering direction to obtain the
combined signal.

% Create the steering vector for transmit beamforming
steeringvec = phased.SteeringVector('SensorArray',ura,...
 'PropagationSpeed',v);

% Create the receiving beamformer
beamformer = phased.PhaseShiftBeamformer('SensorArray',ura,...
 'OperatingFrequency',fc,'PropagationSpeed',v,...
 'DirectionSource','Input port');

% Define propagation channel for each target
channel = phased.FreeSpace(...
 'SampleRate',fs,...
 'TwoWayPropagation',true,...
 'OperatingFrequency',fc);

fast_time_grid = unigrid(0, 1/fs, 1/prf, '[)');

% Pre-allocate array for improved processing speed
rxpulses = zeros(numel(fast_time_grid),pulsenum);

for m = 1:pulsenum

 % Update sensor and target positions
 [sensorpos,sensorvel] = sensormotion(1/prf);
 [tgtpos,tgtvel] = tgtmotion(1/prf);

 % Calculate the target angles as seen by the sensor
 [tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);

 % Calculate steering vector for current scan angle
 scanid = floor((m-1)/int_pulsenum) + 1;
 sv = steeringvec(fc,scangrid(scanid));
 w = conj(sv);

 % Form transmit beam for this scan angle and simulate propagation
 pulse = waveform();
 [txsig,txstatus] = transmitter(pulse);
 txsig = radiator(txsig,tgtang,w);
 txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);

 % Reflect pulse off of targets
 tgtsig = target(txsig);

 % Beamform the target returns received at the sensor
 rxsig = collector(tgtsig,tgtang);
 rxsig = receiver(rxsig,~(txstatus>0));
 rxpulses(:,m) = beamformer(rxsig,[scangrid(scanid);0]);
end

Matched Filter

To process the received signal, we first pass it through a matched filter, then integrate all pulses for
each scan angle.

 Electronic Scanning Using a Uniform Rectangular Array

17-393

% Matched filtering
matchingcoeff = getMatchedFilter(waveform);
matchedfilter = phased.MatchedFilter(...
 'Coefficients',matchingcoeff,...
 'GainOutputPort',true);
[mf_pulses, mfgain] = matchedfilter(rxpulses);
mf_pulses = reshape(mf_pulses,[],int_pulsenum,numscans);

matchingdelay = size(matchingcoeff,1)-1;
sz_mfpulses = size(mf_pulses);
mf_pulses = [mf_pulses(matchingdelay+1:end) zeros(1,matchingdelay)];
mf_pulses = reshape(mf_pulses,sz_mfpulses);

% Pulse integration
int_pulses = pulsint(mf_pulses,'noncoherent');
int_pulses = squeeze(int_pulses);

% Visualize
r = v*fast_time_grid/2;
X = r'*cosd(scangrid); Y = r'*sind(scangrid);
clf;
pcolor(X,Y,pow2db(abs(int_pulses).^2));
axis equal tight
shading interp
axis off
text(-800,0,'Array');
text((max(r)+10)*cosd(initialAz),(max(r)+10)*sind(initialAz),...
 [num2str(initialAz) '^o']);
text((max(r)+10)*cosd(endAz),(max(r)+10)*sind(endAz),...
 [num2str(endAz) '^o']);
text((max(r)+10)*cosd(0),(max(r)+10)*sind(0),[num2str(0) '^o']);
colorbar;

17 Featured Examples

17-394

From the scan map, we can clearly see two peaks. The close one is at around 0 degrees azimuth, the
remote one at around 10 degrees in azimuth.

Detection and Range Estimation

To obtain an accurate estimation of the target parameters, we apply threshold detection on the scan
map. First we need to compensate for signal power loss due to range by applying time varying gains
to the received signal.

range_gates = v*fast_time_grid/2;
tvg = phased.TimeVaryingGain(...
 'RangeLoss',2*fspl(range_gates,lambda),...
 'ReferenceLoss',2*fspl(max(range_gates),lambda));
tvg_pulses = tvg(mf_pulses);

% Pulse integration
int_pulses = pulsint(tvg_pulses,'noncoherent');
int_pulses = squeeze(int_pulses);

% Calculate the detection threshold

% sample rate is twice the noise bandwidth in the design system
noise_bw = receiver.SampleRate/2;
npower = noisepow(noise_bw,...
 receiver.NoiseFigure,receiver.ReferenceTemperature);
threshold = npower * db2pow(npwgnthresh(pfa,int_pulsenum,'noncoherent'));

 Electronic Scanning Using a Uniform Rectangular Array

17-395

% Increase the threshold by the matched filter processing gain
threshold = threshold * db2pow(mfgain);

We now visualize the detection process. To better represent the data, we only plot range samples
beyond 50.

N = 51;
clf;
surf(X(N:end,:),Y(N:end,:),...
 pow2db(abs(int_pulses(N:end,:)).^2));
hold on;
mesh(X(N:end,:),Y(N:end,:),...
 pow2db(threshold*ones(size(X(N:end,:)))),'FaceAlpha',0.8);
view(0,56);
axis off

There are two peaks visible above the detection threshold, corresponding to the two targets we
defined earlier. We can find the locations of these peaks and estimate the range and angle of each
target.

[~,peakInd] = findpeaks(int_pulses(:),'MinPeakHeight',sqrt(threshold));
[rngInd,angInd] = ind2sub(size(int_pulses),peakInd);
est_range = range_gates(rngInd); % Estimated range
est_angle = scangrid(angInd); % Estimated direction

17 Featured Examples

17-396

Doppler Estimation

Next, we want to estimate the Doppler speed of each target. For details on Doppler estimation, refer
to the example “Doppler Estimation” on page 17-292.

for m = numtargets:-1:1
 [p, f] = periodogram(mf_pulses(rngInd(m),:,angInd(m)),[],256,prf, ...
 'power','centered');
 speed_vec = dop2speed(f,lambda)/2;

 spectrum_data = p/max(p);
 [~,dop_detect1] = findpeaks(pow2db(spectrum_data),'MinPeakHeight',-5);
 sp(m) = speed_vec(dop_detect1); % Estimated Doppler speed
end

Finally, we have estimated all the parameters of both detected targets. Below is a comparison of the
estimated and true parameter values.

--
 Estimated (true) target parameters
--
 Range (m) Azimuth (deg) Speed (m/s)
Target 1: 3625.00 (3622.08) 12.00 (12.76) 86.01 (86.49)
Target 2: 2025.00 (2020.66) 0.00 (0.00) -59.68 (-60.00)

Summary

In this example, we showed how to simulate a phased array radar to scan a predefined surveillance
region. We illustrated how to design the scanning schedule. A conventional beamformer was used to
process the received multi-channel signal. The range, angle, and Doppler information of each target
are extracted from the reflected pulses. This information can be used in further tasks such as high
resolution direction-of-arrival estimation, or target tracking.

 Electronic Scanning Using a Uniform Rectangular Array

17-397

Simulating a Bistatic Polarimetric Radar
This example shows how to simulate a polarimetric bistatic radar system to estimate the range and
speed of targets. Transmitter, receiver and target kinematics are taken into account. For more
information regarding polarization modeling capabilities, see “Modeling and Analyzing Polarization”
on page 17-35.

System Setup

The system operates at 300 MHz, using a linear FM waveform whose maximum unambiguous range
is 48 km. The range resolution is 50 meters and the time-bandwidth product is 20.

maxrng = 48e3; % Maximum range
rngres = 50; % Range resolution
tbprod = 20; % Time-bandwidth product

The transmitter has a peak power of 2 kw and a gain of 20 dB. The receiver also provides a gain of 20
dB and the noise bandwidth is the same as the waveform's sweep bandwidth.

The transmit antenna array is a stationary 4-element ULA located at origin. The array is made of
vertical dipoles.

txAntenna = phased.ShortDipoleAntennaElement('AxisDirection','Z');
[waveform,transmitter,txmotion,radiator] = ...
 helperBistatTxSetup(maxrng,rngres,tbprod,txAntenna);

The receive antenna array is also a 4-element ULA; it is located at [20000;1000;100] meters away
from the transmit antenna and is moving at a velocity of [0;20;0] m/s. Assume the elements in the
receive array are also vertical dipoles. The received antenna array is oriented so that its broadside
points back to the transmit antenna.

rxAntenna = phased.ShortDipoleAntennaElement('AxisDirection','Z');
[collector,receiver,rxmotion,rngdopresp,beamformer] = ...
 helperBistatRxSetup(rngres,rxAntenna);

There are two targets present in space. The first one is a point target modeled as a sphere; it
preserves the polarization state of the incident signal. It is located at [15000;1000;500] meters away
from the transmit array and is moving at a velocity of [100;100;0] m/s.

The second target is located at [35000;-1000;1000] meters away from the transmit array and is
approaching at a velocity of [-160;0;-50] m/s. Unlike the first target, the second target flips the
polarization state of the incident signal, which means that the horizontal/vertical polarization
components of the input signal become the vertical/horizontal polarization components of the output
signal.

[target,tgtmotion,txchannel,rxchannel] = ...
 helperBistatTargetSetup(waveform.SampleRate);

A single scattering matrix is a fairly simple polarimetric model for a target. It assumes that no matter
what the incident and reflecting directions are, the power distribution between the H and V
components is fixed. However, even such a simple model can reveal complicated target behavior in
the simulation because (1) the H and V directions vary for different incident and reflecting directions;
and (2) the orientation, defined by the local coordinate system, of the targets also affects the
polarization matching.

17 Featured Examples

17-398

System Simulation

The next section simulates 256 received pulses. The receiving array is beamformed toward the two
targets. The first figure shows the system setting and how the receive array and the targets move.
The second figure shows a range-Doppler map generated for every 64 pulses received at the receiver
array.

Nblock = 64; % Burst size
dt = 1/waveform.PRF;
y = complex(zeros(round(waveform.SampleRate*dt),Nblock));

hPlots = helperBistatViewSetup(txmotion,rxmotion,tgtmotion,waveform,...
 rngdopresp,y);
Npulse = Nblock*4;
for m = 1:Npulse

 % Update positions of transmitter, receiver, and targets
 [tpos,tvel,txax] = txmotion(dt);
 [rpos,rvel,rxax] = rxmotion(dt);
 [tgtp,tgtv,tgtax] = tgtmotion(dt);

 % Calculate the target angles as seen by the transmitter
 [txrng,radang] = rangeangle(tgtp,tpos,txax);

 % Simulate propagation of pulse in direction of targets
 wav = waveform();
 wav = transmitter(wav);
 sigtx = radiator(wav,radang,txax);
 sigtx = txchannel(sigtx,tpos,tgtp,tvel,tgtv);

 % Reflect pulse off of targets
 for n = 2:-1:1
 % Calculate bistatic forward and backward angles for each target
 [~,fwang] = rangeangle(tpos,tgtp(:,n),tgtax(:,:,n));
 [rxrng(n),bckang] = rangeangle(rpos,tgtp(:,n),tgtax(:,:,n));

 sigtgt(n) = target{n}(sigtx(n),fwang,bckang,tgtax(:,:,n));
 end

 % Receive path propagation
 sigrx = rxchannel(sigtgt,tgtp,rpos,tgtv,rvel);
 [~,inang] = rangeangle(tgtp,rpos,rxax);

 rspeed_t = radialspeed(tgtp,tgtv,tpos,tvel);
 rspeed_r = radialspeed(tgtp,tgtv,rpos,rvel);

 % Receive target returns at bistatic receiver
 sigrx = collector(sigrx,inang,rxax);
 yc = beamformer(sigrx,inang);
 y(:,mod(m-1,Nblock)+1) = receiver(sum(yc,2));

 helperBistatViewTrajectory(hPlots,tpos,rpos,tgtp);

 if ~rem(m,Nblock)
 rd_rng = (txrng+rxrng)/2;
 rd_speed = rspeed_t+rspeed_r;
 helperBistatViewSignal(hPlots,waveform,rngdopresp,y,rd_rng,...
 rd_speed)

 Simulating a Bistatic Polarimetric Radar

17-399

 end
end

17 Featured Examples

17-400

The range-Doppler map only shows the return from the first target. This is probably no surprise since
both the transmit and receive array are vertically polarized and the second target maps the vertically
polarized wave to horizontally polarized wave. The received signal from the second target is mostly
orthogonal to the receive array's polarization, resulting in significant polarization loss.

One may also notice that the resulting range and radial speed do not agree with the range and radial
speed of the target relative to the transmitter. This is because in a bistatic configuration, the
estimated range is actually the geometric mean of the target range relative to the transmitter and the
receiver. Similarly, the estimated radial speed is the sum of the target radial speed relative to the
transmitter and the receiver. The circle in the map shows where the targets should appear in the
range-Doppler map. Further processing is required to identify the exact location of the target, but
those are beyond the scope of this example.

Using Circularly Polarized Receive Array

Vertical dipole is a very popular choice of transmit antenna in real applications because it is low cost
and has a omnidirectional pattern. However, the previous simulation shows that if the same antenna
is used in the receiver, there is a risk that the system will miss certain targets. Therefore, a linear
polarized antenna is often not the best choice as the receive antenna in such a configuration because
no matter how the linear polarization is aligned, there always exists an orthogonal polarization. In

 Simulating a Bistatic Polarimetric Radar

17-401

case the reflected signal bears a polarization state close to that direction, the polarization loss
becomes huge.

One way to solve this issue is to use a circularly polarized antenna at the receive end. A circularly
polarized antenna cannot fully match any linear polarization. But on the other hand, the polarization
loss between a circular polarized antenna and a linearly polarized signal is 3 dB, regardless what
direction the linear polarization is in. Therefore, although it never gives the maximum return, it never
misses a target. A frequently used antenna with circular polarization is a crossed dipole antenna.

The next section shows what happens when crossed dipole antennas are used to form the receive
array.

rxAntenna = phased.CrossedDipoleAntennaElement;
collector = clone(collector);
collector.Sensor.Element = rxAntenna;

helperBistatSystemRun(waveform,transmitter,txmotion,radiator,collector,...
 receiver,rxmotion,rngdopresp,beamformer,target,tgtmotion,txchannel,...
 rxchannel,hPlots,Nblock,Npulse);

The range-Doppler map now shows both targets at their correct locations.

17 Featured Examples

17-402

Summary

This example shows a system level simulation of a bistatic polarimetric radar. The example generates
range-Doppler maps of the received signal for different transmit/receive array polarization
configurations and shows how a circularly polarized antenna can be used to avoid losing linear
polarized signals due to a target's polarization scattering property.

 Simulating a Bistatic Polarimetric Radar

17-403

Stream and Accelerate System Simulation
Phased Array System Toolbox™ can be used to model an end-to-end phased array system - generate a
transmitted waveform, simulate the target return, and then process the received signal to detect the
target. This is shown in the examples: “Simulating Test Signals for a Radar Receiver” on page 17-378
and “Waveform Design to Improve Range Performance of an Existing System” on page 17-167. This
example shows how to simulate such a system in streaming mode so you can run the simulation for a
long time and observe the system dynamics.

Simulation Setup

First, set up the radar system with some basic parameters. The entire radar system is similar to the
one shown in the “Waveform Design to Improve Range Performance of an Existing System” on page
17-167 example.

fs = 6e6;
bw = 3e6;
c = 3e8;
fc = 10e9;
prf = 18750;
num_pulse_int = 10;

[waveform,transmitter,radiator,collector,receiver,sensormotion,...
 target,tgtmotion,channel,matchedfilter,tvg,threshold] = ...
 helperRadarStreamExampleSystemSetup(fs,bw,prf,fc,c);

System Simulation

Next, run the simulation for 100 pulses. During this simulation, four time-scopes are used to observe
the signals at various stages. The first three scopes display the transmitted signal, received signal,
and the post-matched-filter and gain-adjusted signal for 10-pulses. Although the transmitted signal is
a high-power pulse train, scope 2 shows a much weaker received signal due to propagation loss. This
signal cannot be detected using the preset detection threshold. Even after matched-filtering and gain
compensation, it is still challenging to detect all three targets.

% pre-allocation
fast_time_grid = 0:1/fs:1/prf-1/fs;
num_pulse_samples = numel(fast_time_grid);
rx_pulses = complex(zeros(num_pulse_samples,num_pulse_int));
mf_pulses = complex(zeros(num_pulse_samples,num_pulse_int));
detect_pulse = zeros(num_pulse_samples,1);

% simulation loop
for m = 1:10*num_pulse_int

 % Update sensor and target positions
 [sensorpos,sensorvel] = sensormotion(1/prf);
 [tgtpos,tgtvel] = tgtmotion(1/prf);

 % Calculate the target angles as seen by the sensor
 [tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);

 % Simulate propagation of pulse in direction of targets
 pulse = waveform();
 [pulse,txstatus] = transmitter(pulse);
 txsig = radiator(pulse,tgtang);

17 Featured Examples

17-404

 txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);

 % Reflect pulse off of targets
 tgtsig = target(txsig);

 % Receive target returns at sensor
 rxsig = collector(tgtsig,tgtang);
 nn = mod(m-1,num_pulse_int)+1;
 rx_pulses(:,nn) = receiver(rxsig,~(txstatus>0));

 % Detection processing
 mf_pulses(:,nn) = matchedfilter(rx_pulses(:,nn));
 mf_pulses(:,nn) = tvg(mf_pulses(:,nn));

 % Perform pulse integration every 'num_pulse_int' pulses
 if nn == num_pulse_int
 detect_pulse = pulsint(mf_pulses,'noncoherent');
 end

 helperRadarStreamDisplay(pulse,abs(rx_pulses(:,nn)),...
 abs(mf_pulses(:,nn)),detect_pulse,...
 sqrt(threshold)*ones(num_pulse_samples,1));
end

 Stream and Accelerate System Simulation

17-405

Improve Simulation Speed Using Code Generation

Because radar systems require intensive processing, simulation speed is a major concern. After you
have run 100 pulse to check out your code, you may want to run 1000 pulses. When you run the
simulation in interpreted MATLAB mode, you can measure the elapsed time using:

tic;
helperRadarStreamRun;
time_interpreted = toc

time_interpreted =

 4.8880

17 Featured Examples

17-406

If the simulation is too slow, you can speed it up using MATLAB Coder™. MATLAB Coder can
generate compiled MATLAB® code resulting in significant improvement in processing speed. In this
example, MATLAB Coder generates a helperRadarStreamRun_mex function from the
helperRadarStreamRun function.

 Stream and Accelerate System Simulation

17-407

codegen helperRadarStreamRun.m

Code generation successful.

When the mex version is invoked, the simulation speed is improved.

tic;
helperRadarStreamRun_mex;
time_compiled = toc

time_compiled =

 1.3749

17 Featured Examples

17-408

Speedup improvement depends on several factors such as machine CPU speed and available memory
but is typically increased 3-4 times. Note that the visualization of data using scopes is not sped up by
MATLAB Coder and is still handled by the MATLAB interpreter. If visualizations are not critical to
your simulation, then you can remove them for further speed improvement.

Below are several trade-offs to consider when adopting this approach:

1 The visualization capability in generated code is very limited compared to what is available in
MATLAB. If you need to keep the visualization in the simulation, use the coder.extrinsic
trick; but this slows down the simulation.

2 The generated code does not allow dynamic changes of variable type and size compared to the
original MATLAB code. The generated code is often optimized for a particular variable type and
size; therefore, any change in a variable type and size, which can be caused, for example, by a
change in PRF, requires a recompile.

3 The simulation speed benefit becomes more important when the MATLAB simulation time is long.
If MATLAB simulation finishes in a few seconds, you do not gain much by generating the code
from the original MATLAB simulation. As mentioned in the previous bullet, it is often necessary
to recompile the code when parameters change. Therefore, it might be better to first use
MATLAB simulation to identify appropriate parameter values and then use generated code to run
long simulations.

Summary

This example shows how to perform the radar system simulation in streaming mode. It also shows
how the code generation can be used to speed up the simulation. The tradeoff between using the
generated code and MATLAB code is discussed at the end.

 Stream and Accelerate System Simulation

17-409

Scene Visualization for Phased Array System Simulation
This example shows how to use scenario viewer to visualize a system level simulation.

Introduction

A phased array system simulation often includes many moving objects. For example, both the array
and the targets can be in motion. In addition, each moving object may have its own orientations, so
the bookkeeping becomes more and more challenging when more players present in the simulation.

Phased Array System Toolbox™ provides a scenario viewer to help visualize how radars and targets
are moving in space. Through the scenario viewer, one can follow the trajectory of each moving
platform and examine the relative motion between the radar and the target.

Visualize Trajectories

In the first example, the scenario viewer is used to visualize the trajectories of a radar and a target.
Assume that the radar is circling around the origin at 3 km away. The plane with radar flies at 250
m/s (about 560 mph), and makes a circle approximately every 60 seconds.

v = 250;
deltaPhi = 360/60;
sensormotion = phased.Platform(...
 'InitialPosition',[0;-3000;500],...
 'VelocitySource','Input port',...
 'InitialVelocity',[0;v;0]);

The target is traveling along a straight road with a velocity of 30 m/s along the x-axis. which is
approximately 67 mph.

tgtmotion = phased.Platform('InitialPosition',[0;0;0],...
 'Velocity',[30;0;0]);

The viewer is set to update at every 0.1 second. For the simplest case, the beam is not shown in the
viewer.

tau = 0.5;
sceneview = phased.ScenarioViewer('ShowBeam','None');

This code simulates and displays radar and target's trajectories.

for m = 1:tau:60
 [sensorpos,sensorvel] = sensormotion(tau,...
 v*[cosd(m*deltaPhi);sind(m*deltaPhi);0]);
 [tgtpos,tgtvel] = tgtmotion(tau);
 sceneview(sensorpos,sensorvel,tgtpos,tgtvel);
 drawnow;
end

17 Featured Examples

17-410

Visualize Trajectories and Radar Beams

The next natural step is to visualize the antenna array beams together with the trajectories in the
viewer. The following example shows how to visualize two radars and three targets moving in space.
In particular. the first radar has a beam tracking the first target.

First, setup radars and targets. Note the first radar and the first target match what used in the
previous section.

sensormotion = phased.Platform(...
 'InitialPosition',[0 0;-3000 500;500 1], ...
 'VelocitySource','Input port', ...
 'InitialVelocity',[0 100;v 0;0 0], ...
 'OrientationAxesOutputPort', true);
tgtmotion = phased.Platform(...
 'InitialPosition',[0 2000.66 3532.63;0 0 500;0 500 500],...
 'Velocity',[30 120 -120; 0 0 -20; 0 0 60],...
 'OrientationAxesOutputPort', true);

To properly point the beam, the scenario viewer needs to know the orientation information of radars
and targets. Such information can be obtained from these moving platforms by setting the
OrientationAxesOutputPort property to true at each simulation step, as shown in the code above. To
pass this information to the viewer, set the scenario viewer's OrientationInputPort property to true.

 Scene Visualization for Phased Array System Simulation

17-411

sceneview = phased.ScenarioViewer('BeamRange',[3e3 3e3],...
 'BeamWidth',[5 5], ...
 'ShowBeam', 'All', ...
 'CameraPerspective', 'Custom', ...
 'CameraPosition', [-15453.85 -19716.96 13539], ...
 'CameraOrientation', [-47 -27 0]', ...
 'CameraViewAngle', 11.28, ...
 'OrientationInputPort', true, ...
 'UpdateRate',1/tau);

Note the displayed beam has a beamwidth of 5 degrees and a length of 3 km. The camera perspective
is also adjusted to visualize all trajectories more clearly.

for m = 1:60
 [sensorpos,sensorvel,sensoraxis] = sensormotion(tau,...
 [v*[cosd(m*deltaPhi);sind(m*deltaPhi);0] [100; 0; 0]]);
 [tgtpos,tgtvel,tgtaxis] = tgtmotion(tau);
 % Radar 1 tracks Target 1
 [lclrng, lclang] = rangeangle(tgtpos(:,1),sensorpos(:,1),...
 sensoraxis(:,:,1));
 % Update beam direction
 sceneview.BeamSteering = [lclang [0;0]];
 sceneview(sensorpos,sensorvel,sensoraxis,tgtpos,tgtvel,tgtaxis);
 drawnow;
end

17 Featured Examples

17-412

System Simulation Visualization

The scenario viewer can also be combined together with other visualizations to provide more
information of the system under simulation. Next example uses a scenario viewer together with a
range time intensity (RTI) scope and a Doppler time intensity (DTI) scope so an engineer can examine
whether the estimated ranges and range rates of targets match the ground truth.

The example uses the radar system created in the “Simulating Test Signals for a Radar Receiver” on
page 17-378 example.

load BasicMonostaticRadarExampleData.mat

Consider the scene where there are three targets.

fc = radiator.OperatingFrequency;
fs = waveform.SampleRate;
c = radiator.PropagationSpeed;

sensormotion = phased.Platform(...
 'InitialPosition',[0; 0; 10],...
 'Velocity',[0; 0; 0]);

target = phased.RadarTarget(...

 Scene Visualization for Phased Array System Simulation

17-413

 'MeanRCS',[1.6 2.2 1.05],...
 'OperatingFrequency',fc);
tgtmotion = phased.Platform(...
 'InitialPosition',[2000.66 3532.63 3845.04; 0 0 0;10 10 10], ...
 'Velocity',[120 -120 0; 0 0 0; 0 0 0]);

channel = phased.FreeSpace(...
 'SampleRate',fs,...
 'TwoWayPropagation',true,...
 'OperatingFrequency',fc);

Once the echo arrives at the receiver, a matched filter and a pulse integrator is used to perform the
range estimation.

matchingcoeff = getMatchedFilter(waveform);
matchingdelay = size(matchingcoeff,1)-1;
matchedfilter = phased.MatchedFilter(...
 'Coefficients',matchingcoeff,...
 'GainOutputPort',true);

prf = waveform.PRF;
fast_time_grid = unigrid(0,1/fs,1/prf,'[)');
rangeGates = c*fast_time_grid/2;

lambda = c/fc;
max_range = 5000;
tvg = phased.TimeVaryingGain(...
 'RangeLoss',2*fspl(rangeGates,lambda),...
 'ReferenceLoss',2*fspl(max_range,lambda));

num_pulse_int = 10;

Because it is unnecessary to monitor the trajectory at the pulse repetition rate, this example assumes
that the system reads the radar measurement at a rate of 20 Hz. The example uses a scenario viewer
to monitor the scene and a range time intensity (RTI) plot as well as a Doppler time intensity (DTI)
plot to examine the estimated range and range rate value.

r_update = 20;

sceneview = phased.ScenarioViewer('UpdateRate',r_update,...
 'Title','Monostatic Radar with Three Targets');

rtiscope = phased.IntensityScope('Name','Range-Time Intensity Scope',...
 'XLabel','Range (m)', ...
 'XResolution',c/(2*fs), ...
 'XOffset',-(matchingdelay-1)*c/(2*fs), ...
 'TimeResolution',1/r_update,'TimeSpan',5,'IntensityUnits','dB');

nfft = 128;
df = prf/nfft;
dtiscope = phased.IntensityScope(...
 'Name','Doppler-Time Intensity Scope',...
 'XLabel','Velocity (m/sec)', ...
 'XResolution',dop2speed(df,lambda)/2, ...
 'XOffset', dop2speed(-prf/2,lambda)/2, ...
 'TimeResolution',1/r_update,'TimeSpan',5,'IntensityUnits','dB');

Next section performs the system simulation and produces the visualizations.

17 Featured Examples

17-414

% Pre-allocate array for improved processing speed
rxpulses = zeros(numel(rangeGates),num_pulse_int);

for k = 1:100
 for m = 1:num_pulse_int
 % Update sensor and target positions
 [sensorpos,sensorvel] = sensormotion(1/prf);
 [tgtpos,tgtvel] = tgtmotion(1/prf);

 % Calculate the target angles as seen by the sensor
 [~,tgtang] = rangeangle(tgtpos,sensorpos);

 % Simulate propagation of pulse in direction of targets
 pulse = waveform();
 [txsig,txstatus] = transmitter(pulse);
 txsig = radiator(txsig,tgtang);
 txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);

 % Reflect pulse off of targets
 tgtsig = target(txsig);

 % Receive target returns at sensor
 rxsig = collector(tgtsig,tgtang);
 rxpulses(:,m) = receiver(rxsig,~(txstatus>0));
 end

 rxpulses = matchedfilter(rxpulses);

 % Correct for matched filter delay
 rxpulses = buffer(...
 rxpulses(matchingdelay+1:end),...
 size(rxpulses,1));

 rxpulses = tvg(rxpulses);

 rx_int = pulsint(rxpulses,'noncoherent');

 % display RTI
 rtiscope(rx_int);

 % display DTI
 rx_dop = mean(fftshift(...
 abs(fft(rxpulses,nfft,2)),2));
 dtiscope(rx_dop.');

 % display scene
 sceneview(sensorpos,sensorvel,tgtpos,tgtvel);

 % perform next detection when next update is needed
 sensormotion(1/r_update);
 tgtmotion(1/r_update);
end

hide(dtiscope);
hide(rtiscope);

 Scene Visualization for Phased Array System Simulation

17-415

hide(sceneview);
show(rtiscope);

17 Featured Examples

17-416

Both the scenario viewer and the RTI are updated during the simulation so one can easily verify
whether the simulation is running as expected and whether the range estimation matches the ground
truth while the simulation is running.

hide(rtiscope);
show(dtiscope);

 Scene Visualization for Phased Array System Simulation

17-417

Similarly, the DTI provides the range rate estimates of each target.

Conclusions

This example describes different ways to visualize the radar and target's trajectories. Such
visualizations help provide an overall picture of the system dynamics.

17 Featured Examples

17-418

Simulating Test Signals for a Radar Receiver in Simulink
This example shows how to model an end-to-end monostatic radar using Simulink®. A monostatic
radar consists of a transmitter colocated with a receiver. The transmitter generates a pulse which hits
the target and produces an echo received by the receiver. By measuring the time location of the
echoes, you can estimate the range of the target. The first part of this example demonstrates how to
detect the range of a single target using the equivalent of a single element antenna. The second part
of the example will show how to build a monostatic radar with a 4-element uniform linear array (ULA)
that detects the range of 4 targets.

Available Example Implementations

This example includes two Simulink® models:

• Monostatic Radar with One Target: slexMonostaticRadarExample.slx
• Monostatic ULA Radar with Four Targets: slexMonostaticRadarMultipleTargetsExample.slx

Monostatic Radar with One Target

This model simulates a simple end-to-end monostatic radar. Using the transmitter block without the
narrowband transmit array block is equivalent to modeling a single isotropic antenna element.
Rectangular pulses are amplified by the transmitter block then propagated to and from a target in
free-space. Noise and amplification are then applied in the receiver preamp block to the return
signal, followed by a matched filter. Range losses are compensated for and the pulses are
noncoherently integrated. Most of the design specifications are derived from the “Simulating Test
Signals for a Radar Receiver” on page 17-378 example provided for System objects.

The model consists of a transceiver, a channel, and a target. The blocks that corresponds to each
section of the model are:

Transceiver

 Simulating Test Signals for a Radar Receiver in Simulink

17-419

matlab:slexMonostaticRadarExample
matlab:slexMonostaticRadarMultipleTargetsExample

• Rectangular - Creates rectangular pulses.
• Transmitter - Amplifies the pulses and sends a Transmit/Receive status to the Receiver

Preamp block to indicate if it is transmitting.
• Receiver Preamp - Receives the pulses from free space when the transmitter is off. This block

also adds noise to the signal.
• Constant - Used to set the position and velocity of the radar. Their values are received by the

Freespace blocks using the Goto and From.
• Signal Processing - Subsystem performs match filtering and pulse integration.
• Target Range Scope - Displays the integrated pulse as a function of the range.

Signal Processing Subsystem

• Matched Filter - Performs match filtering to improve SNR.
• TVG - Time varying gain to compensate for range loss.
• Pulse Integrator - Integrates several pulses noncoherently.

Channel

• Freespace - Applies propagation delays, losses and Doppler shifts to the pulses. One block is
used for the transmitted pulses and another one for the reflected pulses. The Freespace blocks
require the positions and velocities of the radar and the target. Those are supplied using the Goto
and From blocks.

Target

• Target - Subsystem reflects the pulses according to the specified RCS. This subsystem includes a
Platform block that models the speed and position of the target which are supplied to the
Freespace blocks using the Goto and From blocks. In this example the target is stationary and
positioned 1998 meters from the radar.

Exploring the Example

Several dialog parameters of the model are calculated by the helper function
helperslexMonostaticRadarParam. To open the function from the model, click on Modify
Simulation Parameters block. This function is executed once when the model is loaded. It exports
to the workspace a structure whose fields are referenced by the dialogs. To modify any parameters,
either change the values in the structure at the command prompt or edit the helper function and
rerun it to update the parameter structure.

Results and Displays

The figure below shows the range of the target. Target range is computed from the round-trip delay
of the reflected pulse. The delay is measured from the peak of the matched filter output. We can see
that the target is approximately 2000 meters from the radar. This range is within the radar's 50-meter
range resolution from the actual range.

17 Featured Examples

17-420

Monostatic Radar with Multiple Targets

This model estimates the range of four stationary targets using a monostatic radar. The radar
transceiver uses a 4-element uniform linear antenna array (ULA) for improved directionality and gain.
A beamformer is also included in the receiver. The targets are positioned at 1988, 3532, 3845 and
1045 meters from the radar.

 Simulating Test Signals for a Radar Receiver in Simulink

17-421

The blocks added to the previous example are:

• Narrowband Tx Array - Models an antenna array for transmitting narrowband signals. The
antenna array is configured using the "Sensor Array" tab of the block's dialog panel. The
Narrowband Tx Array block models the transmission of the pulses through the antenna array in
the four directions specified using the Ang port. The output of this block is a matrix of four
columns. Each column corresponds to the pulses propagated towards the directions of the four
targets.

17 Featured Examples

17-422

• Narrowband Rx Array - Models an antenna array for receiving narrowband signals. The array is
configured using the "Sensor Array" tab of the block's dialog panel. The block receives pulses from
the four directions specified using the Ang port. The input of this block is a matrix of four
columns. Each column corresponds to the pulses propagated from the direction of each target.
The output of the block is a matrix of 4 columns. Each column corresponds to the signal received
at each antenna element.

• Range Angle- Calculates the angles between the radar and the targets. The angles are used by
the Narrowband Tx Array and the Narrowband Rx Array blocks to determine in which
directions to model the pulses' transmission or reception.

• Phase Shift Beamformer - Beamforms the output of the Receiver Preamp. The input to the
beamformer is a matrix of 4 columns, one column for the signal received at each antenna element.
The output is a beamformed vector of the received signal.

This example illustrates how to use single Platform, Freespace and Target blocks to model all
four round-trip propagation paths. In the Platform block, the initial positions and velocity
parameters are specified as three-by-four matrices. Each matrix column corresponds to a different
target. Position and velocity inputs to the Freespace block come from the outputs of the Platform
block as three-by-four matrices. Again, each matrix column corresponds to a different target. The
signal inputs and outputs of the Freespace block have four columns, one column for the propagation

 Simulating Test Signals for a Radar Receiver in Simulink

17-423

path to each target. The Freespace block has two-way propagation setting enabled. The "Mean
radar cross section" (RCS) parameter of the Target block is specified as a vector of four elements
representing the RCS of each target.

Exploring the Example

Several dialog parameters of the model are calculated by the helper function
helperslexMonostaticRadarMultipleTargetsParam. To open the function from the model, click on
Modify Simulation Parameters block. This function is executed once when the model is loaded.
It exports to the workspace a structure whose fields are referenced by the dialogs. To modify any
parameters, either change the values in the structure at the command prompt or edit the helper
function and rerun it to update the parameter structure.

Results and Displays

The figure below shows the detected ranges of the targets. Target ranges are computed from the
round-trip time delay of the reflected signals from the targets. We can see that the targets are
approximately 2000, 3550, and 3850 meters from the radar. These results are within the radar's 50-
meter range resolution from the actual range.

17 Featured Examples

17-424

Modeling RF Front End in Radar System Simulation
In a radar system, the RF front end often plays an important role in defining the system performance.
For example, because the RF front end is the first section in the receiver chain, the design of its low
noise amplifier is critical to achieving the desired signal to noise ratio (SNR). This example shows
how to incorporate RF front end behavior into an existing radar system design.

This example requires RF Blockset™.

Available Example Implementations

This example includes two Simulink® models:

• Monostatic Radar with One Target: slexMonostaticRadarRFExample.slx
• FMCW Radar Range and Speed Estimation: slexFMCWRFExample.slx

Introduction

Several examples, such as “Simulating Test Signals for a Radar Receiver in Simulink” on page 17-419
and “Automotive Adaptive Cruise Control Using FMCW and MFSK Technology” (Radar Toolbox) have
shown that one can build end-to-end radar systems in Simulink using Phased Array System Toolbox.
In many cases, once the system model is built, the next step could be adding more fidelity in different
components. A popular candidate for such a component is the RF front end. One advantage of
modeling the system in Simulink is the capability of performing multidomain simulations.

The following sections show two examples of incorporating RF Blockset modeling capability in radar
systems built with Phased Array System Toolbox.

Monostatic Radar with One Target

The first model is adapted from example “Simulating Test Signals for a Radar Receiver in Simulink”
on page 17-419 which simulates a monostatic pulse radar with one target. From the diagram itself,
the model below looks identical to the model shown in that example.

 Modeling RF Front End in Radar System Simulation

17-425

matlab:slexMonostaticRadarRFExample
matlab:slexFMCWRFExample

When the model is executed, the resulting plot is also the same.

However, a deeper look in the transmitter subsystem shows that now the transmitter is modeled by
power amplifiers from RF Blockset.

17 Featured Examples

17-426

Warning: Unrecognized function or variable
'CloneDetectionUI.internal.CloneDetectionPerspective.register'.

Similar changes are also implemented in the receiver side.

With these changes, the model is capable of simulating RF behaviors. For example, the simulation
result shown above assumes a perfect power amplifier. In real applications, the amplifier will suffer
many nonlinearities. If one sets the IP3 of the transmitter to 70 dB and run the simulation again, the
peak corresponding to the target is no longer as dominant. This gives the engineer some knowledge
regarding the system's performance under different situations.

 Modeling RF Front End in Radar System Simulation

17-427

FMCW Radar Range and Speed Estimation

The second example is adapted from “Automotive Adaptive Cruise Control Using FMCW and MFSK
Technology” (Radar Toolbox). However, this model uses a triangle sweep waveform instead so the
system can estimate range and speed simultaneously. At the top level, the model is similar to what
gets built from Phased Array System Toolbox. Once executed, the model shows the estimated range
and speed values that matches the distance and relative speed of the target car.

17 Featured Examples

17-428

However, similar to the first example, the transmitter and receiver subsystems are now built with RF
Blockset blocks.

The following figure shows the transmitter subsystem.

Warning: Unrecognized function or variable
'CloneDetectionUI.internal.CloneDetectionPerspective.register'.

The following figure shows the receiver subsystem.

 Modeling RF Front End in Radar System Simulation

17-429

In a continuous wave radar system, part of the transmitted waveform is used as a reference to
dechirp the received target echo. From the diagrams above, one can see that the transmitted
waveform is sent to the receiver via a coupler and the dechirp is performed via an I/Q demodulator.
Therefore, by adjusting parameters in those RF components, higher simulation fidelity can be
achieved.

Summary

This example shows two radar models that are originally built with Phased Array System Toolbox and
later incorporated RF models from RF Blockset. The simulation fidelity is greatly improved by
combining the two products together.

17 Featured Examples

17-430

Simulating a Bistatic Radar with Two Targets
This example shows how to simulates a bistatic radar system with two targets. The transmitter and
the receiver of a bistatic radar are not co-located and move along different paths.

Exploring the Example

The following model shows an end-to-end simulation of a bistatic radar system. The system is divided
into three parts: the transmitter subsystem, the receiver subsystem, and the targets and their
propagation channels. The model shows the signal flowing from the transmitter, through the channels
to the targets and reflected back to the receiver. Range-Doppler processing is then performed at the
receiver to generate the range-Doppler map of the received echoes.

Transmitter

• Linear FM - Creates linear FM pulse as the transmitter waveform. The signal sweeps a 3 MHz
bandwidth, corresponding to a 50-meter range resolution.

• Radar Transmitter - Amplifies the pulse and simulates the transmitter motion. In this case, the
transmitter is mounted on a stationary platform located at the origin. The operating frequency of
the transmitter is 300 MHz.

 Simulating a Bistatic Radar with Two Targets

17-431

Targets

This example includes two targets with similar configurations. The targets are mounted on the
moving platforms.

• Tx to Targets Channel - Propagates signal from the transmitter to the targets. The signal
inputs and outputs of the channel block have two columns, one column for the propagation path to
each target.

• Targets to Rx Channel - Propagates signal from the targets to the receiver. The signal inputs
and outputs of the channel block have two columns, one column for the propagation path from
each target.

• Targets - Reflects the incident signal and simulates both targets motion. This first target with an
RCS of 2.5 square meters is approximately 15 km from the transmitter and is moving at a speed of
141 m/s. The second target with an RCS of 4 square meters is approximately 35 km from the
transmitter and is moving at a speed of 168 m/s. The RCS of both targets are specified as a vector
of two elements in the Mean radar cross section parameter of the underlying Target block.

Receiver

• Radar Receiver - Receives the target echo, adds receiver noise, and simulates the receiver
motion. The distance between the transmitter and the receiver is 20 km, and the receiver is
moving at a speed of 20 m/s. The distance between the receiver and the two targets are
approximately 5 km and 15 km, respectively.

• Range-Doppler Processing - Computes the range-Doppler map of the received signal. The
received signal is buffered to form a 64-pulse burst which is then passed to a range-Doppler
processor. The processor performs a matched filter operation along the range dimension and an
FFT along the Doppler dimension.

17 Featured Examples

17-432

Exploring the Model

Several dialog parameters of the model are calculated by the helper function
helperslexBistaticParam. To open the function from the model, click on Modify Simulation
Parameters block. This function is executed once when the model is loaded. It exports to the
workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either
change the values in the structure at the command prompt or edit the helper function and rerun it to
update the parameter structure.

Results and Displays

The figure below shows the two targets in the range-Doppler map.

 Simulating a Bistatic Radar with Two Targets

17-433

Because this is a bistatic radar, the range-Doppler map above actually shows the target range as the
arithmetic mean of the distances from the transmitter to the target and from the target to the
receiver. Therefore, the expected range of the first target is approximately 10 km, ((15+5)/2) and for
second target approximately 25 km, ((35+15)/2). The range-Doppler map whos these two values as
the measured values.

Similarly, the Doppler shift of a target in a bistatic configuration is the sum of the target's Doppler
shifts relative to the transmitter and the receiver. The relative speeds to the transmitter are -106.4
m/s for the first target and 161.3 m/s for the second target while the relative speeds to the receiver
are 99.7 m/s for the first target and 158.6 m/s for second target. Thus, the range-Doppler map shows
the overall relative speeds as -6.7 m/s (-24 km/h) and 319.9 m/s (1152 km/h) for the first target and
the second target, respectively, which agree with the expected sum values.

Summary

This example shows an end-to-end bistatic radar system simulation with two targets. It explains how
to analyze the target return by plotting a range-Doppler map.

17 Featured Examples

17-434

Waveform Scheduling Based on Target Detection
In radar operation, it is often necessary to adjust the operation mode based on the target return. This
example shows how to model a radar that changes its pulse repetition frequency (PRF) based on the
radar detection.

This example requires SimEvents®.

Available Example Implementations

This example includes one Simulink® model:

• Dynamic PRF Selection Based on Radar Detection: slexPRFSelectionSEExample.slx

Dynamic PRF Selection Based on Radar Detection

This model simulates a monostatic radar that searches for targets with an unambiguous range of 5
km. If the radar detects a target within 2 km, then it will switch to a higher PRF to only look for
targets with 2 km range and enhance its capability to detect high speed targets.

The model consists of two main subsystem, a radar system and its corresponding controller. From the
top level, the radar system resides in a Simulink function block. Note that the underlying function is
specified in the figure as [dt,r] = f(idx). This means that the radar takes one input, idx, which
specifies the index of selected PRF of the transmitted signal and returns two outputs: dt, the time the
next pulse should be transmitted and r, the detected target range of the radar system. The radar
controller, shown in the following figure, uses the detection and the time to schedule when and what
to transmit next.

 Waveform Scheduling Based on Target Detection

17-435

matlab:slexPRFSelectionSEExample

Radar System

The radar system resides in a Simulink function block and is shown in the following figure.

The system is very similar to what is used in the “Waveform Scheduling Based on Target Detection”
on page 17-435 example with the following notable difference:

1 The waveform block is no longer a source block. Instead, it takes an input, idx, to select which
PRF to use. The available PRF values are specified in the PRF parameter of the waveform dialog.

2 The output of the waveform is also used to compute the time, dt, that the next pulse should be
transmitted. Note that in this case, the time interval is proportional to the length of the
transmitted signal.

3 At the end of the signal processing chain, the target range is estimated and returned in r. The
controller will use this information to decide which PRF to choose for next transmission.

4 Once the model is compiled, notice that the signal passing through the system can vary in length
because of a possible change of the waveform PRF. In addition, because the sample rate cannot
be derived inside a Simulink function subsystem, the sample rate is specified in the block
diagrams, such as the Tx and Rx paths, the receiver preamp, and other blocks.

17 Featured Examples

17-436

Exploring the Example

Several dialog parameters of the model are calculated by the helper function
helperslexPRFSelectionParam. To open the function from the model, click on Modify Simulation
Parameters block. This function is executed once when the model is loaded. It exports to the
workspace a structure whose fields are referenced by the dialogs. To modify any parameters, either
change the values in the structure at the command prompt or edit the helper function and rerun it to
update the parameter structure.

Results and Displays

The figure below shows the detected ranges of the targets. Target ranges are computed from the
round-trip time delay of the reflected signals from the targets. At the simulation start, the radar
detects two targets, one is slightly over 2 km away and the other one is at approximately 3.5 km
away.

 Waveform Scheduling Based on Target Detection

17-437

After some time, the first target moves into the 2 km zone and triggers a change of PRF. Then the
received signal only covers the range up to 2 km. The display is zero padded to ensure that the plot
limits do not change. Notice that the target at 3.5 km gets folded to the 1.5 km range due to range
ambiguity.

17 Featured Examples

17-438

Summary

This example shows how to build a radar system in Simulink® that dynamically changes its PRF
based on the target detection range. A staggered PRF system can be modeled similarly.

 Waveform Scheduling Based on Target Detection

17-439

Underwater Target Detection with an Active Sonar System
This example shows how to simulate an active monostatic sonar scenario with two targets. The sonar
system consists of an isotropic projector array and a single hydrophone element. The projector array
is spherical in shape. The backscattered signals are received by the hydrophone. The received signals
include both direct and multipath contributions.

Underwater Environment

Multiple propagation paths are present between the sound source and target in a shallow water
environment. In this example, five paths are assumed in a channel with a depth of 100 meters and a
constant sound speed of 1520 m/s. Use a bottom loss of 0.5 dB in order to highlight the effects of the
multiple paths.

Define the properties of the underwater environment, including the channel depth, the number of
propagation paths, the propagation speed, and the bottom loss.

numPaths = 5;
propSpeed = 1520;
channelDepth = 100;

isopath{1} = phased.IsoSpeedUnderwaterPaths(...
 'ChannelDepth',channelDepth,...
 'NumPathsSource','Property',...
 'NumPaths',numPaths,...
 'PropagationSpeed',propSpeed,...
 'BottomLoss',0.5,...
 'TwoWayPropagation',true);

isopath{2} = phased.IsoSpeedUnderwaterPaths(...
 'ChannelDepth',channelDepth,...
 'NumPathsSource','Property',...
 'NumPaths',numPaths,...
 'PropagationSpeed',propSpeed,...
 'BottomLoss',0.5,...
 'TwoWayPropagation',true);

Next, create a multipath channel for each target. The multipath channel propagates the waveform
along the multiple paths. This two-step process is analogous to designing a filter and using the
resulting coefficients to filter a signal.

fc = 20e3; % Operating frequency (Hz)

channel{1} = phased.MultipathChannel(...
 'OperatingFrequency',fc);

channel{2} = phased.MultipathChannel(...
 'OperatingFrequency',fc);

Sonar Targets

The scenario has two targets. The first target is more distant but has a larger target strength, and the
second is closer but has a smaller target strength. Both targets are isotropic and stationary with
respect to the sonar system.

tgt{1} = phased.BackscatterSonarTarget(...
 'TSPattern',-5*ones(181,361));

17 Featured Examples

17-440

tgt{2} = phased.BackscatterSonarTarget(...
 'TSPattern',-15*ones(181,361));

tgtplat{1} = phased.Platform(...
 'InitialPosition',[500; 1000; -70],'Velocity',[0; 0; 0]);

tgtplat{2} = phased.Platform(...
 'InitialPosition',[500; 0; -40],'Velocity',[0; 0; 0]);

The target positions, along with the channel properties, determine the underwater paths along which
the signals propagate. Plot the paths between the sonar system and each target. Note that the z-
coordinate determines depth, with zero corresponding to the top surface of the channel, and the
distance in the x-y plane is plotted as the range between the source and target.

helperPlotPaths([0;0;-60],[500 500; 1000 0; -70 -40], ...
 channelDepth,numPaths)

Transmitter and Receiver

Transmitted Waveform

Next, specify a rectangular waveform to transmit to the targets. The maximum target range and
desired range resolution define the properties of the waveform.

maxRange = 5000; % Maximum unambiguous range
rangeRes = 10; % Required range resolution

 Underwater Target Detection with an Active Sonar System

17-441

prf = propSpeed/(2*maxRange); % Pulse repetition frequency
pulse_width = 2*rangeRes/propSpeed; % Pulse width
pulse_bw = 1/pulse_width; % Pulse bandwidth
fs = 2*pulse_bw; % Sampling rate
wav = phased.RectangularWaveform(...
 'PulseWidth',pulse_width,...
 'PRF',prf,...
 'SampleRate',fs);

Update the sample rate of the multipath channel with the transmitted waveform sample rate.

channel{1}.SampleRate = fs;
channel{2}.SampleRate = fs;

Transmitter

The transmitter consists of a hemispherical array of back-baffled isotropic projector elements. The
transmitter is located 60 meters below the surface. Create the array and view the array geometry.

plat = phased.Platform(...
 'InitialPosition',[0; 0; -60],...
 'Velocity',[0; 0; 0]);

proj = phased.IsotropicProjector(...
 'FrequencyRange',[0 30e3],'VoltageResponse',80,'BackBaffled',true);

[ElementPosition,ElementNormal] = helperSphericalProjector(8,fc,propSpeed);

projArray = phased.ConformalArray(...
 'ElementPosition',ElementPosition,...
 'ElementNormal',ElementNormal,'Element',proj);

viewArray(projArray,'ShowNormals',true);

17 Featured Examples

17-442

View the pattern of the array at zero degrees in elevation. The directivity shows peaks in azimuth
corresponding to the azimuth position of the array elements.

pattern(projArray,fc,-180:180,0,'CoordinateSystem','polar',...
 'PropagationSpeed',propSpeed);

 Underwater Target Detection with an Active Sonar System

17-443

Receiver

The receiver consists of a hydrophone and an amplifier. The hydrophone is a single isotropic element
and has a frequency range from 0 to 30 kHz, which contains the operating frequency of the multipath
channel. Specify the hydrophone voltage sensitivity as -140 dB.

hydro = phased.IsotropicHydrophone(...
 'FrequencyRange',[0 30e3],'VoltageSensitivity',-140);

Thermal noise is present in the received signal. Assume that the receiver has 20 dB of gain and a
noise figure of 10 dB.

rx = phased.ReceiverPreamp(...
 'Gain',20,...
 'NoiseFigure',10,...
 'SampleRate',fs,...
 'SeedSource','Property',...
 'Seed',2007);

Radiator and Collector

In an active sonar system, an acoustic wave is propagated to the target, scattered by the target, and
received by a hydrophone. The radiator generates the spatial dependence of the propagated wave
due to the array geometry. Likewise, the collector combines the backscattered signals received by the
hydrophone element from the far-field target.

radiator = phased.Radiator('Sensor',projArray,'OperatingFrequency',...
 fc,'PropagationSpeed',propSpeed);

17 Featured Examples

17-444

collector = phased.Collector('Sensor',hydro,'OperatingFrequency',fc,...
 'PropagationSpeed',propSpeed);

Sonar System Simulation

Next, transmit the rectangular waveform over ten repetition intervals and simulate the signal
received at the hydrophone for each transmission.

x = wav(); % Generate pulse
xmits = 10;
rx_pulses = zeros(size(x,1),xmits);
t = (0:size(x,1)-1)/fs;

for j = 1:xmits

 % Update target and sonar position
 [sonar_pos,sonar_vel] = plat(1/prf);

 for i = 1:2 %Loop over targets
 [tgt_pos,tgt_vel] = tgtplat{i}(1/prf);

 % Compute transmission paths using the method of images. Paths are
 % updated according to the CoherenceTime property.
 [paths,dop,aloss,tgtAng,srcAng] = isopath{i}(...
 sonar_pos,tgt_pos,...
 sonar_vel,tgt_vel,1/prf);

 % Compute the radiated signals. Steer the array towards the target.
 tsig = radiator(x,srcAng);

 % Propagate radiated signals through the channel.
 tsig = channel{i}(tsig,paths,dop,aloss);

 % Target
 tsig = tgt{i}(tsig,tgtAng);

 % Collector
 rsig = collector(tsig,srcAng);
 rx_pulses(:,j) = rx_pulses(:,j) + ...
 rx(rsig);
 end
end

Plot the magnitude of non-coherent integration of the received signals to locate the returns of the two
targets.

figure
rx_pulses = pulsint(rx_pulses,'noncoherent');
plot(t,abs(rx_pulses))
grid on
xlabel('Time (s)')
ylabel('Amplitude (V)')
title('Integrated Received Pulses')

 Underwater Target Detection with an Active Sonar System

17-445

The targets, which are separated a relatively large distance, appear as distinct returns. Zoom in on
the first return.

xlim([0.55 0.85])

17 Featured Examples

17-446

The target return is the superposition of pulses from multiple propagation paths, resulting in multiple
peaks for each target. The resulting peaks could be misinterpreted as additional targets.

Active Sonar with Bellhop

In the previous section, the sound speed was constant as a function of channel depth. In contrast, a
ray tracing program like Bellhop can generate acoustic paths for spatially-varying sound speed
profiles. You can use the path information generated by Bellhop to propagate signals via the
multipath channel. Simulate transmission between an isotropic projector and isotropic hydrophone in
a target-free environment with the 'Munk' sound speed profile. The path information is contained in a
Bellhop arrival file (MunkB_eigenray_Arr.arr).

Bellhop Configuration

In this example, the channel is 5000 meters in depth. The source is located at a depth of 1000 meters
and the receiver is located at a depth of 800 meters. They are separated by 100 kilometers in range.
Import and plot the paths computed by Bellhop.

[paths,dop,aloss,rcvAng,srcAng] = helperBellhopArrivals(fc,6,false);
helperPlotPaths('MunkB_eigenray')

 Underwater Target Detection with an Active Sonar System

17-447

For this scenario, there are two direct paths with no interface reflections, and eight paths with
reflections at both the top and bottom surfaces. The sound speed in the channel is lowest at
approximately 1250 meters in depth, and increases towards the top and bottom of the channel, to a
maximum of 1550 meters/second.

Create a new channel and receiver to use with data from Bellhop.

release(collector)
channelBellhop = phased.MultipathChannel(...
 'SampleRate',fs,...
 'OperatingFrequency',fc);

rx = phased.ReceiverPreamp(...
 'Gain',10,...
 'NoiseFigure',10,...
 'SampleRate',fs,...
 'SeedSource','Property',...
 'Seed',2007);

Specify a pulse for the new problem configuration.

maxRange = 150000; % Maximum unambiguous range
prf = propSpeed/(maxRange); % Pulse repetition frequency
pulse_width = 0.02;
wav = phased.RectangularWaveform(...
 'PulseWidth',pulse_width,...
 'PRF',prf,...
 'SampleRate',fs);

17 Featured Examples

17-448

Bellhop Simulation

Next, simulate the transmission of ten pulses from transmitter to receiver.

x = repmat(wav(),1,size(paths,2));
xmits = 10;
rx_pulses = zeros(size(x,1),xmits);
t = (0:size(x,1)-1)/fs;

for j = 1:xmits

 % Projector
 tsig = x.*proj(fc,srcAng)';

 % Propagate radiated signals through the channel.
 tsig = channelBellhop(tsig,paths,dop,aloss);

 % Collector
 rsig = collector(tsig,rcvAng);
 rx_pulses(:,j) = rx_pulses(:,j) + ...
 rx(rsig);
end

Plot the non-coherent integration of the transmitted pulses.

figure
rx_pulses = pulsint(rx_pulses,'noncoherent');
plot(t,abs(rx_pulses))
grid on
xlim([66 70])
xlabel('Time (s)')
ylabel('Amplitude (V)')
title('Integrated Received Pulses')

 Underwater Target Detection with an Active Sonar System

17-449

The transmitted pulses appear as peaks in the response. Note that the two direct paths, which have
no interface reflections, arrive first and have the highest amplitude. In comparing the direct path
received pulses, the second pulse to arrive has the higher amplitude of the two, indicating a shorter
propagation distance. The longer delay time for the shorter path can be explained by the fact that it
propagates through the slowest part of the channel. The remaining pulses have reduced amplitude
compared to the direct paths due to multiple reflections at the channel bottom, each contributing to
the loss.

Summary

In this example, acoustic pulses were transmitted and received in shallow-water and deep-water
environments. Using a rectangular waveform, an active sonar system detected two well-separated
targets in shallow water. The presence of multiple paths was apparent in the received signal. Next,
pulses were transmitted between a projector and hydrophone in deep water with the 'Munk' sound
speed profile using paths generated by Bellhop. The impact of spatially-varying sound speed was
noted.

Reference

Urick, Robert. Principles of Underwater Sound. Los Altos, California: Peninsula Publishing, 1983.

17 Featured Examples

17-450

Locating an Acoustic Beacon with a Passive Sonar System
This example shows how to simulate a passive sonar system. A stationary underwater acoustic beacon
is detected and localized by a towed passive array in a shallow-water channel. The acoustic beacon
transmits a 10 millisecond pulse at 37.5 kilohertz every second, and is modeled as an isotropic
projector. The locator system tows a passive array beneath the surface, which is modeled as a
uniform linear array. Once the acoustic beacon signal is detected, a direction of arrival estimator is
used to locate the beacon.

Define the Underwater Channel

In this example, the acoustic beacon is located at the bottom of a shallow water channel, which is 200
meters deep. A passive array is towed beneath the surface to locate the beacon.

First, create a multipath channel to transmit the signal between the beacon and passive array.
Consider ten propagation paths including the direct path and reflections from the top and bottom
surfaces. The paths generated by isopaths will be used by the multipath channel, channel, to
simulate the signal propagation.

propSpeed = 1520;
channelDepth = 200;
OperatingFrequency = 37.5e3;

isopaths = phased.IsoSpeedUnderwaterPaths('ChannelDepth',channelDepth,...
 'NumPathsSource','Property','NumPaths',10,'PropagationSpeed',propSpeed);

channel = phased.MultipathChannel('OperatingFrequency',OperatingFrequency);

Define the Acoustic Beacon and Passive Array

Acoustic Beacon Waveform

Define the waveform emitted by the acoustic beacon. The waveform is a rectangular pulse having a 1
second repetition interval and 10 millisecond width.

prf = 1;
pulseWidth = 10e-3;
pulseBandwidth = 1/pulseWidth;
fs = 2*pulseBandwidth;
wav = phased.RectangularWaveform('PRF',prf,'PulseWidth',pulseWidth,...
 'SampleRate',fs);
channel.SampleRate = fs;

 Locating an Acoustic Beacon with a Passive Sonar System

17-451

Acoustic Beacon

Next, define the acoustic beacon, which is located 1 meter above the bottom of the channel. The
acoustic beacon is modeled as an isotropic projector. The acoustic beacon waveform will be radiated
to the far field.

projector = phased.IsotropicProjector('VoltageResponse',120);

projRadiator = phased.Radiator('Sensor',projector,...
 'PropagationSpeed',propSpeed,'OperatingFrequency',OperatingFrequency);

beaconPlat = phased.Platform('InitialPosition',[5000; 2000; -199],...
 'Velocity',[0; 0; 0]);

Passive Towed Array

A passive towed array will detect and localize the source of the pings, and is modeled as a five-
element linear array with half-wavelength spacing. The passive array has velocity of 1 m/s in the y-
direction. The array axis is oriented parallel to the direction of travel.

hydrophone = phased.IsotropicHydrophone('VoltageSensitivity',-150);
array = phased.ULA('Element',hydrophone,...
 'NumElements',5,'ElementSpacing',propSpeed/OperatingFrequency/2,...
 'ArrayAxis','y');

arrayCollector = phased.Collector('Sensor',array,...
 'PropagationSpeed',propSpeed,'OperatingFrequency',OperatingFrequency);

arrayPlat = phased.Platform('InitialPosition',[0; 0; -10],...
 'Velocity',[0; 1; 0]);

Define the receiver amplifier for each hydrophone element. Choose a gain of 20 dB and noise figure
of 10 dB.

rx = phased.ReceiverPreamp(...
 'Gain',20,...
 'NoiseFigure',10,...
 'SampleRate',fs,...
 'SeedSource','Property',...
 'Seed',2007);

Simulate the Passive Sonar System

Activate the acoustic beacon and transmit ten pings. After the propagation delay, the pings appear as
a peaks in the received signals of the array.

x = wav();
numTransmits = 10;
rxsig = zeros(size(x,1),5,numTransmits);
for i = 1:numTransmits

 % Update array and acoustic beacon positions
 [pos_tx,vel_tx] = beaconPlat(1/prf);
 [pos_rx,vel_rx] = arrayPlat(1/prf);

 % Compute paths between the acoustic beacon and array
 [paths,dop,aloss,rcvang,srcang] = ...
 isopaths(pos_tx,pos_rx,vel_tx,vel_rx,1/prf);

17 Featured Examples

17-452

 % Propagate the acoustic beacon waveform
 tsig = projRadiator(x,srcang);
 rsig = channel(tsig,paths,dop,aloss);

 % Collect the propagated signal
 rsig = arrayCollector(rsig,rcvang);

 % Store the received pulses
 rxsig(:,:,i) = abs(rx(rsig));

end

Plot the last received pulse. Because of the multiple propagation paths, each ping is a superposition
of multiple pulses.

t = (0:length(x)-1)'/fs;
plot(t,rxsig(:,end))
xlabel('Time (s)');
ylabel('Signal Amplitude (V)')

Estimate the Direction of Arrival

Estimate the direction of arrival of the acoustic beacon with respect to the array. Create a MUSIC
estimator object, specifying a single source signal and the direction of arrival as an output. Use a
scan angle grid with 0.1 degree spacing.

 Locating an Acoustic Beacon with a Passive Sonar System

17-453

musicspatialspect = phased.MUSICEstimator('SensorArray',array,...
 'PropagationSpeed',propSpeed,'OperatingFrequency',...
 OperatingFrequency,'ScanAngles',-90:0.1:90,'DOAOutputPort',true,...
 'NumSignalsSource','Property','NumSignals',1);

Next, collect pings for 500 more repetition intervals. Estimate the direction of arrival for each
repetition interval, and compare the estimates to the true direction of arrival.

numTransmits = 500;
angPassive = zeros(numTransmits,1);
angAct = zeros(numTransmits,1);

for i = 1:numTransmits

 % Update array and acoustic beacon positions
 [pos_tx,vel_tx] = beaconPlat(1/prf);
 [pos_rx,vel_rx] = arrayPlat(1/prf);

 % Compute paths between acoustic beacon and the array
 [paths,dop,aloss,rcvang,srcang] = ...
 isopaths(pos_tx,pos_rx,vel_tx,vel_rx,1/prf);
 angAct(i) = rcvang(1,1);

 % Propagate the acoustic beacon waveform
 tsig = projRadiator(x,srcang);
 rsig = channel(tsig,paths,dop,aloss);

 % Collect the propagated signal
 rsig = arrayCollector(rsig,rcvang);

 rxsig = rx(rsig);

 % Estimate the direction of arrival
 [~,angPassive(i)] = musicspatialspect(rxsig);

end

Plot the estimated arrival angles and the true directions of arrival for each pulse repetition interval.

plot([angPassive angAct])
xlabel('Pulse Number')
ylabel('Arrival angle (degrees)')
legend('Estimated DOA','Actual DOA')

17 Featured Examples

17-454

The estimated and actual directions of arrival agree to within less than one degree.

Summary

In this example, the transmission of acoustic pings between a beacon and passive array was
simulated in a shallow-water channel. Each ping was received along ten acoustic paths. The direction
of arrival of the beacon was estimated with respect to the passive array for each received ping and
compared to the true direction of arrival. The direction of arrival could be used to locate and recover
the beacon.

Reference

Urick, Robert. Principles of Underwater Sound. Los Altos, California: Peninsula Publishing, 1983.

 Locating an Acoustic Beacon with a Passive Sonar System

17-455

Waveform Parameter Extraction from Received Pulse
Modern aircraft often carry a radar warning receiver (RWR) with them. The RWR detects the radar
emission and warns the pilot when the radar signal shines on the aircraft. An RWR can not only
detect the radar emission, but also analyze the intercepted signal and catalog what kind of radar is
the signal coming from. This example shows how an RWR can estimate the parameters of intercepted
pulse. The example simulates a scenario with a ground surveillance radar (emitter) and a flying
aircraft (target) equipped with an RWR. The RWR intercepts radar signals, extracts the waveform
parameters from the intercepted pulse, and estimates the location of the emitter. The extracted
parameters can be utilized by the aircraft to take counter-measures.

This example requires Image Processing Toolbox™

Introduction

An RWR is a passive electronic warfare support system [1] that provides timely information to the
pilot about its RF signal environment. The RWR intercepts an impinging signal, and uses signal
processing techniques to extract information about the intercepted waveform characteristics, as well
as the location of the emitter. This information can be used to invoke counter-measures, such as
jamming to avoid being detected by the radar. The interaction between the radar and the aircraft is
depicted in the following diagram.

17 Featured Examples

17-456

In this example, we simulate a scenario where a ground surveillance radar and an airplane with an
RWR present. The RWR detects the radar signal and extracts the following waveform parameters
from the intercepted signal:

1 Pulse repetition interval
2 Center frequency
3 Bandwidth
4 Pulse duration
5 Direction of arrival
6 Position of the emitter

The RWR chain consists of a phased array antenna, a channelized receiver, an envelope detector, and
a signal processor. The frequency band of the intercepted signal is estimated by the channelized
receiver and the envelope detector, following which the detected sub-banded signal is fed to the
signal processor. Beam steering is applied towards the direction of arrival of this sub-banded signal,
and the waveform parameters are estimated using pseudo Wigner-Ville transform in conjunction with
Hough transform. Using angle of arrival and single-baseline approach, the location of the emitter is
also estimated.

Scenario Setup

Assume the ground based surveillance radar operates in the L band, and transmits chirp signals of 3
μs duration at a pulse repetition interval of 15 μs. Bandwidth of the transmitted chirp is 30 MHz, and
the carrier frequency is 1.8 GHz. The surveillance radar is located at the origin and is stationary, and
the aircraft is flying at a constant speed of 200 m/s (~0.6 Mach).

% Define the transmitted waveform parameters
fs = 4e9; % Sampling frequency for the systems (Hz)
fc = 1.8e9; % Operating frequency of the surveillance radar (Hz)
T = 3e-6; % Chirp duration (s)
PRF = 1/(15e-6); % Pulse repetition frequency (Hz)
BW = 30e6; % Chirp bandwidth (Hz)
c= physconst('LightSpeed'); % Speed of light in air (m/s)

% Assume the surveillance radar is at the origin and is stationary
radarPos= [0;0;0]; % Radar position (m)
radarVel= [0;0;0]; % Radar speed (m/s)

% Assume aircraft is moving with constant velocity
rwrPos= [-3000;1000;1000]; % Aircraft position (m)
rwrVel= [200; 0; 0]; % Aircraft speed (m/s)

% Configure objects to model ground radar and aircraft's relative motion
rwrPose = phased.Platform(rwrPos, rwrVel);
radarPose = phased.Platform(radarPos, radarVel);

The transmit antenna of the radar is a 8x8 uniform rectangular phased array, having a spacing of λ/2
between its elements. The signal propagates from the radar to the aircraft and is intercepted and
analyzed by the RWR. For simplicity, the waveform is chosen as a linear FM waveform with a peak
power of 100 W.

% Configure the LFM waveform using the waveform parameters defined above
wavGen= phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',T,'SweepBandwidth',BW,'PRF',PRF);

 Waveform Parameter Extraction from Received Pulse

17-457

% Configure the Uniform Rectangular Array
antennaTx = phased.URA('ElementSpacing',repmat((c/fc)/2, 1, 2), 'Size', [8,8]);

% Configure objects for transmitting and propagating the radar signal
tx = phased.Transmitter('Gain', 5, 'PeakPower',100);
radiator = phased.Radiator('Sensor', antennaTx, 'OperatingFrequency', fc);
envIn = phased.FreeSpace('TwoWayPropagation',false,'SampleRate', fs,'OperatingFrequency',fc);

The ground surveillance radar is unaware of the direction of the target, therefore, it needs to scan
the entire space to look for aircraft. In general, the radar will transmit a series of pulses at each
direction before moving to the next direction. Therefore, without losing generality, this example
assumes that the radar is transmitting toward zero degrees azimuth and elevation. The following
figure shows the time frequency representation of a 4-pulse train arrived at the aircraft. Note that
although the pulse train arrives at a specific delay, the time delay of the arrival of the first pulse is
irrelevant for the RWR because it has no knowledge transmit time and has to constantly monitor its
environment

% Transmit a train of pulses
numPulses = 4;
txPulseTrain = helperRWR('simulateTransmission',numPulses, wavGen, rwrPos,...
 radarPos, rwrVel, radarVel, rwrPose, radarPose, tx, radiator, envIn,fs,fc,PRF);

% Observe the signal arriving at the RWR
pspectrum(txPulseTrain,fs,'spectrogram','FrequencyLimits',[1.7e9 1.9e9], 'Leakage',0.65)
title('Transmitted pulse train spectrogram'); caxis([-110 -90]);

17 Featured Examples

17-458

The RWR is equipped with a 10x10 uniform rectangular array with a spacing of λ/2 between its
elements. It operates in the entire L-band, with a center frequency of 2 GHz. The RWR listens to the
environment, and continuously feeds the collected data into the processing chain.

% Configure the receive antenna
dip = phased.IsotropicAntennaElement('BackBaffled',true);
antennaRx = phased.URA('ElementSpacing',repmat((c/2e9)/2,1,2),'Size', [10,10],'Element',dip);

% Model the radar receiver chain
collector = phased.Collector('Sensor', antennaRx,'OperatingFrequency',fc);
rx = phased.ReceiverPreamp('Gain',0,'NoiseMethod','Noise power', 'NoisePower',2.5e-6,'SeedSource','Property', 'Seed',2018);

% Collect the waves at the receiver
[~, tgtAng] = rangeangle(radarPos,rwrPos);
yr = collector(txPulseTrain,tgtAng);
yr = rx(yr);

RWR envelope detector

The envelope detector in the RWR is responsible for detecting the presence of any signal. As the RWR
is continuously receiving data, the receiver chain buffers and truncates the received data into 50 μs
segments.

% Truncate the received data
truncTime = 50e-6;
truncInd = round(truncTime*fs);
yr = yr(1:truncInd,:);

Since the RWR has no knowledge about the exact center frequency used in the transmit waveform, it
first uses a bank of filters, each tuned to a slightly different RF center frequency, to divide the
received data into subbands. Then the envelope detector is applied in each band to check whether a
signal presents. In this example, the signal is divided into sub-bands of 100 MHz bandwidth. An
added benefit for such operation is that instead of sampling the entire bandwidth covered by the
RWR, the signal in each subband can be down-sampled to a sampling frequency of 100 MHz.

% Define the bandwidth of each frequency sub-band
stepFreq = 100e6;

% Calculate number of sub-bands and configure dsp.Channelizer
numChan = fs/stepFreq;
channelizer = dsp.Channelizer('NumFrequencyBands', numChan, 'StopbandAttenuation', 80);

The plot below shows the first four band created by the filter bank.

% Visualize the first four filters created in the filter bank of the
% channelizer
freqz(channelizer, 1:4)
title('Zoomed Channelizer response for first four filters')
xlim([0 0.2])

 Waveform Parameter Extraction from Received Pulse

17-459

% Pass the received data through the channelizer
subData = channelizer(yr);

The received data, subData, has 3 dimensions. The first dimension represents the fast-time, the
second dimension represents the sub-bands, and the third dimension corresponds to the receiving
elements of the receiving array. For the RWR's 10x10 antenna configuration used in this example, we
have 100 receiving elements. Because the transmit power is low and the receiver noise is high, the
radar signal is indistinguishable from the noise. Therefore the received power are summed across
these elements to enhance the signal-to-nose ratio (SNR) and get a better estimates of the power in
each subband. The band that has the maximum power is the one used by the radar.

% Rearrange the subData to combine the antenna array channels only
incohsubData = pulsint(permute(subData,[1,3,2]),'noncoherent');
incohsubData = squeeze(incohsubData);

% Plot power distribution
subbandPow = pow2db(rms(incohsubData,1).^2)+30;
plot(subbandPow);
xlabel('Band Index');
ylabel('Power (dBm)');

17 Featured Examples

17-460

% Find the sub-band with maximum power
[~,detInd] = max(subbandPow);

RWR signal processor

Although the power in the selected band is higher compared to the neighboring band, the SNR within
the band is still low, as shown in the following figure.

subData = (subData(:,detInd,:));
subData = squeeze(subData); %adjust the data to 2-D matrix

% Visualize the detected sub-band data
plot(mag2db(abs(sum(subData,2)))+30)
ylabel('Power (dBm)')
title('Detected sub-band from 100 channels combined incoherently')

 Waveform Parameter Extraction from Received Pulse

17-461

% Find the original starting frequency of the sub-band having the detected
% signal
detfBand = fs*(detInd-1)/(fs/stepFreq);

% Update the sampling frequency to the decimated frequency
fs = stepFreq;

The subData is now a two-dimensional matrix. The first dimension represents fast-time samples and
the second dimension is the data across 100 receiving antenna channels. The detected sub-band
starting frequency is calculated to find the carrier frequency of the detected signal.

The next step for the RWR is to find the direction from which the radio waves are arriving. This angle
of arrival information would be used to steer the receive antenna beam in the direction of the emitter,
and locate the emitter on the ground using single base-line approach. The RWR estimates the
direction of arrival using a two dimensional MUSIC estimator. Beam steering is done using phase-
shift beamformer to achieve maximum SNR of the signal, thus help the waveform parameter
extraction.

Assume that ground plane is flat and parallel to the xy-plane of the coordinate system. such, the RWR
can use the altitude information from its altimeter readings of the aircraft along with the direction of
arrival to triangulate the location of the emitter.

% Configure the MUSIC Estimator to find the direction of arrival of the
% signal
doaEst = phased.MUSICEstimator2D('OperatingFrequency',fc,'PropagationSpeed',c,...
 'SensorArray',antennaRx,'DOAOutputPort',true,'AzimuthScanAngles',-50:.5:50,...
 'ElevationScanAngles',-50:.5:50, 'NumSignalsSource', 'Property','NumSignals', 1);

17 Featured Examples

17-462

[mSpec,doa] = doaEst(subData);
plotSpectrum(doaEst,'Title','2-D MUSIC Spatial Spectrum Top view');
view(0,90); axis([-30 0 -30 0]);

The figure clearly shows the location of the emitter.

% Configure the beamformer object to steer the beam before combining the
% channels
beamformer = phased.PhaseShiftBeamformer('SensorArray',antennaRx,...
 'OperatingFrequency',fc,'DirectionSource','Input port');

% Apply the beamforming, and visualize the beam steered radiation
% pattern
mBeamf = beamformer(subData, doa);

% Find the location of the emitter
altimeterElev = rwrPos(3);
d = abs(altimeterElev/sind(doa(2)));

After applying the beam steering, the antenna has the maximum gain in the azimuth and elevation
angle of arrival of the signal. This further improves the SNR of the intercepted signal. Next, the
signal parameters are extracted in the signal processor using one of the time-frequency analysis
techniques known as pseudo Wigner-Ville transform coupled with Hough transform as described in
[2].

First, derive the time frequency representation of the intercepted signal using Wigner-Ville transform.

 Waveform Parameter Extraction from Received Pulse

17-463

% Compute the pseudo Wigner-Ville transform
[tpwv,t,f] = helperRWR('pWignerVille',mBeamf,fs);

% Plot the pseudo Wigner-Ville transform
imagesc(f*1e-6,t*1e6,pow2db(abs(tpwv./max(tpwv(:)))));
xlabel('Frequency (MHz)'); ylabel('Time(\mus)');
caxis([-50 0]); clb = colorbar; clb.Label.String = 'Normalized Power (dB)';
title ('Pseudo Wigner-Ville Transform')

Using human eyes, even though the resulting time frequency representation is noisy, it is not too hard
to separate the signal from the background. Each pulse appears as a line in the time frequency plane.
Thus, using beginning and end of the time-frequency lines, we can derive the pulse width and the
bandwidth of the pulse. Similarly, the time between lines from different pulses gives us the pulse
repetition interval.

To do this automatically without relying on human eyes, we use Hough transform to identify those
lines from the image. The Hough transform can perform well in the presence of noise, and is an
enhancement to the time-frequency signal analysis method.

To use Hough transform, it is necessary to convert the time frequency image into a binary image.
Next code snippet performs some data smoothing on the image and then use imbinarize to do the
conversion. The conversion threshold can be modified based on the signal-noise characteristics of the
receiver and the operating environment.

% Normalize the pseudo Wigner-Ville image
twvNorm = abs(tpwv)./max(abs(tpwv(:)));

17 Featured Examples

17-464

% Implement a median filter to clear the noise
filImag = medfilt2(twvNorm,[7 7]);

% Use threshold to convert filtered image into binary image
BW = imbinarize(filImag./max(filImag(:)), 0.15);
imagesc(f*1e-6,t*1e6,BW); colormap('gray');
xlabel('Frequency (MHz)'); ylabel('Time(\mus)');
title ('Pseudo Wigner-Ville Transform - BW')

Using Hough transform, the binary pseudo Wigner-Ville image are first transformed to peaks. This
way, instead of detecting the line in an image, we just need to detect a peak in an image.

% Compute the Hough transform of the image and plot
[H,T,R] = hough(BW);
imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;
title('Hough transform of the image')

The peak positions are extracted using houghpeaks.

% Compute peaks in the transform, up to 5 peaks
P = houghpeaks(H,5);
x = T(P(:,2)); y = R(P(:,1));
plot(x,y,'s','color','g'); xlim([-90 -50]); ylim([-5000 0])

 Waveform Parameter Extraction from Received Pulse

17-465

Using these positions, houghlines can reconstruct the lines in the original binary image. Then as
discussed earlier, the beginning and the end of these lines help us estimate the waveform parameters.

lines = houghlines(BW,T,R,P,'FillGap',3e-6*fs,'MinLength',1e-6*fs);
coord = [lines(:).point1; lines(:).point2];

% Plot the detected lines superimposed on the binary image
clf;
imagesc(f*1e-6, t*1e6, BW); colormap(gray); hold on
xlabel('Frequency (MHz)')
ylabel('Time(\mus)')
title('Hough transform - detected lines')
for ii = 1:2:2*size(lines,2)
 plot(f(coord(:,ii))*1e-6, t(coord(:,ii+1))*1e6,'LineWidth',2,'Color','green');
end

17 Featured Examples

17-466

% Calculate the parameters using the line co-ordinates
pulDur = t(coord(2,2)) - t(coord(1,2)); % Pulse duration
bWidth = f(coord(2,1)) - f(coord(1,1)); % Pulse Bandwidth
pulRI = abs(t(coord(1,4)) - t(coord(1,2))); % Pulse repetition interval
detFc = detfBand + f(coord(2,1)); % Center frequency

The extracted waveform characteristics are listed below. They match the truth very well. These
estimates can then be used to catalog the radar and prepare for counter measures if necessary.

helperRWR('displayParameters',pulRI, pulDur, bWidth,detFc, doa,d);

Pulse repetition interval = 14.97 microseconds
Pulse duration = 2.84 microseconds
Pulse bandwidth = 27 MHz
Center frequency = 1.8286 GHz
Azimuth angle of emitter = -18.5 degrees
Elevation angle of emitter = -17.5 degrees
Distance of the emitter = 3325.5095 m

Summary

This demo shows how an RWR can estimate the parameters of the intercepted radar pulse using
signal processing and image processing techniques.

 Waveform Parameter Extraction from Received Pulse

17-467

References

[1] Electronic Warfare and Radar Systems Engineering Handbook 2013, Naval Air Warfare Center
Weapons Division, Point Mugu, California.

[2] Daniel L. Stevens, Stephanie A. Schuckers, Detection and Parameter Extraction of Low Probability
of Intercept Radar Signals using the Hough Transform . Global Journal of Research In Engineering
Vol 15 Issue 6, Jan. 2016

17 Featured Examples

17-468

Massive MIMO Hybrid Beamforming
This example shows how hybrid beamforming is employed at the transmit end of a massive MIMO
communications system, using techniques for both multi-user and single-user systems. The example
employs full channel sounding for determining the channel state information at the transmitter. It
partitions the required precoding into digital baseband and analog RF components, using different
techniques for multi-user and single-user systems. Simplified all-digital receivers recover the multiple
transmitted data streams to highlight the common figures of merit for a communications system,
namely, EVM, and BER.

The example employs a scattering-based spatial channel model which accounts for the transmit/
receive spatial locations and antenna patterns. A simpler static-flat MIMO channel is also offered for
link validation purposes.

The example requires Communications Toolbox™ and Phased Array System Toolbox™.

Introduction

The ever-growing demand for high data rate and more user capacity increases the need to use the
available spectrum more efficiently. Multi-user MIMO (MU-MIMO) improves the spectrum efficiency
by allowing a base station (BS) transmitter to communicate simultaneously with multiple mobile
stations (MS) receivers using the same time-frequency resources. Massive MIMO allows the number
of BS antenna elements to be on the order of tens or hundreds, thereby also increasing the number of
data streams in a cell to a large value.

The next generation, 5G, wireless systems use millimeter wave (mmWave) bands to take advantage of
their wider bandwidth. The 5G systems also deploy large scale antenna arrays to mitigate severe
propagation loss in the mmWave band.

Compared to current wireless systems, the wavelength in the mmWave band is much smaller.
Although this allows an array to contain more elements within the same physical dimension, it
becomes much more expensive to provide one transmit-receive (TR) module, or an RF chain, for each
antenna element. Hybrid transceivers are a practical solution as they use a combination of analog
beamformers in the RF and digital beamformers in the baseband domains, with fewer RF chains than
the number of transmit elements [1].

This example uses a multi-user MIMO-OFDM system to highlight the partitioning of the required
precoding into its digital baseband and RF analog components at the transmitter end. Building on the
system highlighted in the “MIMO-OFDM Precoding with Phased Arrays” on page 17-363 example,
this example shows the formulation of the transmit-end precoding matrices and their application to a
MIMO-OFDM system.

s = rng(67); % Set RNG state for repeatability

System Parameters

Define system parameters for the example. Modify these parameters to explore their impact on the
system.

% Multi-user system with single/multiple streams per user
prm.numUsers = 4; % Number of users
prm.numSTSVec = [3 2 1 2]; % Number of independent data streams per user
prm.numSTS = sum(prm.numSTSVec); % Must be a power of 2
prm.numTx = prm.numSTS*8; % Number of BS transmit antennas (power of 2)
prm.numRx = prm.numSTSVec*4; % Number of receive antennas, per user (any >= numSTSVec)

 Massive MIMO Hybrid Beamforming

17-469

% Each user has the same modulation
prm.bitsPerSubCarrier = 4; % 2: QPSK, 4: 16QAM, 6: 64QAM, 8: 256QAM
prm.numDataSymbols = 10; % Number of OFDM data symbols

% MS positions: assumes BS at origin
% Angles specified as [azimuth;elevation] degrees
% az in range [-180 180], el in range [-90 90], e.g. [45;0]
maxRange = 1000; % all MSs within 1000 meters of BS
prm.mobileRanges = randi([1 maxRange],1,prm.numUsers);
prm.mobileAngles = [rand(1,prm.numUsers)*360-180; ...
 rand(1,prm.numUsers)*180-90];

prm.fc = 28e9; % 28 GHz system
prm.chanSRate = 100e6; % Channel sampling rate, 100 Msps
prm.ChanType = 'Scattering'; % Channel options: 'Scattering', 'MIMO'
prm.NFig = 8; % Noise figure (increase to worsen, 5-10 dB)
prm.nRays = 500; % Number of rays for Frf, Fbb partitioning

Define OFDM modulation parameters used for the system.

prm.FFTLength = 256;
prm.CyclicPrefixLength = 64;
prm.numCarriers = 234;
prm.NullCarrierIndices = [1:7 129 256-5:256]'; % Guards and DC
prm.PilotCarrierIndices = [26 54 90 118 140 168 204 232]';
nonDataIdx = [prm.NullCarrierIndices; prm.PilotCarrierIndices];
prm.CarriersLocations = setdiff((1:prm.FFTLength)', sort(nonDataIdx));

numSTS = prm.numSTS;
numTx = prm.numTx;
numRx = prm.numRx;
numSTSVec = prm.numSTSVec;
codeRate = 1/3; % same code rate per user
numTails = 6; % number of termination tail bits
prm.numFrmBits = numSTSVec.*(prm.numDataSymbols*prm.numCarriers* ...
 prm.bitsPerSubCarrier*codeRate)-numTails;
prm.modMode = 2^prm.bitsPerSubCarrier; % Modulation order
% Account for channel filter delay
numPadSym = 3; % number of symbols to zeropad
prm.numPadZeros = numPadSym*(prm.FFTLength+prm.CyclicPrefixLength);

Define transmit and receive arrays and positional parameters for the system.

prm.cLight = physconst('LightSpeed');
prm.lambda = prm.cLight/prm.fc;

% Get transmit and receive array information
[isTxURA,expFactorTx,isRxURA,expFactorRx] = helperArrayInfo(prm,true);

% Transmit antenna array definition
% Array locations and angles
prm.posTx = [0;0;0]; % BS/Transmit array position, [x;y;z], meters
if isTxURA
 % Uniform Rectangular array
 txarray = phased.PartitionedArray(...
 'Array',phased.URA([expFactorTx numSTS],0.5*prm.lambda),...
 'SubarraySelection',ones(numSTS,numTx),'SubarraySteering','Custom');

17 Featured Examples

17-470

else
 % Uniform Linear array
 txarray = phased.ULA(numTx, 'ElementSpacing',0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement('BackBaffled',false));
end
prm.posTxElem = getElementPosition(txarray)/prm.lambda;

spLoss = zeros(prm.numUsers,1);
prm.posRx = zeros(3,prm.numUsers);
for uIdx = 1:prm.numUsers

 % Receive arrays
 if isRxURA(uIdx)
 % Uniform Rectangular array
 rxarray = phased.PartitionedArray(...
 'Array',phased.URA([expFactorRx(uIdx) numSTSVec(uIdx)], ...
 0.5*prm.lambda),'SubarraySelection',ones(numSTSVec(uIdx), ...
 numRx(uIdx)),'SubarraySteering','Custom');
 prm.posRxElem = getElementPosition(rxarray)/prm.lambda;
 else
 if numRx(uIdx)>1
 % Uniform Linear array
 rxarray = phased.ULA(numRx(uIdx), ...
 'ElementSpacing',0.5*prm.lambda, ...
 'Element',phased.IsotropicAntennaElement);
 prm.posRxElem = getElementPosition(rxarray)/prm.lambda;
 else
 rxarray = phased.IsotropicAntennaElement;
 prm.posRxElem = [0; 0; 0]; % LCS
 end
 end

 % Mobile positions
 [xRx,yRx,zRx] = sph2cart(deg2rad(prm.mobileAngles(1,uIdx)), ...
 deg2rad(prm.mobileAngles(2,uIdx)), ...
 prm.mobileRanges(uIdx));
 prm.posRx(:,uIdx) = [xRx;yRx;zRx];
 [toRxRange,toRxAng] = rangeangle(prm.posTx,prm.posRx(:,uIdx));
 spLoss(uIdx) = fspl(toRxRange,prm.lambda);
end

Channel State Information

For a spatially multiplexed system, availability of channel information at the transmitter allows for
precoding to be applied to maximize the signal energy in the direction and channel of interest. Under
the assumption of a slowly varying channel, this is facilitated by sounding the channel first. The BS
sounds the channel by using a reference transmission, that the MS receiver uses to estimate the
channel. The MS transmits the channel estimate information back to the BS for calculation of the
precoding needed for the subsequent data transmission.

The following schematic shows the processing for the channel sounding modeled.

 Massive MIMO Hybrid Beamforming

17-471

For the chosen MIMO system, a preamble signal is sent over all transmitting antenna elements, and
processed at the receiver accounting for the channel. The receiver antenna elements perform pre-
amplification, OFDM demodulation, and frequency domain channel estimation for all links.

% Generate the preamble signal
prm.numSTS = numTx; % set to numTx to sound out all channels
preambleSig = helperGenPreamble(prm);

% Transmit preamble over channel
prm.numSTS = numSTS; % keep same array config for channel
[rxPreSig,chanDelay] = helperApplyMUChannel(preambleSig,prm,spLoss);

% Channel state information feedback
hDp = cell(prm.numUsers,1);
prm.numSTS = numTx; % set to numTx to estimate all links
for uIdx = 1:prm.numUsers

 % Front-end amplifier gain and thermal noise
 rxPreAmp = phased.ReceiverPreamp(...
 'Gain',spLoss(uIdx), ... % account for path loss
 'NoiseFigure',prm.NFig,'ReferenceTemperature',290, ...
 'SampleRate',prm.chanSRate);
 rxPreSigAmp = rxPreAmp(rxPreSig{uIdx});
 % scale power for used sub-carriers
 rxPreSigAmp = rxPreSigAmp * (sqrt(prm.FFTLength - ...
 length(prm.NullCarrierIndices))/prm.FFTLength);

 % OFDM demodulation
 rxOFDM = ofdmdemod(rxPreSigAmp(chanDelay(uIdx)+1: ...
 end-(prm.numPadZeros-chanDelay(uIdx)),:),prm.FFTLength, ...
 prm.CyclicPrefixLength,prm.CyclicPrefixLength, ...
 prm.NullCarrierIndices,prm.PilotCarrierIndices);

 % Channel estimation from preamble
 % numCarr, numTx, numRx
 hDp{uIdx} = helperMIMOChannelEstimate(rxOFDM(:,1:numTx,:),prm);

end

17 Featured Examples

17-472

For a multi-user system, the channel estimate is fed back from each MS, and used by the BS to
determine the precoding weights. The example assumes perfect feedback with no quantization or
implementation delays.

Hybrid Beamforming

The example uses the orthogonal matching pursuit (OMP) algorithm [3] for a single-user system and
the joint spatial division multiplexing (JSDM) technique [2, 4] for a multi-user system, to determine
the digital baseband Fbb and RF analog Frf precoding weights for the selected system configuration.

For a single-user system, the OMP partitioning algorithm is sensitive to the array response vectors
At. Ideally, these response vectors account for all the scatterers seen by the channel, but these are
unknown for an actual system and channel realization, so a random set of rays within a 3-dimensional
space to cover as many scatterers as possible is used. The prm.nRays parameter specifies the
number of rays.

For a multi-user system, JSDM groups users with similar transmit channel covariance together and
suppresses the inter-group interference by an analog precoder based on the block diagonalization
method [5]. Here each user is assigned to be in its own group, thereby leading to no reduction in the
sounding or feedback overhead.

% Calculate the hybrid weights on the transmit side
if prm.numUsers==1
 % Single-user OMP
 % Spread rays in [az;el]=[-180:180;-90:90] 3D space, equal spacing
 % txang = [-180:360/prm.nRays:180; -90:180/prm.nRays:90];
 txang = [rand(1,prm.nRays)*360-180;rand(1,prm.nRays)*180-90]; % random
 At = steervec(prm.posTxElem,txang);
 AtExp = complex(zeros(prm.numCarriers,size(At,1),size(At,2)));
 for carrIdx = 1:prm.numCarriers
 AtExp(carrIdx,:,:) = At; % same for all sub-carriers
 end

 % Orthogonal matching pursuit hybrid weights
 [Fbb,Frf] = omphybweights(hDp{1},numSTS,numSTS,AtExp);

 v = Fbb; % set the baseband precoder (Fbb)
 % Frf is same across subcarriers for flat channels
 mFrf = permute(mean(Frf,1),[2 3 1]);

else
 % Multi-user Joint Spatial Division Multiplexing
 [Fbb,mFrf] = helperJSDMTransmitWeights(hDp,prm);

 % Multi-user baseband precoding
 % Pack the per user CSI into a matrix (block diagonal)
 steeringMatrix = zeros(prm.numCarriers,sum(numSTSVec),sum(numSTSVec));
 for uIdx = 1:prm.numUsers
 stsIdx = sum(numSTSVec(1:uIdx-1))+(1:numSTSVec(uIdx));
 steeringMatrix(:,stsIdx,stsIdx) = Fbb{uIdx}; % Nst-by-Nsts-by-Nsts
 end
 v = permute(steeringMatrix,[1 3 2]);

end

% Transmit array pattern plots
if isTxURA

 Massive MIMO Hybrid Beamforming

17-473

 % URA element response for the first subcarrier
 pattern(txarray,prm.fc,-180:180,-90:90,'Type','efield', ...
 'ElementWeights',mFrf.'*squeeze(v(1,:,:)), ...
 'PropagationSpeed',prm.cLight);
else % ULA
 % Array response for first subcarrier
 wts = mFrf.'*squeeze(v(1,:,:));
 pattern(txarray,prm.fc,-180:180,-90:90,'Type','efield', ...
 'Weights',wts(:,1),'PropagationSpeed',prm.cLight);
end
prm.numSTS = numSTS; % revert back for data transmission

For the wideband OFDM system modeled, the analog weights, mFrf, are the averaged weights over
the multiple subcarriers. The array response pattern shows distinct data streams represented by the
stronger lobes. These lobes indicate the spread or separability achieved by beamforming. The
“Introduction to Hybrid Beamforming” on page 17-356 example compares the patterns realized by
the optimal, fully digital approach, with those realized from the selected hybrid approach, for a
single-user system.

Data Transmission

The example models an architecture where each data stream maps to an individual RF chain and
each antenna element is connected to each RF chain. This is shown in the following diagram.

17 Featured Examples

17-474

Next, we configure the system's data transmitter. This processing includes channel coding, bit
mapping to complex symbols, splitting of the individual data stream to multiple transmit streams,
baseband precoding of the transmit streams, OFDM modulation with pilot mapping and RF analog
beamforming for all the transmit antennas employed.

% Convolutional encoder
encoder = comm.ConvolutionalEncoder(...
 'TrellisStructure',poly2trellis(7,[133 171 165]), ...
 'TerminationMethod','Terminated');

txDataBits = cell(prm.numUsers, 1);
gridData = complex(zeros(prm.numCarriers,prm.numDataSymbols,numSTS));
for uIdx = 1:prm.numUsers
 % Generate mapped symbols from bits per user
 txDataBits{uIdx} = randi([0,1],prm.numFrmBits(uIdx),1);
 encodedBits = encoder(txDataBits{uIdx});

 % Bits to QAM symbol mapping
 mappedSym = qammod(encodedBits,prm.modMode,'InputType','bit', ...
 'UnitAveragePower',true);

 % Map to layers: per user, per symbol, per data stream
 stsIdx = sum(numSTSVec(1:(uIdx-1)))+(1:numSTSVec(uIdx));
 gridData(:,:,stsIdx) = reshape(mappedSym,prm.numCarriers, ...
 prm.numDataSymbols,numSTSVec(uIdx));
end

% Apply precoding weights to the subcarriers, assuming perfect feedback
preData = complex(zeros(prm.numCarriers,prm.numDataSymbols,numSTS));
for symIdx = 1:prm.numDataSymbols
 for carrIdx = 1:prm.numCarriers
 Q = squeeze(v(carrIdx,:,:));
 normQ = Q * sqrt(numTx)/norm(Q,'fro');
 preData(carrIdx,symIdx,:) = squeeze(gridData(carrIdx,symIdx,:)).' ...
 * normQ;
 end
end

% Multi-antenna pilots
pilots = helperGenPilots(prm.numDataSymbols,numSTS);

 Massive MIMO Hybrid Beamforming

17-475

% OFDM modulation of the data
txOFDM = ofdmmod(preData,prm.FFTLength,prm.CyclicPrefixLength,...
 prm.NullCarrierIndices,prm.PilotCarrierIndices,pilots);
% scale power for used sub-carriers
txOFDM = txOFDM * (prm.FFTLength/ ...
 sqrt((prm.FFTLength-length(prm.NullCarrierIndices))));

% Generate preamble with the feedback weights and prepend to data
preambleSigD = helperGenPreamble(prm,v);
txSigSTS = [preambleSigD;txOFDM];

% RF beamforming: Apply Frf to the digital signal
% Each antenna element is connected to each data stream
txSig = txSigSTS*mFrf;

For the selected, fully connected RF architecture, each antenna element uses prm.numSTS phase
shifters, as given by the individual columns of the mFrf matrix.

The processing for the data transmission and reception modeled is shown below.

Signal Propagation

The example offers an option for spatial MIMO channel and a simpler static-flat MIMO channel for
validation purposes.

The scattering model uses a single-bounce ray tracing approximation with a parametrized number of
scatterers. For this example, the number of scatterers is set to 100. The 'Scattering' option models
the scatterers placed randomly within a sphere around the receiver, similar to the one-ring model
[6].

The channel models allow path-loss modeling and both line-of-sight (LOS) and non-LOS propagation
conditions. The example assumes non-LOS propagation and isotropic antenna element patterns with
linear or rectangular geometry.

17 Featured Examples

17-476

% Apply a spatially defined channel to the transmit signal
[rxSig,chanDelay] = helperApplyMUChannel(txSig,prm,spLoss,preambleSig);

The same channel is used for both sounding and data transmission. The data transmission has a
longer duration and is controlled by the number of data symbols parameter, prm.numDataSymbols.
The channel evolution between the sounding and transmission stages is modeled by prepending the
preamble signal to the data signal. The preamble primes the channel to a valid state for the data
transmission, and is ignored from the channel output.

For a multi-user system, independent channels per user are modeled.

Receive Amplification and Signal Recovery

The receiver modeled per user compensates for the path loss by amplification and adds thermal
noise. Like the transmitter, the receiver used in a MIMO-OFDM system contains many stages
including OFDM demodulation, MIMO equalization, QAM demapping, and channel decoding.

hfig = figure('Name','Equalized symbol constellation per stream');
scFact = ((prm.FFTLength-length(prm.NullCarrierIndices))...
 /prm.FFTLength^2)/numTx;
nVar = noisepow(prm.chanSRate,prm.NFig,290)/scFact;
decoder = comm.ViterbiDecoder('InputFormat','Unquantized', ...
 'TrellisStructure',poly2trellis(7, [133 171 165]), ...
 'TerminationMethod','Terminated','OutputDataType','double');

for uIdx = 1:prm.numUsers
 stsU = numSTSVec(uIdx);
 stsIdx = sum(numSTSVec(1:(uIdx-1)))+(1:stsU);

 % Front-end amplifier gain and thermal noise
 rxPreAmp = phased.ReceiverPreamp(...
 'Gain',spLoss(uIdx), ... % account for path loss
 'NoiseFigure',prm.NFig,'ReferenceTemperature',290, ...
 'SampleRate',prm.chanSRate);
 rxSigAmp = rxPreAmp(rxSig{uIdx});

 % Scale power for occupied sub-carriers
 rxSigAmp = rxSigAmp*(sqrt(prm.FFTLength-length(prm.NullCarrierIndices)) ...
 /prm.FFTLength);

 % OFDM demodulation
 rxOFDM = ofdmdemod(rxSigAmp(chanDelay(uIdx)+1: ...
 end-(prm.numPadZeros-chanDelay(uIdx)),:),prm.FFTLength, ...
 prm.CyclicPrefixLength,prm.CyclicPrefixLength, ...
 prm.NullCarrierIndices,prm.PilotCarrierIndices);

 % Channel estimation from the mapped preamble
 hD = helperMIMOChannelEstimate(rxOFDM(:,1:numSTS,:),prm);

 % MIMO equalization
 % Index into streams for the user of interest
 [rxEq,CSI] = helperMIMOEqualize(rxOFDM(:,numSTS+1:end,:),hD(:,stsIdx,:));

 % Soft demodulation
 rxSymbs = rxEq(:)/sqrt(numTx);
 rxLLRBits = qamdemod(rxSymbs,prm.modMode,'UnitAveragePower',true, ...
 'OutputType','approxllr','NoiseVariance',nVar);

 Massive MIMO Hybrid Beamforming

17-477

 % Apply CSI prior to decoding
 rxLLRtmp = reshape(rxLLRBits,prm.bitsPerSubCarrier,[], ...
 prm.numDataSymbols,stsU);
 csitmp = reshape(CSI,1,[],1,numSTSVec(uIdx));
 rxScaledLLR = rxLLRtmp.*csitmp;

 % Soft-input channel decoding
 rxDecoded = decoder(rxScaledLLR(:));

 % Decoded received bits
 rxBits = rxDecoded(1:prm.numFrmBits(uIdx));

 % Plot equalized symbols for all streams per user
 scaler = ceil(max(abs([real(rxSymbs(:)); imag(rxSymbs(:))])));
 for i = 1:stsU
 subplot(prm.numUsers, max(numSTSVec), (uIdx-1)*max(numSTSVec)+i);
 plot(reshape(rxEq(:,:,i)/sqrt(numTx), [], 1), '.');
 axis square
 xlim(gca,[-scaler scaler]);
 ylim(gca,[-scaler scaler]);
 title(['U ' num2str(uIdx) ', DS ' num2str(i)]);
 grid on;
 end

 % Compute and display the EVM
 evm = comm.EVM('Normalization','Average constellation power', ...
 'ReferenceSignalSource','Estimated from reference constellation', ...
 'ReferenceConstellation', ...
 qammod((0:prm.modMode-1)',prm.modMode,'UnitAveragePower',1));
 rmsEVM = evm(rxSymbs);
 disp(['User ' num2str(uIdx)]);
 disp([' RMS EVM (%) = ' num2str(rmsEVM)]);

 % Compute and display bit error rate
 ber = comm.ErrorRate;
 measures = ber(txDataBits{uIdx},rxBits);
 fprintf(' BER = %.5f; No. of Bits = %d; No. of errors = %d\n', ...
 measures(1),measures(3),measures(2));
end

User 1
 RMS EVM (%) = 0.38361
 BER = 0.00000; No. of Bits = 9354; No. of errors = 0
User 2
 RMS EVM (%) = 1.0311
 BER = 0.00000; No. of Bits = 6234; No. of errors = 0
User 3
 RMS EVM (%) = 2.1462
 BER = 0.00000; No. of Bits = 3114; No. of errors = 0
User 4
 RMS EVM (%) = 1.0024
 BER = 0.00000; No. of Bits = 6234; No. of errors = 0

17 Featured Examples

17-478

For the MIMO system modeled, the displayed receive constellation of the equalized symbols offers a
qualitative assessment of the reception. The actual bit error rate offers the quantitative figure by
comparing the actual transmitted bits with the received decoded bits per user.

rng(s); % restore RNG state

Conclusion and Further Exploration

The example highlights the use of hybrid beamforming for multi-user MIMO-OFDM systems. It allows
you to explore different system configurations for a variety of channel models by changing a few
system-wide parameters.

The set of configurable parameters includes the number of users, number of data streams per user,
number of transmit/receive antenna elements, array locations, and channel models. Adjusting these
parameters you can study the parameters' individual or combined effects on the overall system. As
examples, vary:

• the number of users, prm.numUsers, and their corresponding data streams, prm.numSTSVec, to
switch between multi-user and single-user systems, or

• the channel type, prm.ChanType, or
• the number of rays, prm.nRays, used for a single-user system.

Explore the following helper functions used by the example:

• helperApplyMUChannel.m

 Massive MIMO Hybrid Beamforming

17-479

• helperArrayInfo.m
• helperGenPreamble.m
• helperGenPilots.m
• helperJSDMTransmitWeights.m
• helperMIMOChannelEstimate.m
• helperMIMOEqualize.m

References

1 Molisch, A. F., et al. "Hybrid Beamforming for Massive MIMO: A Survey." IEEE®
Communications Magazine, Vol. 55, No. 9, September 2017, pp. 134-141.

2 Li Z., S. Han, and A. F. Molisch. "Hybrid Beamforming Design for Millimeter-Wave Multi-User
Massive MIMO Downlink." IEEE ICC 2016, Signal Processing for Communications Symposium.

3 El Ayach, Oma, et al. "Spatially Sparse Precoding in Millimeter Wave MIMO Systems." IEEE
Transactions on Wireless Communications, Vol. 13, No. 3, March 2014, pp. 1499-1513.

4 Adhikary A., J. Nam, J-Y Ahn, and G. Caire. "Joint Spatial Division and Multiplexing - The Large-
Scale Array Regime." IEEE Transactions on Information Theory, Vol. 59, No. 10, October 2013,
pp. 6441-6463.

5 Spencer Q., A. Swindlehurst, M. Haardt, "Zero-Forcing Methods for Downlink Spatial
Multiplexing in Multiuser MIMO Channels." IEEE Transactions on Signal Processing, Vol. 52, No.
2, February 2004, pp. 461-471.

6 Shui, D. S., G. J. Foschini, M. J. Gans and J. M. Kahn. "Fading Correlation and its Effect on the
Capacity of Multielement Antenna Systems." IEEE Transactions on Communications, Vol. 48, No.
3, March 2000, pp. 502-513.

17 Featured Examples

17-480

Multicore Simulation of Test Signals for a Radar Receiver
This example simulates a monostatic radar system. It uses dataflow domain in Simulink® to
automatically partition the data-driven portions of the radar system into multiple threads and thereby
improving the performance of the simulation by executing it on your desktop's multiple cores.

Introduction

The dataflow execution domain allows you to make use of multiple cores in the simulation of
computationally intensive systems. This example shows how dataflow as the execution domain of a
subsystem improves simulation performance of the model. To learn more about dataflow and how to
run Simulink models using multiple threads, see “Multicore Execution using Dataflow Domain”.

Monostatic Radar with One Target

This example simulates a simple end-to-end monostatic radar. Rectangular pulses are amplified by the
transmitter block then propagated to and from a target in free-space. Noise and amplification are
then applied in the receiver preamp block to the return signal, followed by a matched filter. Range
losses are compensated for and the pulses are noncoherently integrated.

Setting up the Dataflow Subsystem

This example uses dataflow domain in Simulink to make use of multiple cores on your desktop to
improve simulation performance. The Domain parameter of the Dataflow Subsystem in this model is
set as Dataflow. You can view this by selecting the subsystem and then selecting View>Property
Inspector. Dataflow domains automatically partition your model and simulate the system using
multiple threads for better simulation performance. Once you set the Domain parameter to Dataflow,
you can use Dataflow Simulation Assistant to analyze your model to get better performance. You can
open the Dataflow Simulation Assistant by clicking on the Dataflow assistant button below the
Automatic frame size calculation parameter in Property Inspector.

 Multicore Simulation of Test Signals for a Radar Receiver

17-481

17 Featured Examples

17-482

Analyzing Concurrency in Dataflow Subsystem

The Dataflow Simulation Assistant suggests changing model settings for optimal simulation
performance. To accept the proposed model settings, next to Suggested model settings for
simulation performance, click Accept all. Alternatively, you can expand the section to change the
settings individually. In this example the model settings are already optimal. In the Dataflow
Simulation Assistant, click the Analyze button to start the analysis of the dataflow domain for
simulation performance. Once the analysis is finished, the Dataflow Simulation Assistant shows how
many threads the dataflow subsystem will use during simulation.

After analyzing the model, the assistant shows one thread because the data dependency between the
blocks in the model prevents blocks from being executed concurrently. By pipelining the data
dependent blocks, the Dataflow Subsystem can increase concurrency for higher data throughput.
Dataflow Simulation Assistant shows the recommended number of pipeline delays as Suggested
Latency. The suggested latency value is computed to give the best performance.

 Multicore Simulation of Test Signals for a Radar Receiver

17-483

The following diagram shows the Dataflow Simulation Assistant where the Dataflow Subsystem
currently specifies a latency value of zero, and the suggested latency for the system is four.

Click the Accept button next to Suggested Latency in the Dataflow Simulation Assistant to use the
recommended latency for the Dataflow Subsystem.

Dataflow Simulation Assistant now shows the number of threads as four meaning that the blocks
inside the dataflow subsystem simulate in parallel using four threads. Use of four pipeline delays
increased the number of blocks that can be run in parallel inside Dataflow Subsystem. Latency value
can also be entered directly in the Property Inspector for "Latency" parameter. Simulink shows the
latency parameter value using tags at the output ports of the dataflow subsystem.

17 Featured Examples

17-484

Multicore Simulation Performance

We measure the performance improvement of using dataflow domain by comparing the execution
time taken for running the model with and without using dataflow. Execution time is measured using
the sim command, which returns the simulation execution time of the model. These numbers and
analysis were published on a Windows® desktop computer with Intel® Xeon® CPU W-2133 @ 3.6
GHz 6 Cores 12 Threads processor.

Simulation execution time for multithreaded model = 19.26s
Simulation execution time for single-threaded model = 24.39s
Actual speedup with dataflow: 1.3x

Summary

This example shows how dataflow execution domain can improve performance in simulation of a
radar system by using multiple cores on the desktop.

 Multicore Simulation of Test Signals for a Radar Receiver

17-485

Multicore Simulation of Audio Beamforming System
This example shows how an audio beamforming system simulation model in Simulink® can have
improved performance using dataflow domain. It uses the dataflow domain in Simulink to
automatically partition the data-driven portions of the communications system into multiple threads
and thereby improving the performance of the simulation by executing it on your desktop's multiple
cores.

Introduction

The dataflow execution domain allows you to make use of multiple cores in the simulation of
computationally intensive systems. This example shows how dataflow as the execution domain of a
subsystem improves simulation performance of the model. To learn more about dataflow and how to
run Simulink models using multiple threads, see “Multicore Execution using Dataflow Domain”.

Acoustic Beamforming

This example shows acoustic beamforming using a uniform linear array (ULA) of microphones. The
model simulates the reception of three audio signals from different directions on a 10-element
uniformly spaced linear microphone array. After the addition of thermal noise at the receiver,
beamforming is applied for different source angles and the result is played on a sound device. The
audio source that needs to be played in the audio player can be selected using the dialog from the
Select Source block.

Setting up Dataflow Subsystem

This example uses dataflow domain in Simulink to make use of multiple cores on your desktop to
improve simulation performance. The Domain parameter of the Dataflow Subsystem in this model is
set as Dataflow. You can view this by selecting the subsystem and then selecting View>Property
Inspector. Dataflow domains automatically partition your model and simulate the system using
multiple threads for better simulation performance. Once you set the Domain parameter to Dataflow,
you can use Dataflow Simulation Assistant to analyze your model to get better performance. You can

17 Featured Examples

17-486

open the Dataflow Simulation Assistant, by clicking on the Dataflow assistant button below the
Automatic frame size calculation parameter in Property Inspector.

 Multicore Simulation of Audio Beamforming System

17-487

Analyzing Concurrency in Dataflow Subsystem

The Dataflow Simulation Assistant suggests changing model settings for optimal simulation
performance. To accept the proposed model settings, next to Suggested model settings for
simulation performance, click Accept all. Alternatively, you can expand the section to change the
settings individually. In this example the model settings are already optimal. In the Dataflow
Simulation Assistant, click the Analyze button to start the analysis of the dataflow domain for
simulation performance. Once the analysis is finished, the Dataflow Simulation Assistant shows how
many threads the dataflow subsystem will use during simulation.

After analyzing the model, the assistant shows three threads. This is because the three beamformer
blocks are computationally intensive and can run in parallel. The three beamformer blocks however,
depend on the Microphone Array and the Receiver blocks. Pipeline delays can be used to break this
dependency and increase concurrency. The Dataflow Simulation Assistant shows the recommended
number of pipeline delays as Suggested Latency. The suggested latency value is computed to give the
best performance.

17 Featured Examples

17-488

The following diagram shows the Dataflow Simulation Assistant where the Dataflow Subsystem
currently specifies a latency value of zero, and the suggested latency for the system is one. Click the
Accept button next to Suggested Latency in the Dataflow Simulation Assistant to use the
recommended latency for the Dataflow Subsystem. Latency value can also be entered directly in the
Property Inspector for "Latency" parameter. Simulink shows the latency parameter value using
tags at the output ports of the dataflow subsystem.

Multicore Simulation Performance

We measure the performance improvement of using dataflow domain by comparing the execution
time taken for running model with and without using dataflow. Execution time is measured using the
sim command, which returns the simulation execution time of the model. These numbers and analysis
were published on a Windows® desktop computer with Intel® Xeon® CPU W-2133 @ 3.6 GHz 6
Cores 12 Threads processor.

Simulation execution time for multithreaded model = 4.03s
Simulation execution time for single-threaded model = 6.26s
Actual speedup with dataflow: 1.6x

Summary

This example shows how multithreading using dataflow domain can improve performance in a
monostatic radar system simulation model using multiple cores on the desktop.

 Multicore Simulation of Audio Beamforming System

17-489

802.11ad Single Carrier Link with RF Beamforming in Simulink
This example shows how to model an IEEE® 802.11ad™ single carrier link in Simulink® which
includes a phased array antenna with RF beamforming. This example requires the following products:

• WLAN Toolbox™ for baseband transmitter and receiver

• Phased Array System Toolbox™ for receive antenna array

• RF Blockset™ for RF receiver

Introduction

This model simulates an 802.11ad single carrier (SC) [1] link with RF beamforming. Multiple
packets are transmitted through free space, then RF beamformed, demodulated and the PLCP service
data units (PSDU) are recovered. The PSDUs are compared with those transmitted to determine the
packet error rate. The receiver performs packet detection, timing synchronization, carrier frequency
offset correction and unique word based phase tracking.

The MATLAB function block allows Simulink models to use MATLAB® functions. In this example, an
802.11ad SC link modeled in Simulink uses WLAN Toolbox functions called using MATLAB function
blocks. For an 802.11ad baseband simulation in MATLAB, see the example “802.11ad Packet Error
Rate Single Carrier PHY Simulation with TGay Channel” (WLAN Toolbox).

17 Featured Examples

17-490

System Architecture

The system consists of:

• A baseband transmitter which generates a random PSDU and an 802.11ad SC packet.
• A free space channel.
• A receive antenna array which supports up to 16 elements. This module allows control of the array

geometry, number of elements in an array, operating frequency, and receiver direction.
• A 16 channel RF receiver module to process the RF signals. This receiver module includes low

noise amplifiers, phase shifters, Wilkinson 16:1 combiner, and a down-converter. This module
allows control of the beamforming direction used to calculate the corresponding phase shifts.

• A baseband receiver which recovers the transmitted PSDU by performing packet detection, time
and frequency synchronization, channel estimation, PSDU demodulation, and decoding.

The system diagnostics includes the display of equalized constellation and the obtained packet error
rate.

The following sections describe the transmitter and receiver in more detail.

Baseband Transmitter

The baseband transmitter block creates a random PSDU and encodes the bits to create a single
packet waveform based on the MCS and PSDU length values in the Model Parameters block. The
packet generator block uses the function wlanWaveformGenerator (WLAN Toolbox) to encode a
packet.

 802.11ad Single Carrier Link with RF Beamforming in Simulink

17-491

RF Receiver

The RF receiver consists of amplifiers, phase shifters, Wilkinson 16:1 combiner and is implemented in
superheterodyne fashion.

17 Featured Examples

17-492

The phase shift applied to each element is calculated based on the beamforming direction. This is
provided by the user and indicates the direction of the main beam. The receiver maximizes the SNR
when the receiver's main beam points to the transmitter. Transmitter is omnidirectional and the

 802.11ad Single Carrier Link with RF Beamforming in Simulink

17-493

receiver direction (az,el) indicates the direction of incident signal. The scenario where the receiver
direction and the beamforming direction are different is shown. In this case, there will be a reduction
in the received signal power leading to high packet error rate (PER) and error vector magnitude
(EVM). The results section shows these values.

Baseband Receiver

The baseband receiver has two components: packet detection and packet recovery.

If a packet is detected, the packet recovery subsystem is enabled to process the detected packet.

The packet recovery subsystem processing consists of the following steps:

1 Frequency offset estimation and correction.
2 Symbol timing and channel frequency response estimation.
3 Noise power estimation.
4 Synchronization error checking. This determines whether the packet can be decoded or not.
5 Packet decoding.

17 Featured Examples

17-494

In the packet decoder subsystem, the SC data field is extracted from the synchronized received
waveform. Then, the PSDU is recovered using the extracted field, channel, and noise power
estimates.

Results

Running the simulation displays the packet error rate. The model updates the PER after processing
each packet. The model also displays the equalized symbol constellation along with the EVM
measurement. Note that for statistically valid results, long simulation times are required.

By default, the main beam of the receive antenna array points towards the direction: azimuth = 0
deg. and elevation = 0 deg.

 802.11ad Single Carrier Link with RF Beamforming in Simulink

17-495

If you change the Receiver direction value in the receive antenna array towards a proximity null
in the array radiation, the EVM increases and the packets cannot be successfully decoded.

17 Featured Examples

17-496

 802.11ad Single Carrier Link with RF Beamforming in Simulink

17-497

If you change the Beamforming direction value in the RF receiver such that the main beam
points towards the transmitter, the EVM improves and packets are successfully decoded.

Exploring the Example

• Try changing the signal to noise ratio (SNR) value in the Model Parameters block. Increasing SNR
leads to lower packet error rates and improved EVM of equalized symbols constellation. The SNR

17 Featured Examples

17-498

specified is the signal to noise ratio at the input to the ADC, if a single receive chain is used. The
SNR accounts for free space path loss, thermal noise and the noise figure of RF components.

• You can change the array geometry and the number of elements in an array present in the receive
antenna array block. Increasing the number of antenna elements improves the EVM. The diversity
gain due to receiver antenna array can be observed in the equalized symbols constellation.

Appendix

This example uses the following helper functions:

• dmgCFOEstimate.m
• dmgPacketDetect.m
• dmgSingleCarrierFDE.m
• dmgSTFNoiseEstimate.m
• dmgTimingAndChannelEstimate.m
• dmgUniqueWordPhaseTracking.m
• helperFrequencyOffset.m

Selected Bibliography

1 IEEE Std 802.11ad™-2012 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

 802.11ad Single Carrier Link with RF Beamforming in Simulink

17-499

802.11ad Waveform Generation with Beamforming
This example shows how to beamform an IEEE® 802.11ad™ DMG waveform with a phased array
using WLAN Toolbox™ and Phased Array System Toolbox™.

Introduction

IEEE 802.11ad [1] defines the directional multi-gigabit (DMG) transmission format operating at 60
GHz. To overcome the large path loss experienced at 60 GHz, the IEEE 802.11ad standard is
designed to support directional beamforming. By using phased antenna arrays you can apply an
antenna weight vector (AWV) to focus the antenna pattern in the desired direction. Each packet is
transmitted on all array elements, but the AWV applies a phase shift to each element to steer the
transmission. The quality of a communication link can be improved by appending optional training
fields to DMG packets, and testing different AWVs at the transmitter or receiver. This process is
called beam refinement.

A DMG packet consists of the following fields:

1 STF - The short training field, which is used for synchronization.
2 CE - Channel estimation field, which is used for channel estimation.
3 Header - The signaling field, which the receiver decodes to determine transmission parameters.
4 Data - The data field, which carries the user data payload.
5 AGC Subfields - Optional automatic gain control (AGC) subfields, used for beam refinement.
6 Training Subfields - Optional training subfields, used for beam refinement.

The STF and CE fields form the preamble. The preamble, header, and data fields of a DMG packet are
transmitted with the same AWV. For transmitter beam refinement training, up to 64 training (TRN)
subfields can be appended to the packet. Each TRN subfield is transmitted using a different AWV. This
allows the performance of up to 64 different AWVs to be measured, and the AWV for the preamble,
header, and data fields to be refined for subsequent transmissions. CE subfields are periodically
transmitted, one for every four TRN subfields, amongst the TRN subfields. Each CE subfield is
transmitted using the same AWV as the preamble. To allow the receiver to reconfigure AGC before
receiving the TRN subfields, the TRN subfields are preceded by AGC subfields. For each TRN
subfield, an AGC subfield is transmitted using the same AWV applied to the individual TRN subfield.
This allows a gain to be set at the receiver, suitable to measuring all TRN subfields. The diagram
below shows the packet structure with four AGC and TRN subfields numbered and highlighted.
Therefore, four AWVs are tested as part of beam refinement. The same AWVs are applied to AGC and
TRN subfields with the same number.

This example simulates transmitter training by applying different AWVs to each of the training
subfields to steer the transmission in multiple directions. The strength of each training subfield is

17 Featured Examples

17-500

evaluated at a receiver by evaluating the far-field plane wave to determine which transmission AWV
is optimal. This simulation does not include a channel or path loss.

This example requires “WLAN Toolbox” and “Phased Array System Toolbox”.

Waveform Specification

The waveform is configured for a DMG packet transmission with the orthogonal frequency-division
multiplexing (OFDM) physical layer, a 100-byte physical layer service data unit (PSDU), and four
transmitter training subfields. The four training subfields allow four AWVs to be tested for beam
refinement. Using the function wlanDMGConfig (WLAN Toolbox), create a DMG configuration object.
A DMG configuration object specifies transmission parameters.

dmg = wlanDMGConfig;
dmg.MCS = 13; % OFDM
dmg.TrainingLength = 4; % Use 4 training subfields
dmg.PacketType = 'TRN-T'; % Transmitter training
dmg.PSDULength = 100; % Bytes

Beamforming Specification

The transmitter antenna pattern is configured as a 16-element uniform linear array with half-
wavelength spacing. Using the objects phased.ULA and phased.SteeringVector, create the
phased array and the AWVs. The location of the receiver for evaluating the transmission is specified
as an offset from the boresight of the transmitter.

receiverAz = 6; % Degrees off the transmitter's boresight

A uniform linear phased array with 16 elements is created to steer the transmission.

N = 16; % Number of elements
c = physconst('LightSpeed'); % Propagation speed (m/s)
fc = 60.48e9; % Center frequency (Hz)
lambda = c/fc; % Wavelength (m)
d = lambda/2; % Antenna element spacing (m)
TxArray = phased.ULA('NumElements',N,'ElementSpacing',d);

The AWVs are created using a phased.SteeringVector object. Five steering angles are specified
to create five AWVs, one for the preamble and data fields, and one for each of the four the training
subfields. The preamble and data fields are transmitted at boresight. The four training subfields are
transmitted at angles around boresight.

% Create a directional steering vector object
SteeringVector = phased.SteeringVector('SensorArray',TxArray);

% The directional angle for the preamble and data is 0 degrees azimuth, no
% elevation, therefore at boresight. [Azimuth; Elevation]
preambleDataAngle = [0; 0];

% Each of the four training fields uses a different set of weights to steer
% to a slightly different direction. [Azimuth; Elevation]
trnAngle = [[-10; 0] [-5; 0] [5; 0] [10; 0]];

% Generate the weights for all of the angles
weights = SteeringVector(fc,[preambleDataAngle trnAngle]);

% Each row of the AWV is a weight to apply to a different antenna element

 802.11ad Waveform Generation with Beamforming

17-501

preambleDataAWV = conj(weights(:,1)); % AWV used for preamble, data and CE fields
trnAWV = conj(weights(:,2:end)); % AWV used for each TRN subfield

Using the plotArrayResponse helper function, the array response shows the direction of the receiver
is most aligned with the direction of training subfield TRN-SF3.

plotArrayResponse(TxArray,receiverAz,fc,weights);

Generate Baseband Waveform

Use the configured DMG object and a PSDU filled with random data as inputs to the waveform
generator, wlanWaveformGenerator (WLAN Toolbox). The waveform generator modulates PSDU
bits according to a format configuration and also performs OFDM windowing.

% Create a PSDU of random bits
s = rng(0); % Set random seed for repeatable results
psdu = randi([0 1],dmg.PSDULength*8,1);

% Generate packet
tx = wlanWaveformGenerator(psdu,dmg);

Apply Weight Vectors to Each Field

A phased.Radiator object is created to apply the AWVs to the waveform, combine the radiated
signal from each element to form a plane wave, and determine the plane wave at the angle of
interest, receiverAz. Each portion of the DMG waveform tx is passed through the Radiator with a
specified set of AWVs, and the angle at which to evaluate the plane wave.

17 Featured Examples

17-502

Radiator = phased.Radiator;
Radiator.Sensor = TxArray; % Use the uniform linear array
Radiator.WeightsInputPort = true; % Provide AWV as argument
Radiator.OperatingFrequency = fc; % Frequency in Hertz
Radiator.CombineRadiatedSignals = true; % Create plane wave

% The plane wave is evaluated at a direction relative to the radiator
steerAngle = [receiverAz; 0]; % [Azimuth; Elevation]

% The beamformed waveform is evaluated as a plane wave at the receiver
planeWave = zeros(size(tx));

% Get indices for fields
ind = wlanFieldIndices(dmg);

% Get the plane wave while applying the AWV to the preamble, header, and data
idx = (1:ind.DMGData(2));
planeWave(idx) = Radiator(tx(idx),steerAngle,preambleDataAWV);

% Get the plane wave while applying the AWV to the AGC and TRN subfields
for i = 1:dmg.TrainingLength
 % AGC subfields
 agcsfIdx = ind.DMGAGCSubfields(i,1):ind.DMGAGCSubfields(i,2);
 planeWave(agcsfIdx) = Radiator(tx(agcsfIdx),steerAngle,trnAWV(:,i));
 % TRN subfields
 trnsfIdx = ind.DMGTRNSubfields(i,1):ind.DMGTRNSubfields(i,2);
 planeWave(trnsfIdx) = Radiator(tx(trnsfIdx),steerAngle,trnAWV(:,i));
end

% Get the plane wave while applying the AWV to the TRN-CE
for i = 1:dmg.TrainingLength/4
 trnceIdx = ind.DMGTRNCE(i,1):ind.DMGTRNCE(i,2);
 planeWave(trnceIdx) = Radiator(tx(trnceIdx),steerAngle,preambleDataAWV);
end

Evaluate the Beamformed Waveform

The helper function plotDMGWaveform plots the magnitude of the beamformed plane wave. When
evaluating the magnitude of the beamformed plane wave we can see that the fields beamformed in
the direction of the receiver are stronger than other fields.

plotDMGWaveform(planeWave,dmg,'Beamformed Plane Wave with Fields Highlighted');

rng(s); % Restore random state

 802.11ad Waveform Generation with Beamforming

17-503

Conclusion

This example showed how to generate an IEEE 802.11ad DMG waveform and apply AWVs to different
portions of the waveform. The example uses WLAN Toolbox to generate a standard-compliant
waveform, and Phased Array System Toolbox to apply the AWVs and evaluate the magnitude of the
resultant plane wave in the direction of a receiver.

Appendix

This example uses the following helper functions:

• plotArrayResponse.m
• plotDMGWaveform.m

Selected Bibliography

1 IEEE Std 802.11ad™-2012 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

17 Featured Examples

17-504

Radar and Communications Waveform Classification Using
Deep Learning

This example shows how to classify radar and communications waveforms using the Wigner-Ville
distribution (WVD) and a deep convolutional neural network (CNN).

Modulation classification is an important function for an intelligent receiver. Modulation classification
has numerous applications, such as cognitive radar and software-defined radio. Typically, to identify
these waveforms and classify them by modulation type it is necessary to define meaningful features
and input them into a classifier. While effective, this procedure can require extensive effort and
domain knowledge to yield an accurate classification. This example explores a framework to
automatically extract time-frequency features from signals and perform signal classification using a
deep learning network.

The first part of this example simulates a radar classification system that synthesizes three pulsed
radar waveforms and classifies them. The radar waveforms are:

• Rectangular
• Linear frequency modulation (LFM)
• Barker Code

A radar classification system does not exist in isolation. Rather, it resides in an increasingly occupied
frequency spectrum, competing with other transmitted sources such as communications systems,
radio, and navigation systems. The second part of this example extends the network to include
additional communication modulation types. In addition to the first set of radar waveforms, the
extended network synthesizes and identifies these communication waveforms:

• Gaussian frequency shift keying (GFSK)
• Continuous phase frequency shift keying (CPFSK)
• Broadcast frequency modulation (B-FM)
• Double sideband amplitude modulation (DSB-AM)
• Single sideband amplitude modulation (SSB-AM)

This example primarily focuses on radar waveforms, with the classification being extended to include
a small set of amplitude and frequency modulation communications signals. See “Modulation
Classification with Deep Learning” (Communications Toolbox) for a full workflow of modulation
classification with a wide array of communication signals.

Generate Radar Waveforms

Generate 3000 signals with a sample rate of 100 MHz for each modulation type. Use
phased.RectangularWaveform for rectangular pulses, phased.LinearFMWaveform for LFM, and
phased.PhaseCodedWaveform for phase coded pulses with Barker code.

Each signal has unique parameters and is augmented with various impairments to make it more
realistic. For each waveform, the pulse width and repetition frequency will be randomly generated.
For LFM waveforms, the sweep bandwidth and direction are randomly generated. For Barker
waveforms, the chip width and number are generated randomly. All signals are impaired with white
Gaussian noise using the awgn function with a random signal-to-noise ratio in the range of [–6, 30]
dB. A frequency offset with a random carrier frequency in the range of [Fs/6, Fs/5] is applied to

 Radar and Communications Waveform Classification Using Deep Learning

17-505

each signal using the comm.PhaseFrequencyOffset object. Lastly, each signal is passed through a
multipath Rician fading channel, comm.RicianChannel.

The provided helper function helperGenerateRadarWaveforms creates and augments each
modulation type.

rng default
[wav, modType] = helperGenerateRadarWaveforms();

Plot the Fourier transform for a few of the LFM waveforms to show the variances in the generated
set.

idLFM = find(modType == "LFM",3);
nfft = 2^nextpow2(length(wav{1}));
f = (0:(nfft/2-1))/nfft*100e6;

figure
subplot(1,3,1)
Z = fft(wav{idLFM(1)},nfft);
plot(f/1e6,abs(Z(1:nfft/2)))
xlabel('Frequency (MHz)');ylabel('Amplitude');axis square
subplot(1,3,2)
Z = fft(wav{idLFM(2)},nfft);
plot(f/1e6,abs(Z(1:nfft/2)))
xlabel('Frequency (MHz)');ylabel('Amplitude');axis square
subplot(1,3,3)
Z = fft(wav{idLFM(3)},nfft);
plot(f/1e6,abs(Z(1:nfft/2)))
xlabel('Frequency (MHz)');ylabel('Amplitude');axis square

17 Featured Examples

17-506

Feature Extraction Using Wigner-Ville Distribution

To improve the classification performance of machine learning algorithms, a common approach is to
input extracted features in place of the original signal data. The features provide a representation of
the input data that makes it easier for a classification algorithm to discriminate across the classes.
The Wigner-Ville distribution represents a time-frequency view of the original data that is useful for
time varying signals. The high resolution and locality in both time and frequency provide good
features for the identification of similar modulation types. Use the wvd function to compute the
smoothed pseudo WVD for each of the modulation types.

figure
subplot(1,3,1)
wvd(wav{find(modType == "Rect",1)},100e6,'smoothedPseudo')
axis square; colorbar off; title('Rect')
subplot(1,3,2)
wvd(wav{find(modType == "LFM",1)},100e6,'smoothedPseudo')
axis square; colorbar off; title('LFM')
subplot(1,3,3)
wvd(wav{find(modType == "Barker",1)},100e6,'smoothedPseudo')
axis square; colorbar off; title('Barker')

 Radar and Communications Waveform Classification Using Deep Learning

17-507

To store the smoothed-pseudo Wigner-Ville distribution of the signals, first create the directory
TFDDatabase inside your temporary directory tempdir. Then create subdirectories in
TFDDatabase for each modulation type. For each signal, compute the smoothed-pseudo Wigner-Ville
distribution, and downsample the result to a 227-by-227 matrix. Save the matrix as a .png image file
in the subdirectory corresponding to the modulation type of the signal. The helper function
helperGenerateTFDfiles performs all these steps. This process will take several minutes due to
the large database size and the complexity of the wvd algorithm. You can replace tempdir with
another directory where you have write permission.

parentDir = tempdir;
dataDir = 'TFDDatabase';
helperGenerateTFDfiles(parentDir,dataDir,wav,modType,100e6)

Create an image datastore object for the created folder to manage the image files used for training
the deep learning network. This step avoids having to load all images into memory. Specify the label
source to be folder names. This assigns each signal's modulation type according to the folder name.

folders = fullfile(parentDir,dataDir,{'Rect','LFM','Barker'});
imds = imageDatastore(folders,...
 'FileExtensions','.png','LabelSource','foldernames','ReadFcn',@readTFDForSqueezeNet);

The network is trained with 80% of the data and tested on with 10%. The remaining 10% is used for
validation. Use the splitEachLabel function to divide the imageDatastore into training,
validation, and testing sets.

[imdsTrain,imdsTest,imdsValidation] = splitEachLabel(imds,0.8,0.1);

17 Featured Examples

17-508

Set Up Deep Learning Network

Before the deep learning network can be trained, define the network architecture. This example
utilizes transfer learning SqueezeNet, a deep CNN created for image classification. Transfer learning
is the process of retraining an existing neural network to classify new targets. This network accepts
image input of size 227-by-227-by-3. Prior to input to the network, the custom read function
readTFDForSqueezeNet will transform the two-dimensional time-frequency distribution to an RGB
image of the correct size. SqueezeNet performs classification of 1000 categories in its default
configuration.

Load SqueezeNet.

net = squeezenet;

Extract the layer graph from the network. Confirm that SqueezeNet is configured for images of size
227-by-227-by-3.

lgraphSqz = layerGraph(net);
lgraphSqz.Layers(1)

ans =
 ImageInputLayer with properties:

 Name: 'data'
 InputSize: [227 227 3]

 Hyperparameters
 DataAugmentation: 'none'
 Normalization: 'zerocenter'
 NormalizationDimension: 'auto'
 Mean: [1×1×3 single]

To tune SqueezeNet for our needs, three of the last six layers need to be modified to classify the three
radar modulation types of interest. Inspect the last six network layers.

lgraphSqz.Layers(end-5:end)

ans =
 6×1 Layer array with layers:

 1 'drop9' Dropout 50% dropout
 2 'conv10' Convolution 1000 1×1×512 convolutions with stride [1 1] and padding [0 0 0 0]
 3 'relu_conv10' ReLU ReLU
 4 'pool10' 2-D Global Average Pooling 2-D global average pooling
 5 'prob' Softmax softmax
 6 'ClassificationLayer_predictions' Classification Output crossentropyex with 'tench' and 999 other classes

Replace the 'drop9' layer, the last dropout layer in the network, with a dropout layer of probability
0.6.

tmpLayer = lgraphSqz.Layers(end-5);
newDropoutLayer = dropoutLayer(0.6,'Name','new_dropout');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newDropoutLayer);

The last learnable layer in SqueezeNet is a 1-by-1 convolutional layer, 'conv10'. Replace the layer
with a new convolutional layer with the number of filters equal to the number of modulation types.
Also increase the learning rate factors of the new layer.

 Radar and Communications Waveform Classification Using Deep Learning

17-509

numClasses = 3;
tmpLayer = lgraphSqz.Layers(end-4);
newLearnableLayer = convolution2dLayer(1,numClasses, ...
 'Name','new_conv', ...
 'WeightLearnRateFactor',20, ...
 'BiasLearnRateFactor',20);
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newLearnableLayer);

Replace the classification layer with a new one without class labels.

tmpLayer = lgraphSqz.Layers(end);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newClassLayer);

Inspect the last six layers of the network. Confirm the dropout, convolutional, and output layers have
been changed.

lgraphSqz.Layers(end-5:end)

ans =
 6×1 Layer array with layers:

 1 'new_dropout' Dropout 60% dropout
 2 'new_conv' Convolution 3 1×1 convolutions with stride [1 1] and padding [0 0 0 0]
 3 'relu_conv10' ReLU ReLU
 4 'pool10' 2-D Global Average Pooling 2-D global average pooling
 5 'prob' Softmax softmax
 6 'new_classoutput' Classification Output crossentropyex

Choose options for the training process that ensures good network performance. Refer to the
trainingOptions documentation for a description of each option.

options = trainingOptions('sgdm', ...
 'MiniBatchSize',128, ...
 'MaxEpochs',5, ...
 'InitialLearnRate',1e-3, ...
 'Shuffle','every-epoch', ...
 'Verbose',false, ...
 'Plots','training-progress',...
 'ValidationData',imdsValidation);

Train the Network

Use the trainNetwork command to train the created CNN. Because of the dataset's large size, the
process may take several minutes. If your machine has a GPU and Parallel Computing Toolbox™, then
MATLAB® automatically uses the GPU for training. Otherwise, it uses the CPU. The training accuracy
plots in the figure show the progress of the network's learning across all iterations. On the three
radar modulation types, the network classifies almost 100% of the training signals correctly.

trainedNet = trainNetwork(imdsTrain,lgraphSqz,options);

17 Featured Examples

17-510

Evaluate Performance on Radar Waveforms

Use the trained network to classify the testing data using the classify command. A confusion
matrix is one method to visualize classification performance. Use the confusionchart command to
calculate and visualize the classification accuracy. For the three modulation types input to the
network, almost all of the phase coded, LFM, and rectangular waveforms are correctly identified by
the network.

predicted = classify(trainedNet,imdsTest);
figure
confusionchart(imdsTest.Labels,predicted,'Normalization','column-normalized')

 Radar and Communications Waveform Classification Using Deep Learning

17-511

Generate Communications Waveforms and Extract Features

The frequency spectrum of a radar classification system must compete with other transmitted
sources. Let's see how the created network extends to incorporate other simulated modulation types.
Another MathWorks® example, “Modulation Classification with Deep Learning” (Communications
Toolbox), performs modulation classification of several different modulation types using
Communications Toolbox™. The helper function helperGenerateCommsWaveforms generates and
augments a subset of the modulation types used in that example. Since the WVD loses phase
information, a subset of only the amplitude and frequency modulation types are used.

See the example link for an in-depth description of the workflow necessary for digital and analog
modulation classification and the techniques used to create these waveforms. For each modulation
type, use wvd to extract time-frequency features and visualize.

[wav, modType] = helperGenerateCommsWaveforms();

figure
subplot(2,3,1)
wvd(wav{find(modType == "GFSK",1)},200e3,'smoothedPseudo')
axis square; colorbar off; title('GFSK')
subplot(2,3,2)
wvd(wav{find(modType == "CPFSK",1)},200e3,'smoothedPseudo')
axis square; colorbar off; title('CPFSK')
subplot(2,3,3)
wvd(wav{find(modType == "B-FM",1)},200e3,'smoothedPseudo')
axis square; colorbar off; title('B-FM')
subplot(2,3,4)

17 Featured Examples

17-512

wvd(wav{find(modType == "SSB-AM",1)},200e3,'smoothedPseudo')
axis square; colorbar off; title('SSB-AM')
subplot(2,3,5)
wvd(wav{find(modType == "DSB-AM",1)},200e3,'smoothedPseudo')
axis square; colorbar off; title('DSB-AM')

Use the helper function helperGenerateTFDfiles again to compute the smoothed pseudo WVD for
each input signal. Create an image datastore object to manage the image files of all modulation types.

helperGenerateTFDfiles(parentDir,dataDir,wav,modType,200e3)
folders = fullfile(parentDir,dataDir,{'Rect','LFM','Barker','GFSK','CPFSK','B-FM','SSB-AM','DSB-AM'});
imds = imageDatastore(folders,...
 'FileExtensions','.png','LabelSource','foldernames','ReadFcn',@readTFDForSqueezeNet);

Again, divide the data into a training set, a validation set, and a testing set using the
splitEachLabel function.

rng default
[imdsTrain,imdsTest,imdsValidation] = splitEachLabel(imds,0.8,0.1);

Adjust Deep Learning Network Architecture

Previously, the network architecture was set up to classify three modulation types. This must be
updated to allow classification of all eight modulation types of both radar and communication signals.
This is a similar process as before, with the exception that the fullyConnectedLayer now requires
an output size of eight.

 Radar and Communications Waveform Classification Using Deep Learning

17-513

numClasses = 8;
net = squeezenet;
lgraphSqz = layerGraph(net);

tmpLayer = lgraphSqz.Layers(end-5);
newDropoutLayer = dropoutLayer(0.6,'Name','new_dropout');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newDropoutLayer);

tmpLayer = lgraphSqz.Layers(end-4);
newLearnableLayer = convolution2dLayer(1,numClasses, ...
 'Name','new_conv', ...
 'WeightLearnRateFactor',20, ...
 'BiasLearnRateFactor',20);
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newLearnableLayer);

tmpLayer = lgraphSqz.Layers(end);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraphSqz = replaceLayer(lgraphSqz,tmpLayer.Name,newClassLayer);

Create a new set of training options.

options = trainingOptions('sgdm', ...
 'MiniBatchSize',150, ...
 'MaxEpochs',10, ...
 'InitialLearnRate',1e-4, ...
 'Shuffle','every-epoch', ...
 'Verbose',false, ...
 'Plots','training-progress',...
 'ValidationData',imdsValidation);

Use the trainNetwork command to train the created CNN. For all modulation types, the training
converges with an accuracy of about 95% correct classification.

trainedNet = trainNetwork(imdsTrain,lgraphSqz,options);

17 Featured Examples

17-514

Evaluate Performance on All Signals

Use the classify command to classify the signals held aside for testing. Again, visualize the
performance using confusionchart.

predicted = classify(trainedNet,imdsTest);
figure;
confusionchart(imdsTest.Labels,predicted,'Normalization','column-normalized')

 Radar and Communications Waveform Classification Using Deep Learning

17-515

For the eight modulation types input to the network, about 98% of B-FM, CPFSK, GFSK, Barker, and
LFM modulation types were correctly classified. On average, about 85% of AM signals were correctly
identified. From the confusion matrix, a high percentage of SSB-AM signals were misclassified as
DSB-AM, and DSB-AM signals as SSB-AM.

Let us investigate a few of these misclassifications to gain insight into the network's learning process.
Use the readimage function on the image datastore to extract from the test dataset a single image
from each class. The displayed WVD visually looks very similar. Since DSB-AM and SSB-AM signals
have a very similar signature, this explains in part the network's difficulty in correctly classifying
these two types. Further signal processing could make the differences between these two modulation
types clearer to the network and result in improved classification.

DSB_DSB = readimage(imdsTest,find((imdsTest.Labels == 'DSB-AM') & (predicted == 'DSB-AM'),1));
DSB_SSB = readimage(imdsTest,find((imdsTest.Labels == 'DSB-AM') & (predicted == 'SSB-AM'),1));
SSB_DSB = readimage(imdsTest,find((imdsTest.Labels == 'SSB-AM') & (predicted == 'DSB-AM'),1));
SSB_SSB = readimage(imdsTest,find((imdsTest.Labels == 'SSB-AM') & (predicted == 'SSB-AM'),1));

figure
subplot(2,2,1)
imagesc(DSB_DSB(:,:,1))
axis square; title({'Actual Class: DSB-AM','Predicted Class: DSB-AM'})
subplot(2,2,2)
imagesc(DSB_SSB(:,:,1))
axis square; title({'Actual Class: DSB-AM','Predicted Class: SSB-AM'})
subplot(2,2,3)
imagesc(SSB_DSB(:,:,1))
axis square; title({'Actual Class: SSB-AM','Predicted Class: DSB-AM'})

17 Featured Examples

17-516

subplot(2,2,4)
imagesc(SSB_SSB(:,:,1))
axis square; title({'Actual Class: SSB-AM','Predicted Class: SSB-AM'})

Summary

This example showed how radar and communications modulation types can be classified by using
time-frequency techniques and a deep learning network. Further efforts for additional improvement
could be investigated by utilizing time-frequency analysis available in Wavelet Toolbox™ and
additional Fourier analysis available in Signal Processing Toolbox™.

References

[1] Brynolfsson, Johan, and Maria Sandsten. "Classification of one-dimensional non-stationary signals
using the Wigner-Ville distribution in convolutional neural networks." 25th European Signal
Processing Conference (EUSIPCO). IEEE, 2017.

[2] Liu, Xiaoyu, Diyu Yang, and Aly El Gamal. "Deep neural network architectures for modulation
classification." 51st Asilomar Conference on Signals, Systems and Computers. 2017.

[3] `Wang, Chao, Jian Wang, and Xudong Zhang. "Automatic radar waveform recognition based on
time-frequency analysis and convolutional neural network." IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 2017.

 Radar and Communications Waveform Classification Using Deep Learning

17-517

Hybrid MIMO Beamforming with QSHB and HBPS Algorithms
This example presents a Simulink® model of a multiple input multiple output (MIMO) wireless
communication system. The wireless system uses hybrid beamforming technique to improve system
throughput.

Introduction

5G and other modern wireless communication systems extensively use MIMO beamforming
technology for signal to noise ratio (SNR) enhancement and spatial multiplexing to improve the data
throughput in scatterer rich environments. In a scatterer-rich environment, there may not exist line-
of-sight (LOS) paths between the transmit and receive antennas. To gain the high throughput, MIMO
beamforming implements precoding on the transmitter side and combining on the receiver side to
increase SNR and separate spatial channels. A full digital beamforming structure requires each
antenna to have a dedicated RF-to-baseband chain, which makes the overall hardware expensive and
power consumption high. As a solution, hybrid MIMO beamforming is proposed [1], in which fewer
RF-to-baseband chains are employed and partial of precoding and combining are implemented in the
RF portion. With deliberate selection of the weights for precoding and combining, hybrid
beamforming can achieve comparable performance as that of full beamforming.

In this example, we introduce a Simulink model with hybrid MIMO beamforming. This model shows
two hybrid beamforming algorithms: Quantized Sparse Hybrid Beamforming (QSHB) [2] and Hybrid
Beamforming with Peak Search (HBPS).

The following figure shows the structure of a hybrid beamforming system.

In the figure, is the number of signal streams; is the number of transmit antennas; is the
number of transmit RF chains; is the number of receive antennas; and is the number of
receive RF chains. In this example, two signal streams, 64 transmit antennas, 4 transmit RF chains,
16 receive antennas, and 4 receive RF chains.

The scattering channel is denoted by . The hybrid beamforming weights are represented by the
analog precoder , digital precoder , analog combiner , and digital combiner . For a
more detailed introduction to hybrid beamforming, please refer to the MATLAB “Introduction to
Hybrid Beamforming” on page 17-356 example.

Exploring the Model

The Simulink model consists of four main components: MIMO Transmitter, MIMO Channel, MIMO
Receiver, and Weights Calculation.

17 Featured Examples

17-518

The MIMO transmitter generates the signal stream and then applies the precoding. The modulated
signal is propagated through a scattering channel defined in the MIMO channel and then decoded
and demodulated at the receiver side.

MIMO Scattering Channel

The MIMO scattering channel is represented by a channel matrix. In addition, this example uses an
enabled subsystem to periodically change this matrix to simulate the fact that a MIMO channel may
vary over time.

Hybrid Beamforming Weights Computation

In a hybrid beamforming system, both the precoding and the corresponding combining process are
done partly at baseband and partly in the RF band. In general, the beamforming achieved in the RF
band only involves phase shifts. Therefore, a critical part in such a system is to determine how to
distribute the weights between the baseband and the RF band based on the channel. This is done in
the Weight Calculation block where the precoding weights, Fbb and FrfAng, and combining weights,

 Hybrid MIMO Beamforming with QSHB and HBPS Algorithms

17-519

Wbb and WrfAng, are computed based on the channel matrix, H. In this example, we assume the
channel matrix is known and provide both QSHB and HBPS algorithms.

Quantized Sparse Hybrid Beamforming (QSHB)

Literature [2, 3] shows that given the channel matrix, H, of a MIMO scattering channel, the hybrid
beamforming weights can be computed via an iterative algorithms [2]. Using an orthogonal matching
pursuit algorithm, the resulting analog precoding/combining weights are just steering vectors
corresponding to the dominant modes of the channel matrix. For the detailed description of the
algorithm, please refer to the “Introduction to Hybrid Beamforming” on page 17-356 example.

Quantized Sparse Hybrid Beamforming with Peak Search (HBPS)

HBPS is a simplified version of QSHB. Instead of searching for the dominant mode of channel matrix
iteratively, HBPS projects all the digital weights into a grid of directions and identifies the and

 peaks to form the corresponding analog beamforming weights. This works well especially for
large arrays, like arrays used in massive MIMO systems, since for large arrays, the directions are
more likely to be orthogonal.

Because the channel matrix can change over time, the weights computation also needs to be
performed periodically to accommodate the channel variation.

17 Featured Examples

17-520

Results and Displays

QSHB

Following figures shows the recovered 16 QAM symbol streams at the receiver using QSHB
algorithms. The resulting constellation shows that compared to the source constellation, the
recovered symbols properly located in both streams. This means that using the hybrid beamforming
technique, we can improve the system capacity by sending the two streams simultaneously. In
addition, the constellation diagram shows that the variance of the first recovered stream is better
than the second recovered stream as the points are less dispersed in the constellation of the first
stream. This is because the first stream uses the most dominant mode of the MIMO channel so it has
the best SNR.

 Hybrid MIMO Beamforming with QSHB and HBPS Algorithms

17-521

17 Featured Examples

17-522

HBPS

The result of HBPS is shown in the following figures. The constellation diagram shows that it achieves
similar performance compared to QSHB. This means that the HBPS is a good choice for the simulated
64x16 MIMO system.

 Hybrid MIMO Beamforming with QSHB and HBPS Algorithms

17-523

Summary

This example provides the Simulink model of two hybrid beamforming methods, QSHB and HBPS.
The MIMO scattering channel is used to provide a realistic channel model for massive MIMO
systems. The Simulink model is partitioned according to the functions in the signal flow, which gives
guidance for hardware implementation. For a given H, the number of symbols can vary to simulate
the variable coherent channel length. With this Simulink model, various system parameters and new
hybrid beamforming algorithms can be studied. The system structure facilitates the hardware
implementation.

Reference

[1] Andreas F. Molisch, et al. "Hybrid Beamforming for Massive MIMO: A Survey", IEEE
Communications Magazine, Vol. 55, No. 9, September 2017, pp. 134-141

[2] Oma El Ayach, et al. "Spatially Sparse Precoding in Millimeter wave MIMO Systems, IEEE
Transactions on Wireless Communications", Vol. 13, No. 3, March 2014

[3]. Emil Bjornson, Jakob Hoydis, Luca Sanguinetti, "Massive MIMO Networks: Spectral, Energy, and
Hardware Efficiency", Foundations and Trends in Signal Processing: Vol. 11, No. 3-4, 2017

17 Featured Examples

17-524

Array Synthesis for Lidar Systems
This example shows how to design and optimize a phased array for lidar applications. The example
describes the following workflow:

1 Import an antenna element pattern generated with Lumerical tools into MATLAB®
2 Design a linear phased array using the Lumerical antenna pattern for each element in the array
3 Determine the array element spacing and weighting for the array such that the azimuth pattern

and elevation pattern (generated from the Lumerical tools) are closely matched between a
desired steering range

A related example can be found on Lumerical's website at Lumerical Lidar Antenna Example. The
Lumerical's example provides more details on how the antenna element is designed with the FDE
solver; how the antenna element design is verified and extracted with 3D FDTD technique; and how
the array designed using Phased Array System Toolbox™ is integrated in Lumerical's
INTERCONNECT software.

This example requires Optimization Toolbox™.

Introduction

Lidar is used as a perception sensor in autonomous systems. Lidar sensors are capable of ranging
millions of points per second due to high angular resolutions and fast steering speeds. Beam steering
in lidar architectures can be accomplished with optical phased arrays. This example shows how to
design the integrated optical phased array antenna which can be used for both transmitting and
receiving functions.

Modeling the Phased Array

First, import the antenna pattern generated using Lumerical tools.

load('Lumerical_antenna_data.mat'); % Load Lumerical antenna pattern

The antenna occupies a large bandwidth. The data set generated with Lumerical tools contains
antenna responses for 50 frequencies.

nfreq = numel(freqVector); % 50 frequency vectors
ant = phased.CustomAntennaElement('FrequencyVector',freqVector,...
 'FrequencyResponse',zeros(1,nfreq),...
 'AzimuthAngles',az,'ElevationAngles',el,...
 'MagnitudePattern',pat_azel,'PhasePattern',zeros(size(pat_azel)));

The array to be designed is a 48-element linear array along azimuth direction. The goal is to

The array to be designed is a 48-element linear array with a hamming taper. The number of elements
was chosen in this example to provide a narrow beam. The element spacing is set at 1.2 wavelength
corresponding to the center frequency due to physical constrains in building lidar arrays. Since the
spacing is larger than half wavelength, grating lobe may occur. However, in this application, the array
only scans a limited range around the boresight. Therefore, grating lobes are not a concern.

c = 3e8;
lambda = c/freqVector(25);
N = 48;
antarray = phased.ULA(N,1.2*lambda,'Element',ant,'Taper',hamming(N));
stv = phased.SteeringVector('SensorArray',antarray,'PropagationSpeed',c);

 Array Synthesis for Lidar Systems

17-525

https://apps.lumerical.com/lidar-antenna.html

Following figures show the resulting array patterns at boresight for 3 frequency values (frequency
bands 1, 25, and 50) to see the resulting 3D beam pattern across the full range. Note how the main
beam changes with frequency. In the plots below, the beams are steered at 0 degrees azimuth.

svang = [0;0]; % Steer at 0 degrees in azimuth

n = 1;
fc = freqVector(n);
pattern(antarray,fc,'Type','powerdb','Weights',stv(fc,svang));
title(sprintf('Array Pattern for Frequency Band %d',n));
snapnow;

n = 25;
fc = freqVector(n);
pattern(antarray,fc,'Type','powerdb','Weights',stv(fc,svang));
title(sprintf('Array Pattern for Frequency Band %d',n));
snapnow;

n = 50;
fc = freqVector(n);
pattern(antarray,fc,'Type','powerdb','Weights',stv(fc,svang));
title(sprintf('Array Pattern for Frequency Band %d',n));
snapnow;

17 Featured Examples

17-526

 Array Synthesis for Lidar Systems

17-527

Synthesizing Array Pattern

In this example, the array steering in elevation is done using different carrier frequencies. However,
the array steering in azimuth is done by weighting the elements in the linear array. Therefore, our
goal, through optimization, is to find weights and element spacing such that the shape of the beam in
the azimuth cut matches the shape in the elevation cut.

To get the best match across the frequency range, we start with the elevation cut of the middle
frequency value (band 25) as the desired shape. Because the application only requires the scanning
between 20 degrees in azimuth, we will focus the pattern within the 40 degrees region to ensure
there is no grating lobes come into 20 degrees region during scanning. Note that reflectors will be
used on the physical array to ensure other transmissions are not sent out at angles outside 20
degrees.

azimuth = -40:40;
n = 25; % Use center frequency as the basis for optimization
fc = freqVector(n);
Beam_d = pattern(antarray,fc,azimuth,0,'Type','efield','Weights',stv(fc,svang),'Normalize',false).';
antpat = pattern(ant,fc,azimuth,0,'Type','efield','Normalize',false).';

The objective function is set to minimize the distance between the desired pattern and the one that is
generated as a result of synthesis. For this optimization, we want to generate a common spacing
value between elements and unique real weights for each element to facilitate the implementation
phase in the Lumerical Interconnect tool. In addition, to ensure the lidar array can be realized, a
starting point of 1.1 wavelength is set.

17 Featured Examples

17-528

w_i_re = ones(N,1)./2; % initial real values
w_i_im = zeros(N,1); % initial imaginary values
lambda_i = 1.1; % initial wavelength

objfun = @(x)norm(abs((x(1:N))'*...
 steervec((-(N-1)/2:(N-1)/2)*x(end),azimuth).*antpat)-Beam_d);

x_ini = [w_i_re;lambda_i];

[x_o, fval, ef, output] = ...
 fmincon(objfun,x_ini,[],[],[],[],[(zeros(N,1));1],[ones(N,1);1.2],[],...
 optimoptions(@fmincon,'Display','final-detailed','MaxFunctionEvaluations',1e4));

Optimization completed: The relative first-order optimality measure, 6.222617e-07,
is less than options.OptimalityTolerance = 1.000000e-06, and the relative maximum constraint
violation, 0.000000e+00, is less than options.ConstraintTolerance = 1.000000e-06.

Next plot shows the comparison between the desired pattern and the synthesized pattern.

azplot = -40:40;
Beam_d_plot = pattern(antarray,fc,azplot,0,'Type','efield','Weights',stv(fc,svang),'Normalize',false).';
antpat_plot = pattern(ant,fc,azplot,0,'Type','efield','Normalize',false).';
Beam_syn_plot = abs((x_o(1:N))'*steervec((-(N-1)/2:(N-1)/2)*x_o(end),azplot).*antpat_plot);
plot(azplot,mag2db(Beam_d_plot),'-',azplot,mag2db(Beam_syn_plot),'--');
legend('Desired','Synthesized')
title(sprintf('Frequency band %d with spacing of %5.2f wavelength',n,x_o(end)));
xlabel('Angle (deg)')
ylabel('Array Pattern')

 Array Synthesis for Lidar Systems

17-529

The figure shows a strong match between the desired pattern and the synthesized pattern between
20 degrees. Again, anything outside this angle range will be blocked by a reflector in the actual
system.

Verifying Scanning Behavior

To verify the resulting weights and element spacing, we steer the array to 20 degrees azimuth at both
frequency bands #1 and #50 and examine if the array performance satisfies the application needs.

n = 50;
fc = freqVector(n);
wmag = x_o(1:N);

svang = [20;0];
azplot = -40:40;

Beam_d_plot = pattern(antarray,fc,azplot,0,'Type','efield','Weights',stv(fc,svang),'Normalize',false).';

antpat_plot = pattern(ant,fc,azplot,0,'Type','efield','Normalize',false).';
weights_o = wmag.*steervec((-(N-1)/2:(N-1)/2)*x_o(end),svang);
Beam_syn_plot = abs(weights_o'*steervec((-(N-1)/2:(N-1)/2)*x_o(end),azplot).*antpat_plot);

plot(azplot,mag2db(Beam_d_plot),'-',azplot,mag2db(Beam_syn_plot),'--');
legend('Desired','Synthesized')
title(sprintf('Frequency band %d with spacing of %5.2f wavelength',n,x_o(end)));
xlabel('Angle (deg)')
ylabel('Array Pattern')

17 Featured Examples

17-530

snapnow;

n = 1;
fc = freqVector(n);

Beam_d_plot = pattern(antarray,fc,azplot,0,'Type','efield','Weights',stv(fc,svang),'Normalize',false).';

antpat_plot = pattern(ant,fc,azplot,0,'Type','efield','Normalize',false).';
weights_o = wmag.*steervec((-(N-1)/2:(N-1)/2)*x_o(end),svang);
Beam_syn_plot = abs(weights_o'*steervec((-(N-1)/2:(N-1)/2)*x_o(end),azplot).*antpat_plot);

plot(azplot,mag2db(Beam_d_plot),'-',azplot,mag2db(Beam_syn_plot),'--');
legend('Desired','Synthesized')
title(sprintf('Frequency band %d with spacing of %5.2f wavelength',n,x_o(end)));
xlabel('Angle (deg)')
ylabel('Array Pattern')
snapnow;

 Array Synthesis for Lidar Systems

17-531

Finally, the following figure shows the resulting weights from the optimization.

% plot the results
plot(1:N,wmag);
xlabel('Antenna element number');
ylabel('Normalized weight');
title('Final antenna weights after optimization');

17 Featured Examples

17-532

Summary

This example shows how array synthesis techniques can be applied to help design a phased array
lidar to achieve a desired beam pattern.

 Array Synthesis for Lidar Systems

17-533

FPGA Based Beamforming in Simulink: Part 2 - Code
Generation

This tutorial is the second of a two-part series that will guide you through the steps to generate HDL
code for a beamforming algorithm and verify that the generated code is functionally correct. The first
part of the tutorial “FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design” on page 17-
541 shows how to develop an algorithm in Simulink suitable for implementation on hardware, such
as a Field Programmable Gate Array (FPGA), and how to compare the output of the fixed-point,
implementation model to that of the corresponding floating-point, behavioral model.

This tutorial uses HDL Coder™ to generate HDL code from the Simulink® model developed in part
one and verifies the HDL code using the HDL Verifier™. We use the HDL Verifier™ to generate a
cosimulation test bench model to verify the behavior of the automatically generated HDL code. The
test bench uses ModelSim® for cosimulation to verify the automatically generated HDL code.

The Phased Array System Toolbox™ Simulink blocks model operations on framed, floating-point data
and provides the behavioral reference model. We use this behavioral model to verify the results of the
implementation model and ultimately the automatically generated HDL code.

HDL Coder™ generates portable, synthesizable Verilog® and VHDL® code for over 300 Simulink
blocks that support HDL code generation. Those Simulink blocks operate on serial data using fixed-
point arithmetic with proper delays to enable pipelining by the synthesis tool.

HDL Verifier™ lets you test and verify Verilog® and VHDL® designs for FPGAs, ASICs, and SoCs.
We'll verify RTL generated from our Simulink model against a test bench running in Simulink® using
cosimulation with an HDL simulator.

Implementation Model

This tutorial assumes that you have a properly setup Simulink model that contains a subsystem with a
beamforming algorithm designed using Simulink blocks that use fixed-point arithmetic and support
HDL code generation. “FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design” on page 17-
541 shows how to create such a model.

Alternatively, if you start with a new model, you can run hdlsetup (HDL Coder) to configure the
Simulink model for HDL code generation. And, to configure the Simulink model for test bench
creation needed for verification, you must open Simulink's Model Settings, select Test Bench under
HDL Code Generation in the left panel, and check HDL test bench and Cosimulation model in the Test
Bench Generation Output properties group.

Comparing Results of Implementation Model to Behavioral Model

Run the model created in the “FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design” on
page 17-541 to display the results. You can run the Simulink model by clicking the Play button or
calling the sim command on the MATLAB command line as shown below. Use the Time Scope blocks
to compare the output frames visually.

modelname = 'SimulinkBeamformingHDLWorkflowExample';
open_system(modelname);

% Ensure model is visible and not obstructed by scopes.
open_system(modelname);
set(allchild(0),'Visible','off');

17 Featured Examples

17-534

sim(modelname);

 FPGA Based Beamforming in Simulink: Part 2 - Code Generation

17-535

17 Featured Examples

17-536

Model Settings

Once you verify that your fixed-point, implementation model produces the same results as your
floating-point, behavioral model, you can generate HDL code and test bench. To do that, you must
first set the appropriate HDL Code Generation parameters in Simulink via the Configuration
Parameters dialog. For this example, we set the following parameters in Model Settings under HDL
Code Generation:

• Target: Xilinx Vivado synthesis tool; Virtex7 family; Device xc7vx485t; package ffg1761, speed -1;
and target frequency of 300 MHz.

• Optimization: Uncheck all optimizations except Balance delays
• Global Settings: Set the Reset type to Asynchronous
• Test Bench: Select HDL test bench and Cosimulation model

The reason we turn off optimizations is because some blocks used in our implementation are already
HDL-optimized blocks, which could conflict.

HDL Code Generation and Test Bench Creation

Once you've set Simulink's Model Settings, you can use HDL Coder™ to generate HDL code for the
HDL Algorithm subsystem. For an example, see “Generate HDL Code from Simulink Model” (HDL
Coder).

% Uncomment these two lines to generate HDL code and test bench.
% makehdl([modelname '/HDL Algorithm']); % Generate HDL code
% makehdltb([modelname '/HDL Algorithm']); % Generate Cosimulation test bench

Notice that when you execute the makehdl command, information is displayed in the MATLAB
command window. In that information is the amount of delay added during the automatic code
generation process. In this case 24 delays are added which results in an extra delay of 24*1ms =
24ms. This delay will be noticed when looking at our final results which have a total delay of 79ms.

Also, because of this extra delay added during automatic code generation the output of our floating-
point, behavioral model needs to be delay balanced by adding 24 delays to the original 55. This will
align the output of the behavioral model with the implementation model as well as the cosimulation
output.

After generating the HDL code and test bench a new Simulink model named gm_<modelname>_mq
containing a ModelSim® block is created in your working directory, which looks like this:

 FPGA Based Beamforming in Simulink: Part 2 - Code Generation

17-537

% Uncomment the following two lines to open the test bench model.
% modelname = ['gm_',modelname,'_mq'];
% open_system(modelname);

At this point, you might want to change the delay setting in HDL Latency block to 79 to account for
the 24 delays added by the code generation process. Using a delay of 79 will ensure that the
behavioral model output is time-aligned with the output of the implementation and cosimulation
output.

HDL Code Verification via Cosimulation

The following steps will launch ModelSim; therefore, make sure that the command to start ModelSim,
vsim, is on the path of the machine you're on.

To run the cosimulation model, first double-click the blue rectangular box in the upper-left corner of
the Simulink test model to launch ModelSim.

Run the Simulink test bench model to display the simulation results. You can run the Simulink model
by clicking the Play button or calling the sim command on the MATLAB command line as shown
below. The test bench model includes Time Scope blocks to compare the output of the cosimulation
performed with ModelSim with the output of the HDL subsystem in Simulink.

% Uncomment the following line, if ModelSim is installed, to run the test bench.
% sim(modelname);

After starting ModelSim, running the Simulink test bench model will populate the Questa Sim with
the HDL model's waveforms and Time Scopes in Simulink. Below are examples of the results in
Questa Sim and Simulink scopes.

17 Featured Examples

17-538

NOTE: You must restart Questa Sim each time you want to run the Simulink simulation. You can do
that by executing "restart" at the Questa Sim command line. Alternatively, you can quit Questa Sim
and re-launch it by double-clicking the blue box in the upper-left corner of the Simulink test bench
model.

The Simulink scope below shows both the cosimulation and HDL model (DUT) producing a 79ms
delayed version of the original signal produced by the behavioral model, as expected, with no
difference between the two waveforms. The 79ms delay is due to the original 55ms delay added in the
HDL Algorithm subsystem to enable pipelining by the synthesis tool and an additional 24ms delay due
to the delay balancing that's done during the automatic HDL code generation. The additional 24
delays added is reported during the code generation step above.

 FPGA Based Beamforming in Simulink: Part 2 - Code Generation

17-539

The Simulink scopes comparing the results of the cosimulation can be found in test bench model
inside the Compare subsystem, which is at the output of the HDL Algorithm_mq subsystem.

% Uncomment the following line to open the subsystem with the scopes.
% open_system([modelname,'/Compare/Assert_beamformingOutHDL'])

Summary

This example is the second of a two-part tutorial series on how to automatically generate HDL code
for a fixed-point, sample-based beamforming algorithm and verify the generated code in Simulink.
The first part of the tutorial “FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design” on
page 17-541 shows how to develop an algorithm in Simulink suitable for implementation on an
FPGA. This example showed how to setup a model to generate the HDL code and a cosimulation test
bench for a Simulink subsystem created with blocks that support HDL code generation. It showed
how to setup and launch ModelSim to cosimulate the HDL code and compare its output to the output
generated by the HDL implementation model.

17 Featured Examples

17-540

FPGA Based Beamforming in Simulink: Part 1 - Algorithm
Design

This tutorial is the first of a two-part series that will guide you through how to develop a beamformer
in Simulink® suitable for implementation on hardware, such as a Field Programmable Gate Array
(FPGA). It will also show how to compare the results of the implementation model with those of a
behavioral model. The second part of the tutorial “FPGA Based Beamforming in Simulink: Part 2 -
Code Generation” on page 17-534 shows how to generate HDL code from the implementation model
and verify that the generated HDL code produces the correct results compared to the behavioral
model.

The tutorial shows how to design an FPGA implementation-ready beamformer to match a
corresponding behavioral model in Simulink® using the Phased Array System Toolbox™, DSP System
Toolbox™, and Fixed-Point Designer™. To verify the implementation model, it compares the
simulation output of the implementation model with the output of the behavioral model.

The Phased Array System Toolbox™ is used to design and verify the floating-point functional
algorithm, which provides the behavioral reference model. The behavioral model is then used to
verify the results of the fixed-point, implementation model used to generate HDL code.

Fixed-Point Designer™ provides data types and tools for developing fixed-point and single-precision
algorithms to optimize performance on embedded hardware. You can perform bit-true simulations to
observe the impact of limited range and precision without implementing the design on hardware.

Partitioning Model for FPGA

There are three key modeling concepts to keep in mind when preparing a Simulink® model to target
FPGAs:

• Sample-based processing: Also commonly referred to as serial processing, is an efficient data
processing technique in hardware designs that enables you to tradeoff between resources and
throughput.

• Subsystem targeted for HDL code generation: In order to generate HDL code from a model,
the implementation algorithm must be inside a Simulink subsystem.

• Time-aligned outputs of behavioral and implementation models: For comparing the outputs
of the behavioral and FPGA implementation models, you must time align their outputs by adding
latency to the behavioral model.

Beamforming Algorithm

In this example we use a Phase-Shift Beamformer as the behavioral algorithm, which is re-
implemented in the HDL Algorithm subsystem using Simulink blocks that support HDL code
generation. The beamformer's job is to calculate the phase required between each of the ten channels
to maximize the received signal power in the direction of the incident angle. Below is the Simulink
model with the behavioral algorithm and its corresponding implementation algorithm for an FPGA.

modelname = 'SimulinkBeamformingHDLWorkflowExample';
open_system(modelname);

% Ensure model is visible and not obstructed by scopes.
open_system(modelname);
set(allchild(0),'Visible','off');

 FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design

17-541

The Simulink model has two branches. The top branch is the behavioral, floating-point model of our
algorithm and the bottom branch is the functionally equivalent fixed-point version using blocks that
support HDL code generation. Besides plotting the output of both branches to compare the two, we
also calculate and plot the difference, or error, between both outputs.

Notice that there's a delay () at the output of the behavioral model. This is necessary because the
implementation algorithm uses 55 delays to enable pipelining which creates latency that needs to be
accounted for. Accounting for this latency is called delay balancing and is necessary to time-align the
output between the behavioral model and the implementation model to make it easier to compare the
results.

Multi-channel Receive Signal

To synthesize a received signal at the phased array antenna, the model includes a subsystem that
generates a multi-channel signal. The Baseband Multi-channel Signal subsystem models a
transmitted waveform and the received target echo at the incident angle captured via a 10-element
antenna array. The subsystem also includes a receiver pre-amp model to account for receiver noise.
This subsystem generates the input stimulus for our behavioral and implementation models.

% Open subsystem that generates the received multi-channel signal.
open_system([modelname '/Baseband Multi-channel Signal']);

Serialization and Quantization

The model includes a Serialization & Quantization subsystem which converts floating-point, frame-
based signals to fixed-point, sample-based signals necessary for modeling streaming data in

17 Featured Examples

17-542

hardware. Sample-based processing was chosen because our system will run slower than 400 MHz;
therefore, we're optimizing for resources instead of throughput.

% Open subsystem that serializes and quantizes the received signal.
open_system([modelname '/Serialization & Quantization']);
set_param(modelname,'SimulationCommand','update')

The input signal to the serialization subsystem has 10 channels with 300 samples per channel or a
300x10 size signal. The subsystem serializes, or unbuffers, the signal producing a sample-based
signal that's 1x10, i.e., one sample per channel, which is then quantized to meet the requirements of
our system.

The Quantize Signal block's output data type is set to:

• Output data type = fixdt(1,12,9)

which is a signed, 12-bit word length, and 19-bit fraction length precision. This precision was chosen
because we're targeting a Xilinx® Virtex®-7 FPGA which is connected to a 12-bit ADC. The fraction
length was chosen to accommodate for the maximum range of the input signal.

Designing the Implementation Subsystem

The HDL Algorithm subsystem, which is targeted for HDL code generation, implements the
beamformer, which was designed using Simulink blocks that support HDL code generation.

The Angle2SteeringVec subsystem calculates the signal delay at each antenna element of a Uniform
Linear Array (ULA). The delay is then fed to a multiply and accumulate (MAC) subsystem to perform
beamforming.

% Open subsystem with HDL algorithm.
open_system([modelname '/HDL Algorithm']);

The algorithm in the HDL Algorithm subsystem is functionally equivalent to the phase-shift
beamforming behavioral algorithm but can generate HDL code. There are three main differences that
enables this subsystem to generate efficient HDL code:

1 processing is performed serially, i.e., sample-based processing is used
2 arithmetic is performed with fixed-point data types

 FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design

17-543

3 delays were added to enable pipelining by HDL synthesis tool

To ensure proper clock timing, any delay added to one branch of the implementation model must be
matched to all other parallel branches as seen above. The Angle2SteeringVec subsystem, for example,
added 36 delays; therefore, the top branch of the HDL Algorithm subsystem includes a delay of 36
samples right before the MAC subsystem. Likewise, the MAC subsystem used 19 delays, which must
be balanced by adding 19 delays to the output of the Angle2SteeringVec subsystem. Let's look inside
the MAC subsystem to account for the 19 delays.

% Open the MAC subsystem.
open_system([modelname '/HDL Algorithm/MAC']);
set_param(modelname,'SimulationCommand','update')

Looking at the very bottom branch of the MAC subsystem, we see a , followed by the complex
multiply block which contains a , then there's a , followed by 4 delay blocks of for a total
of 19 delays. The delay values are defined in the PreLoadFcn callback in Model Properties.

Calculating the Steering Vector

The Angle2SteeringVec subsystem breaks the task into a few steps to calculate the steering vector
from the signal's angle of arrival. It first calculates the signal's arrival delay at each sensor by matrix
multiplying the antenna element position in the array by the signal's incident direction. The delays
are then fed to the SinCos subsystem which calculates the trigonometric functions sine and cosine
using the simple and efficient CORDIC algorithm.

% Open the Angle2SteeringVec subsystem.
open_system([modelname '/HDL Algorithm/Angle2SteeringVec']);

Because our design consists of a 10 element ULA spaced at half-wavelength, the antenna element
position is based on the spacing between each antenna element measured outwardly from the center

17 Featured Examples

17-544

of the antenna array. We can define the spacing between elements as a vector of 10 numbers ranging
from -6.7453 to 6.7453, i.e., with a spacing of 1/2 wavelength, which is 2.99/2. Given that we're using
fixed-point arithmetic, the data type used for the element spacing vector is fixdt(1,8,4), i.e., a signed
8-bit word length and 4-bit fraction length numeric data type.

Deserialization

To compare your sample-based, fixed-point, implementation design with the floating-point, frame-
based, behavioral design you need to deserialize the output of the implementation subsystem and
convert it to a floating-point data type. Alternatively, you can compare the results directly with
sample-based signals but then you must unbuffer the output of the behavioral model as shown:

to match the sample-based signal output from the implementation algorithm. In this case, you only
need to convert the output of the HDL Algorithm subsystem to floating-point by setting the Data Type
Conversion block's output data type to double.

Comparing Output of HDL Model to Behavioral Model

Run the model to display the results. You can run the Simulink model by clicking the Play button or
calling the sim command in the MATLAB command line. Use the scopes to compare the outputs
visually.

sim(modelname);

 FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design

17-545

17 Featured Examples

17-546

As seen in the Time Scope showing the Beamformed Signal and Beamformed Signal (HDL), the two
signals are nearly identical. We can see the error on the order of 10^-3 in the Error scope. This
shows that the HDL Algorithm subsystem is producing the same results as the behavioral model
within quantization error. This is an important first step before generating HDL code.

Because the HDL model used 55 delays, the scope titled HDL Beamformed Signal is delayed by 55ms
when compared to the original transmitted or beamformed signal shown on the Behavioral
Beamformed Signal scope.

Summary

This example is the first of a two-part tutorial series on how to design an FPGA implementation-ready
algorithm, automatically generate HDL code, and verify the HDL code in Simulink. This example
showed how to use blocks from the Phased Array System Toolbox to create a behavioral model, to
serve as a golden reference, and how to create a subsystem for implementation using Simulink blocks
that support HDL code generation. It also compared the output of the implementation model to the
output of the corresponding behavioral model to verify that the two algorithms are functionally
equivalent.

Once you verify that your implementation algorithm is functionally equivalent to your golden
reference, you can use HDL Coder™ for “HDL Code Generation from Simulink” (HDL Coder) and
HDL Verifier™ to “Generate a Cosimulation Model” (HDL Coder) test bench.

The second part of this two-part tutorial series “FPGA Based Beamforming in Simulink: Part 2 - Code
Generation” on page 17-534 shows how to generate HDL code from the implementation model and

 FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design

17-547

verify that the generated HDL code produces the same results as the floating-point behavioral model
as well as the fixed-point implementation model.

17 Featured Examples

17-548

Estimate Range and Doppler Using Pulse Compression
This example shows the effects of pulse compression, where a transmitted pulse is modulated and
correlated with the received signal. Radar and sonar systems use pulse compression to improve
signal-to-noise ratio (SNR) and range resolution by shortening the duration of echoes. This example
also demonstrates Doppler processing, where the radial velocity of a target is determined from the
Doppler shift created by target motion.

Determining Range and Speed of Targets

The following radar system propagates a pulse train of linear frequency modulated (FM) waveforms
to a moving target and receives the echoes. By applying matched filtering and Doppler processing to
the echoes, the radar system can effectively detect the range and speed of the target.

Specify the requirements for the radar system. This example uses a carrier frequency fc of 3 gHz
and a sampling rate fs of 1 mHz.

fc = 3e9;
fs = 1e6;
c = physconst('LightSpeed');

Create the system objects to model a radar system. The system is monostatic. The transmitter is
located at (0,0,0) and is stationary, while the target is located at (5000,5000,0) with a velocity of
(25,25,0) with a radar cross-section (RCS) of 1 square meter.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[1e8 10e9]);
transmitter = phased.Transmitter('Gain',20,'InUseOutputPort',true);
txloc = [0;0;0];
tgtloc = [5000;5000;0]; % Radial Dist ~= 7071 m
tgtvel = [25;25;0]; % Radial Speed ~= 35.4 m/s
target = phased.RadarTarget('Model','Nonfluctuating','MeanRCS',1,'OperatingFrequency',fc);
antennaplatform = phased.Platform('InitialPosition',txloc);
targetplatform = phased.Platform('InitialPosition',tgtloc,'Velocity',tgtvel);
radiator = phased.Radiator('PropagationSpeed',c,...
 'OperatingFrequency',fc,'Sensor',antenna);
channel = phased.FreeSpace('PropagationSpeed',c,...
 'OperatingFrequency',fc,'TwoWayPropagation',false);
collector = phased.Collector('PropagationSpeed',c,...
 'OperatingFrequency',fc,'Sensor',antenna);
receiver = phased.ReceiverPreamp('NoiseFigure',0,...
 'EnableInputPort',true,'SeedSource','Property','Seed',2e3);

Create a linear FM waveform with a pulse width of 25 μs, a pulse repetition frequency of 10 kHz, and
a sweep bandwidth of 100 kHz. The matched filter coefficients are generated from this waveform.

waveform = phased.LinearFMWaveform('PulseWidth',10e-6,'PRF',10e3,'OutputFormat','Pulses','NumPulses',1,'SweepBandwidth',1e5);
wav = waveform();
c = physconst('LightSpeed');
maxrange = c/(2*waveform.PRF);
SNR = npwgnthresh(1e-6,1,'noncoherent');
lambda = c/fs;
tau = waveform.PulseWidth;
Ts = 290;
dbterm = db2pow(SNR - 2*transmitter.Gain);
Pt = (4*pi)^3*physconst('Boltzmann')*Ts/tau/target.MeanRCS/lambda^2*maxrange^4*dbterm;

 Estimate Range and Doppler Using Pulse Compression

17-549

filter = phased.MatchedFilter(...
 'Coefficients',getMatchedFilter(waveform),...
 'GainOutputPort',true);

To improve the Doppler resolution, the system emits 64 pulses, and the echoes are stored in rxsig.
The data matrix stores the fast time samples (time within each pulse) along each column and the slow
time samples (time between pulses) along each row.

numPulses = 64;
rxsig = zeros(length(wav),numPulses);

for n = 1:numPulses
 [tgtloc,tgtvel] = targetplatform(1/waveform.PRF);
 [tgtrng,tgtang] = rangeangle(tgtloc,txloc);

 [txsig, txstatus] = transmitter(wav);
 txsig = radiator(txsig,tgtang);
 txsig = channel(txsig,txloc,tgtloc,[0;0;0],tgtvel);
 txsig = target(txsig);
 txsig = channel(txsig,tgtloc,txloc,tgtvel,[0;0;0]);
 txsig = collector(txsig,tgtang);
 rxsig(:,n) = receiver(txsig,~txstatus);
end

prf = waveform.PRF;
fs = waveform.SampleRate;
response = phased.RangeDopplerResponse('DopplerFFTLengthSource','Property','DopplerFFTLength',2048,'SampleRate',fs,'DopplerOutput','Speed','OperatingFrequency',fc,'PRFSource','Property','PRF',prf);
filt = getMatchedFilter(waveform);
[resp,rng_grid,dop_grid] = response(rxsig,filt);

plotResponse(response,rxsig,filt,'Unit','db')
ylim([0 12000])

17 Featured Examples

17-550

The response shows that the target is moving at about –40 m/s, and that the target is moving away
from the transmitter since the speed is negative.

Calculate the range gates corresponding to the travel speed of the signal. The plot of the first slow
time sample shows the largest peak around 7000 m, which corresponds with the range-speed
response pattern plot.

fasttime = unigrid(0,1/fs,1/prf,'[)');
rangebins = (physconst('Lightspeed')*fasttime/2);

plot(rangebins,abs(rxsig(:,1)))

 Estimate Range and Doppler Using Pulse Compression

17-551

Determining Range

Create a threshold where the probability of false alarm is less than 1e-6. Use noncoherent integration
of the 64 pulses assuming that the signal is in white Gaussian noise. Take the largest peak above the
threshold and dipslay the estimated target range.

pfa = 1e-6;
NoiseBandwidth = 5e6/2;
npower = noisepow(NoiseBandwidth, receiver.NoiseFigure,receiver.ReferenceTemperature);
thresh = npwgnthresh(pfa,numPulses,'noncoherent');
thresh = npower*db2pow(thresh);
[pks,range_detect] = findpeaks(pulsint(rxsig,'noncoherent'),'MinPeakHeight',thresh,'SortStr','descend');
range_estimate = rangebins(range_detect(1));
fprintf("Range Estimate: %3.2f m", range_estimate);

Range Estimate: 7344.92 m

Determining Speed

Take the slow-time samples corresponding to the range bin containing the detected target and plot
the power spectral density estimate of the slow-time samples using the periodogram function.

ts = rxsig(range_detect(1),:).';
periodogram(ts,[],256,prf,'centered')

17 Featured Examples

17-552

The peak frequency corresponds to the Doppler shift divided by 2, which can be converted into target
speed. A positive speed means that the target is approaching the transmitter, while a negative speed
indicates that the target is moving away from the transmitter.

[Pxx,F] = periodogram(ts,[],256,prf,'centered');

[Y,I] = max(Pxx);
lambda = physconst('Lightspeed')/fc;
tgtspeed = dop2speed(F(I)/2,lambda);
fprintf("Doppler Shift Estimate: %2.2f Hz",F(I)/2)

Doppler Shift Estimate: -351.56 Hz

fprintf("Speed Estimate: %2.2f m/s",tgtspeed)

Speed Estimate: -35.13 m/s

 Estimate Range and Doppler Using Pulse Compression

17-553

Compare Ambiguity Functions for Different Wave Modulation
Schemes

This example shows how to visualize and interpret different waveform processing schemes and their
tradeoffs in the Radar Waveform Analyzer app.

Introduction

Radar systems use matched filters in the receiver chain to improve signal-to-noise ratio (SNR).
Matched filters are time-reversed and conjugated versions of the transmitted signal. The ambiguity
function is the output of a matched filter for a given input waveform. The ambiguity function is used
to see a waveform's resolution and ambiguities in both the Doppler and range domains. The ideal
ambiguity function is a two-dimensional Dirac delta function, similar to a thumbtack shape, that has
no ambiguities. However, this function is unachievable because it requires a waveform with infinite
duration and bandwidth. Bandwidth is the difference between the upper and lower frequencies of a
waveform. The ambiguity functions of different waveforms provide insight into their advantages and
disadvantages.

This example uses the radar system requirements introduced and characterized in the “Waveform
Analysis Using the Ambiguity Function” on page 17-151 example and approximates the speed of light
to be 3e8 m/s. The desired system has a maximum unambiguous range of 15 km and a range
resolution of 1.5 km.

Rectangular Waveforms

Description

The most basic waveform is the rectangular waveform, whose amplitude alternates between two
values, similar to a square wave. The default waveform in the Radar Waveform Analyzer is a
rectangular waveform.

Create a waveform with these parameters:

• Name: Rect
• Waveform: Rectangular
• Sample Rate (Hz): 200 kHz
• PRF (Hz): 10 kHz
• Pulse Width (s): 10 µs

Use a sample rate that is at least double the highest frequency component of the waveform, which in
this case is the bandwidth. In a rectangular waveform, the bandwidth is the reciprocal of the pulse
width. Since the bandwidth is 100 kHz, the sample rate is 200 kHz.

17 Featured Examples

17-554

Range and Resolution

The Characteristics tab shows the properties of a radar system that uses a given rectangular
waveform. To observe the relationship between the pulse repetition frequency (PRF) and other
characteristics, increase and decrease the PRF values.

• Duplicate the rectangular waveform twice, and change their PRFs to 5 kHz and 20 kHz.

The Characteristics tab shows that the PRF is inversely proportional to the maximum unambiguous
range because the maximum unambiguous range is determined by the amount of time between
pulses. The relationship between PRF and maximum unambiguous range applies for all pulsed
waveforms, as the farther apart the pulses are spread, the farther the signal can propagate and
return before the next pulse is emitted.

Beyond simply measuring range, radar systems measure velocity by using the Doppler effect. The
greater the Doppler shift is compared to the original signal, the faster the target is moving. As such,
Doppler shift and speed are directly proportional and are often used interchangeably. The
Characteristics tab displays Doppler resolution and maximum Doppler shift, which correspond to
the speed resolution and the maximum detectable speed, respectively. These waveforms also
demonstrate the Doppler Dilemma, where a small PRF gives a larger maximum unambiguous range
but poor maximum Doppler while a larger PRF gives better maximum Doppler but worse maximum
unambiguous range.

 Compare Ambiguity Functions for Different Wave Modulation Schemes

17-555

• Change the PRF for each waveform back to 10 kHz and change the pulse width of the duplicate
waves to 20 and 30 µs.

The Characteristics tab shows that smaller pulse widths give better range resolution and a smaller
minimum range. The tradeoff for a smaller pulse width is that it requires a higher peak power for the
return echo to be detected reliably.

The original waveform has a maximum range of 15 km and a range resolution of 1.5 km, but its
Doppler resolution is 10 kHz. Assuming that the radar is operating at 1 GHz, the Doppler resolution
dictates that the radar system cannot separate targets with a speed difference smaller than 30 km/s,
which is far too large to be practical for many real-world radar systems. To further visualize the range
and Doppler domains, view the different ambiguity plots.

• Click on the Analysis drop-down menu and, under the Ambiguity Plots section, add the
Contour, Surface, Delay Cut, and Doppler Cut plots.

The Doppler Cut graph at 0 kHz shows the autocorrelation function (ACF) of the waveform, which
corresponds to the matched filter response of a stationary target. The first null response for each
waveform is the same as its respective pulse width. To obtain the range resolution, multiply the pulse
width by the speed of light over 2 to account for the round trip. For the example waveforms, the
range resolutions are 1.5 km, 3 km, and 4.5 km.

17 Featured Examples

17-556

The zero-delay cut plot shows large gaps until the first null response for each of the waveforms.
Looking at the 10 µs pulse width waveform, the first null is at 0.1 MHz, which translates to a Doppler
shift of 100 kHz or 30 km/s. In other words, two targets must have speeds that differ by over 30 km/s
to be separated via Doppler response, which is unrealistic in most radar situations.

The Contour plot displays the nonzero response of the ambiguity function. Because the duty cycle, or
the ratio of the pulse width to the pulse period, is 10%, the nonzero response only occupies about
10% of all delays. The surface ambiguity function shows the response in relation to both delay and
Doppler, which is simply another way to visualize the 3-D contour plot.

The changes in the pulse width and the PRF show how to improve maximum ambiguous range and
range resolution, but the Doppler resolution remains poor. The solution is to use a smaller pulse
width with a larger PRF, but both changes greatly reduce the maximum power and thus the SNR,
making it more difficult to detect objects. The product of the bandwidth and the pulse length is called
the time-bandwidth product, and since the bandwidth and the pulse length of a rectangular
wavelength are inversely proportional, the time-bandwidth product cannot exceed 1 for this
waveform. Because of these tradeoffs, rectangular waveforms are rarely used in practical radar
systems.

 Compare Ambiguity Functions for Different Wave Modulation Schemes

17-557

Linear FM

Description

Linear frequency modulated (FM) waveforms are phase-modulated waveforms whose frequency
either increases or decreases linearly throughout the duration of the pulse. Linear FM waveforms are
a popular choice for radar systems because, unlike in rectangular waveforms, the pulse width and the
energy of the pulse are decoupled due to the changing frequency. This decoupling makes the time-
bandwidth product exceed 1 and allows for improved target detection ability. The Radar Waveform
Analyzer app has the functionality to model these waveforms as well. For more information on linear
FM waveforms, view “Linear Frequency Modulated Pulse Waveforms” on page 4-6

Create a waveform with these parameters:

• Name: LFM1
• Waveform: Linear FM
• Sample Rate (Hz): 200 kHz
• PRF (Hz): 10 kHz
• Pulse Width (s): 50 µs
• Sweep Bandwidth (Hz): 100 kHz

Click on the Spectrum tab to view the peak power.

17 Featured Examples

17-558

Range and Resolution

Since the waveform is longer, the power is increased. However, the range resolution, the Doppler
resolution, and the maximum unambiguous range are the same as for the rectangular waveform due
to the effects of the frequency modulation. The Characteristics tab shows that the minimum range is
greatly increased, meaning that the system cannot detect any objects that are closer than 7.5 km. To
improve the Doppler resolution and decrease the minimum range, use numerous pulses.

• Decrease the pulse width to 10 µs and increase the number of pulses to 5.

By using a coherent pulse train and Doppler processing, the Doppler resolution improves in
proportion to the number of pulses added. The Characteristics tab shows that range resolution,
maximum Doppler, and maximum unambiguous range still remain the same, but the Doppler
resolution is much improved. The tradeoff for adding more pulses is that sidelobes are now present,
which can be seen in the Matched Filter Response tab. One way to reduce these sidelobes is to
apply a window.

• Duplicate the linear FM waveform, and in the copied waveform, change the Spectrum Window
from None to Hann and set the Spectrum Range from 0 to 200 kHz.

 Compare Ambiguity Functions for Different Wave Modulation Schemes

17-559

Press Ctrl and click on the two waveforms to compare them side by side. The window decreases the
mainlobe's power from 100 V to less than 50 V, which is a loss of around 33 dB in power, and the
width of the mainlobe is also wider compared to the waveform where you did not apply a window.
However, the window does flatten the sidelobes, which makes detection using thresholding more
reliable.

Frequency Modulated Continuous Waveforms (FMCW)

Description

Frequency Modulated Continuous Waveforms (FMCW) are similar to linear FM waveforms but are
continuous rather than pulsed, which is effectively a linear FM waveform but with a duty cycle of
100%. FMCWs are often used in short-range automotive radar systems due to their sharp resolution
for both Doppler and range.

Create a waveform with these parameters:

• Name: FMCW
• Waveform: FMCW
• Sample Rate (Hz): 200 kHz
• Sweep Time (s): 100 µs

17 Featured Examples

17-560

• Sweep Bandwidth (Hz): 500 kHz
• Number of Sweeps: 1

Range and Resolution

Check the Characteristics tab and see that most of the characteristics are the same as for the
rectangular waveform. One notable difference is that with continuous waveforms, the receiver always
remains on, so the minimum range is always 0. To improve the range resolution, increase the sweep
bandwidth.

• Increase the sweep bandwidth to 500 kHz.

The range resolution improves by a factor of 5 to 0.3 km. However, the Doppler resolution is still poor
at 10 kHz. One way to improve this is by increasing the sweep time, which essentially lengthens the
duration of the frequency modulation.

• Increase the sweep time from 0.1 ms to 1 ms.

The increased sweep time improves the Doppler resolution by a factor of 10, reducing it to 1 kHz.
Although the Doppler resolution improves, the tradeoff for lengthening the signal is that the
maximum Doppler decreases by the same factor, so if there are fast moving targets that exceed this
Doppler limit, the radar system is unable to determine their speed without additional processing
complexity.

• Revert the sweep time back to 0.1 ms and now change the number of sweeps to 10 from 1.

Increasing the number of sweeps follows the same principle of coherent pulse trains to improve the
Doppler resolution from 10 kHz to 1 kHz. The Doppler Cut tab displays the ambiguity function, which
has sizable sidelobes.

 Compare Ambiguity Functions for Different Wave Modulation Schemes

17-561

An ambiguity function that has numerous sidelobes is often referred to as a "bed of nails" ambiguity
function. To get a better look, compare the 3-D ambiguity plots side by side.

17 Featured Examples

17-562

The ambiguity function is slightly skewed along the Doppler-Delay plane, which shows that slight
changes in Doppler can cause errors in range measurements. This phenomenon is called range-
Doppler coupling and occurs commonly in linear FM waveforms.

Another tradeoff with the FMCW waveform is that the maximum unambiguous range is a function of
the sweep time, which can be difficult to increase past a certain point. Thus, many FMCW radars are
limited to a short range, but because of their improved range and Doppler resolution compared to
other waveforms, FMCW waveforms are usually used in systems that require high measurement
accuracy.

Summary

This example shows how to use the Radar Waveform Analyzer app to compare different types of
waveforms, including rectangular, linear FM, and FMCW waveforms. The ambiguity function of a
waveform is the output of a matched filter with the waveform as input, and the ambiguity function
serves as a valuable tool for determining the effectiveness of a waveform for a given radar system.

 Compare Ambiguity Functions for Different Wave Modulation Schemes

17-563

NR Downlink Transmit-End Beam Refinement Using CSI-RS
This example demonstrates the downlink transmit-end beam refinement procedure using the channel
state information reference signal (CSI-RS) from 5G Toolbox™. The example shows how to transmit
multiple CSI-RS resources in different directions in a scattering environment and how to select the
optimal transmit beam based on reference signal received power (RSRP) measurements.

Introduction

In NR 5G, frequency range 2 (FR2) operates at millimeter wave (mmWave) frequencies (24.25 GHz to
52.6 GHz). As the frequency increases, the transmitted signal is prone to high path loss and
penetration loss, which affects the link budget. To improve the gain and directionality of the
transmission and reception of the signals at higher frequencies, beamforming is essential. Beam
management is a set of Layer 1 (physical layer) and Layer 2 (medium access control) procedures to
establish and retain an optimal beam pair (transmit beam and a corresponding receive beam) for
good connectivity. TR 38.802 Section 6.1.6.1 [1 on page 17-0] defines beam management as three
procedures:

Procedure 1 (P-1): This procedure focuses on the initial acquisition based on synchronization signal
blocks (SSB). During the initial acquisition, beam sweeping takes place at both transmit and receive
ends to select the best beam pair based on the RSRP measurements. In general, the selected beams
are wide and may not be an optimal beam pair for the data transmission and reception. For more
details on this procedure, see “NR SSB Beam Sweeping” (5G Toolbox).

Procedure 2 (P-2): This procedure focuses on transmit-end beam refinement, where the beam
sweeping happens at the transmit end by keeping the receive beam fixed. The procedure is based on
non-zero-power CSI-RS (NZP-CSI-RS) for downlink transmit-end beam refinement and sounding
reference signal (SRS) for uplink transmit-end beam refinement.

After the initial beam establishment, obtaining a unicast data transmission with high directivity and
high gain requires a beam much finer than the SSB beam. Therefore, a set of reference signal
resources are configured and transmitted in different directions by using finer beams within the
angular range of the beam from the initial acquisition process. Then the user equipment (UE) or the
access network node (gNB) measures all these beams by capturing the signals with a fixed receive
beam. Finally, the best transmit beam is selected based on the RSRP measurements on all transmit
beams.

Procedure 3 (P-3): This procedure focuses on receive-end beam adjustment, where the beam
sweeping happens at the receive end given the current transmit beam. This process aims to find the
best receive beam, which can be a neighbor beam or a refined beam. For this procedure, a set of
reference signal resources (NZP-CSI-RS for downlink and SRS for uplink) are transmitted with the
same transmit beam and the UE or gNB receives the signal using different beams from different
directions covering an angular range. Finally, the best receive beam is selected based on the RSRP
measurements on all receive beams.

This example focuses on downlink beam refinement at the transmitter. The example works for both
frequency range 1 (FR1) and frequency range 2 (FR2) of NR 5G. This figure depicts the transmit-end
beam refinement procedure, considering four NZP-CSI-RS resources transmitted in four different
directions.

17 Featured Examples

17-564

This figure shows the main processing steps of this example with the transmit-end beam refinement
process-related steps in color.

Generate CSI-RS Resources

Configure Carrier

Create a carrier configuration object representing a 50 MHz carrier with subcarrier spacing of 30
kHz.

carrier = nrCarrierConfig;
% Maximum transmission bandwidth configuration for 50 MHz carrier with 30 kHz subcarrier spacing

 NR Downlink Transmit-End Beam Refinement Using CSI-RS

17-565

carrier.NSizeGrid = 133;
carrier.SubcarrierSpacing = 30;
carrier.NSlot = 0;
carrier.NFrame = 0

carrier =
 nrCarrierConfig with properties:

 NCellID: 1
 SubcarrierSpacing: 30
 CyclicPrefix: 'normal'
 NSizeGrid: 133
 NStartGrid: 0
 NSlot: 0
 NFrame: 0

 Read-only properties:
 SymbolsPerSlot: 14
 SlotsPerSubframe: 2
 SlotsPerFrame: 20

Configure CSI-RS

Create a CSI-RS configuration object representing an NZP-CSI-RS resource set with numNZPRes
number of NZP-CSI-RS resources. For Layer 1 RSRP measurements, configure all the CSI-RS
resources in a resource set with the same number of antenna ports (either single-port or dual-port),
as specified in TS 38.215 Section 5.1.2 [2 on page 17-0] or TS 38.214 Section 5.1.6.1.2 [3 on page
17-0]. This example works for single-port CSI-RS.

numNZPRes = 12;
csirs = nrCSIRSConfig;
csirs.CSIRSType = repmat({'nzp'},1,numNZPRes);
csirs.CSIRSPeriod = 'on';
csirs.Density = repmat({'one'},1,numNZPRes);
csirs.RowNumber = repmat(2,1,numNZPRes);
csirs.SymbolLocations = {0,1,2,3,4,5,6,7,8,9,10,11};
csirs.SubcarrierLocations = repmat({0},1,numNZPRes);
csirs.NumRB = 25

csirs =
 nrCSIRSConfig with properties:

 CSIRSType: {1x12 cell}
 CSIRSPeriod: 'on'
 RowNumber: [2 2 2 2 2 2 2 2 2 2 2 2]
 Density: {1x12 cell}
 SymbolLocations: {[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]}
 SubcarrierLocations: {[0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0]}
 NumRB: 25
 RBOffset: 0
 NID: 0

 Read-only properties:
 NumCSIRSPorts: [1 1 1 1 1 1 1 1 1 1 1 1]
 CDMType: {1x12 cell}

17 Featured Examples

17-566

% Validate CSI-RS antenna ports
validateCSIRSPorts(csirs);

% Get the binary vector to represent the presence of each CSI-RS resource
% in a specified slot
csirsTransmitted = getActiveCSIRSRes(carrier,csirs);

Configure the power scaling of all NZP-CSI-RS resources in decibels (dB).

powerCSIRS = 0;

Generate CSI-RS Symbols and Indices

Generate CSI-RS symbols and indices by using the carrier and csirs configuration objects. To
distinguish each CSI-RS resource output separately, specify the OutputResourceFormat,'cell'
name-value pair.

csirsSym = nrCSIRS(carrier,csirs,'OutputResourceFormat','cell')

csirsSym=1×12 cell array
 Columns 1 through 4

 {25x1 double} {25x1 double} {25x1 double} {25x1 double}

 Columns 5 through 8

 {25x1 double} {25x1 double} {25x1 double} {25x1 double}

 Columns 9 through 12

 {25x1 double} {25x1 double} {25x1 double} {25x1 double}

csirsInd = nrCSIRSIndices(carrier,csirs,'OutputResourceFormat','cell')

csirsInd=1×12 cell array
 Columns 1 through 4

 {25x1 uint32} {25x1 uint32} {25x1 uint32} {25x1 uint32}

 Columns 5 through 8

 {25x1 uint32} {25x1 uint32} {25x1 uint32} {25x1 uint32}

 Columns 9 through 12

 {25x1 uint32} {25x1 uint32} {25x1 uint32} {25x1 uint32}

Configure Antenna Arrays and Scatterers

Configure Transmit and Receive Antenna Arrays

Configure the carrier frequency and the signal propagation speed.

% Set the carrier frequency
fc = 3.5e9;
freqRange = validateFc(fc);

 NR Downlink Transmit-End Beam Refinement Using CSI-RS

17-567

% Set the propagation speed
c = physconst('LightSpeed');
% Calculate wavelength
lambda = c/fc;

Configure the size of transmit and receive antenna arrays as a two-element vector, where the first
element represents the number of rows and the second element represents the number of columns in
the antenna array.

txArySize = [8 8];
rxArySize = [2 2];

Calculate the total number of transmit and receive antenna elements.

nTx = prod(txArySize);
nRx = prod(rxArySize);

Configure the positions of transmit and receive antenna arrays. Then calculate the free space path
loss based on the spatial separation between transmit and receive antenna array positions.

% Configure antenna array positions
txArrayPos = [0;0;0];
rxArrayPos = [100;50;0];

% Calculate the free space path loss
toRxRange = rangeangle(txArrayPos,rxArrayPos);
spLoss = fspl(toRxRange,lambda);

Configure the uniform linear array (ULA) or uniform rectangular array (URA) based on the sizes of
antennas arrays.

% Initialize the flags to choose between URA and ULA
isTxRectArray = false;
isRxRectArray = false;

% Enable isTxRectArray if both the number of rows and columns of transmit
% antenna array are greater than one
if ~any(txArySize == 1)
 isTxRectArray = true;
end
% Enable isRxRectArray if both the number of rows and columns of receive
% antenna array are greater than one
if ~any(rxArySize == 1)
 isRxRectArray = true;
end

% Configure the transmit and receive antenna elements
txAntenna = phased.IsotropicAntennaElement('BackBaffled',true); % To avoid transmission beyond +/- 90
 % degrees from the broadside, baffle
 % the back of the transmit antenna
 % element by setting the BackBaffled
 % property to true
rxAntenna = phased.IsotropicAntennaElement('BackBaffled',false); % To receive the signal from 360 degrees,
 % set the BackBaffled property to false

% Configure transmit antenna array
if isTxRectArray
 % Create a URA System object for signal transmission

17 Featured Examples

17-568

 txArray = phased.URA('Element',txAntenna,'Size',txArySize,'ElementSpacing',lambda/2);
else
 % Create a ULA System object for signal transmission
 txArray = phased.ULA('Element',txAntenna,'NumElements',nTx,'ElementSpacing',lambda/2);
end

% Configure receive antenna array
if isRxRectArray
 % Create a URA System object for signal reception
 rxArray = phased.URA('Element',rxAntenna,'Size',rxArySize,'ElementSpacing',lambda/2);
else
 % Create a ULA System object for signal reception
 rxArray = phased.ULA('Element',rxAntenna,'NumElements',nRx,'ElementSpacing',lambda/2);
end

Configure Scatterers
fixedScatMode = true;
rng(42);
if fixedScatMode
 % Fixed single scatterer location
 numScat = 1;
 scatPos = [60;10;15];
else
 % Generate scatterers at random positions
 numScat = 10; %#ok<UNRCH>
 azRange = -180:180;
 randAzOrder = randperm(length(azRange));
 elRange = -90:90;
 randElOrder = randperm(length(elRange));
 azAngInSph = deg2rad(azRange(randAzOrder(1:numScat)));
 elAngInSph = deg2rad(elRange(randElOrder(1:numScat)));
 r = 20;

 % Transform spherical coordinates to Cartesian coordinates
 [x,y,z] = sph2cart(azAngInSph,elAngInSph,r);
 scatPos = [x;y;z] + (txArrayPos + rxArrayPos)/2;
end

Transmit Beamforming and OFDM Modulation

Calculate the Steering Vectors

Create the steering vector System object™ for transmit antenna array.

txArrayStv = phased.SteeringVector('SensorArray',txArray,'PropagationSpeed',c);

Calculate the angle of scatterer position with respect to the transmit antenna array.

[~,scatAng] = rangeangle(scatPos(:,1),txArrayPos); % Pointing towards the first scatterer position, in case of multiple scatterers

Configure the azimuth and elevation beamwidths of SSB transmit beam from the initial acquisition
process (P-1).

azTxBeamWidth = 30; % In degrees
elTxBeamWidth = 30; % In degrees

Get the SSB transmit beam direction which is aligned (partially or fully) to the position of scatterer,
by using the beamwidths in azimuth and elevation planes.

 NR Downlink Transmit-End Beam Refinement Using CSI-RS

17-569

ssbTxAng = getInitialBeamDir(scatAng,azTxBeamWidth,elTxBeamWidth);

Calculate the beam directions (azimuth and elevation angle pairs) for all active CSI-RS resources
within the angular range covered by the SSB transmit beam.

% Get the number of transmit beams based on the number of active CSI-RS resources in a slot
numBeams = sum(csirsTransmitted);

% Get the azimuthal sweep range based on the SSB transmit beam direction
% and its beamwidth in azimuth plane
azSweepRange = [ssbTxAng(1) - azTxBeamWidth/2 ssbTxAng(1) + azTxBeamWidth/2];

% Get the elevation sweep range based on the SSB transmit beam direction
% and its beamwidth in elevation plane
elSweepRange = [ssbTxAng(2) - elTxBeamWidth/2 ssbTxAng(2) + elTxBeamWidth/2];

% Get the azimuth and elevation angle pairs for all NZP-CSI-RS transmit beams
azBW = beamwidth(txArray,fc,'Cut','Azimuth');
elBW = beamwidth(txArray,fc,'Cut','Elevation');
csirsBeamAng = hGetBeamSweepAngles(numBeams,azSweepRange,elSweepRange,azBW,elBW);

Calculate the steering vectors for all active CSI-RS resources.

wT = zeros(nTx,numBeams);
for beamIdx = 1:numBeams
 tempW = txArrayStv(fc,csirsBeamAng(:,beamIdx));
 wT(:,beamIdx) = tempW;
end

Apply Digital Beamforming

Loop over all NZP-CSI-RS resources and apply the digital beamforming to all the active ones. Digital
beamforming is considered to offer frequency selective beamforming within the same OFDM symbol.

% Number of CSI-RS antenna ports
ports = csirs.NumCSIRSPorts(1);
% Initialize the beamformed grid
bfGrid = nrResourceGrid(carrier,nTx);
% Get the active NZP-CSI-RS resource indices
activeRes = find(logical(csirsTransmitted));
for resIdx = 1:numNZPRes
 % Initialize the carrier resource grid for one slot and map NZP-CSI-RS symbols onto
 % the grid
 txSlotGrid = nrResourceGrid(carrier,ports);
 txSlotGrid(csirsInd{resIdx}) = db2mag(powerCSIRS)*csirsSym{resIdx};
 reshapedSymb = reshape(txSlotGrid,[],ports);

 % Get the transmit beam index
 beamIdx = find(activeRes == resIdx);

 % Apply the digital beamforming
 if ~isempty(beamIdx)
 bfSymb = reshapedSymb * wT(:,beamIdx)';
 bfGrid = bfGrid + reshape(bfSymb,size(bfGrid));
 end
end

17 Featured Examples

17-570

Perform OFDM Modulation

Generate the time-domain waveform by performing the OFDM modulation.

% Perform OFDM modulation
[tbfWaveform,ofdmInfo] = nrOFDMModulate(carrier,bfGrid);

% Normalize the beamformed time-domain waveform over the number of transmit
% antennas
tbfWaveform = tbfWaveform/sqrt(nTx);

Scattering MIMO Channel and AWGN

Configure the Channel

Configure the scattering-based MIMO propagation channel by using the System object
phased.ScatteringMIMOChannel. This channel model applies time delay, gain, Doppler shift,
phase change, free space path loss, and optionally, other atmospheric attenuations to the input.

chan = phased.ScatteringMIMOChannel;
chan.PropagationSpeed = c;
chan.CarrierFrequency = fc;
chan.Polarization = 'none';
chan.SpecifyAtmosphere = false;
chan.SampleRate = ofdmInfo.SampleRate;
chan.SimulateDirectPath = false;
chan.ChannelResponseOutputPort = true;

% Configure transmit array parameters
chan.TransmitArray = txArray;
chan.TransmitArrayMotionSource = 'property';
chan.TransmitArrayPosition = txArrayPos;

% Configure receive array parameters
chan.ReceiveArray = rxArray;
chan.ReceiveArrayMotionSource = 'property';
chan.ReceiveArrayPosition = rxArrayPos;

% Configure scatterers
chan.ScattererSpecificationSource = 'property';
chan.ScattererPosition = scatPos;
chan.ScattererCoefficient = ones(1,numScat);

% Get the maximum channel delay by transmitting random signal
[~,~,tau] = chan(complex(randn(chan.SampleRate*1e-3,nTx), ...
 randn(chan.SampleRate*1e-3,nTx)));
maxChDelay = ceil(max(tau)*chan.SampleRate);

Send the Waveform through the Channel

Append zeros at the end of the transmitted waveform to flush the channel content and then pass the
time-domain waveform through the scattering MIMO channel. These zeros take into account any
delay introduced in the channel.

% Append zeros to the transmit waveform to account for channel delay
tbfWaveform = [tbfWaveform; zeros(maxChDelay,nTx)];
% Pass the waveform through the channel
fadWave = chan(tbfWaveform);

 NR Downlink Transmit-End Beam Refinement Using CSI-RS

17-571

Apply AWGN

Configure and apply the receive gain to the faded waveform, to compensate for the path loss. Then
apply AWGN to the resultant waveform. For an explanation of the SNR definition that this example
uses, see “SNR Definition Used in Link Simulations” (5G Toolbox).

% Configure the receive gain
rxGain = 10.^((spLoss)/20); % Gain in linear scale
% Apply the gain
fadWaveG = fadWave*rxGain;

% Configure the SNR in dB
SNRdB = 20;
SNR = 10^(SNRdB/10); % SNR in linear scale
% Calculate the standard deviation for AWGN
N0 = 1/sqrt(2.0*nRx*double(ofdmInfo.Nfft)*SNR);

% Generate AWGN
noise = N0*complex(randn(size(fadWaveG)),randn(size(fadWaveG)));
% Apply AWGN to the waveform
rxWaveform = fadWaveG + noise;

Timing Synchronization

Perform the timing synchronization by cross correlating the received reference symbols with a local
copy of NZP-CSI-RS symbols.

% Generate reference symbols and indices
refSym = nrCSIRS(carrier,csirs);
refInd = nrCSIRSIndices(carrier,csirs);

% Estimate timing offset
offset = nrTimingEstimate(carrier,rxWaveform,refInd,refSym);
if offset > maxChDelay
 offset = 0;
end

% Correct timing offset
syncTdWaveform = rxWaveform(1+offset:end,:);

OFDM Demodulation and Receive Beamforming

OFDM Demodulation

OFDM demodulate the synchronized time-domain waveform.

rxGrid = nrOFDMDemodulate(carrier,syncTdWaveform);

Calculate Steering Vector

Create the steering vector System object for the receive antenna array.

rxArrayStv = phased.SteeringVector('SensorArray',rxArray,'PropagationSpeed',c);

Calculate the angle of scatterer position with respect to the receive antenna array. Assuming this as
receive beam direction from the initial acquisition process using SSB.

[~,scatRxAng] = rangeangle(scatPos(:,1),rxArrayPos); % Pointing towards the first scatterer position, in case of multiple scatterers

17 Featured Examples

17-572

Configure the azimuth and elevation beamwidths of receive beam from the initial acquisition process
(P-1).

azRxBeamWidth = 30; % In degrees
elRxBeamWidth = 30; % In degrees

Get the initial receive beam direction which is aligned (partially or fully) to the position of scatterer,
by using the beamwidths in azimuth and elevation planes from P-1.

rxAng = getInitialBeamDir(scatRxAng,azRxBeamWidth,elRxBeamWidth);

Calculate the steering vector for the angle of reception.

wR = rxArrayStv(fc,rxAng);

Apply Receive Beamforming

To perform digital beamforming at the receiver side, apply the steering weights to rxGrid, with the
assumption that there is no other signal present in rxGrid (single UE scenario). Combine the signals
from all receive antenna elements in case of FR2, as specified in TS 38.215 Section 5.1.2 [2 on page
17-0].

temp = rxGrid;
if strcmpi(freqRange,'FR1')
 % Beamforming without combining
 rbfGrid = reshape(reshape(temp,[],nRx).*wR',size(temp,1),size(temp,2),[]);
else % 'FR2'
 % Beamforming with combining
 rbfGrid = reshape(reshape(temp,[],nRx)*conj(wR),size(temp,1),size(temp,2),[]);
end

Plot the Scattering MIMO Scenario

Configure the MIMO scene parameters.

sceneParams.TxArray = txArray;
sceneParams.RxArray = rxArray;
sceneParams.TxArrayPos = txArrayPos;
sceneParams.RxArrayPos = rxArrayPos;
sceneParams.ScatterersPos = scatPos;
sceneParams.Lambda = lambda;
sceneParams.ArrayScaling = 100; % To enlarge antenna arrays in the plot
sceneParams.MaxTxBeamLength = 45; % Maximum length of transmit beams in the plot
sceneParams.MaxRxBeamLength = 25; % Maximum length of receive beam in the plot

Plot the scattering MIMO scenario (including transmit and receive antenna arrays, scatterer positions
and their paths, and all the transmit and receive antenna array beam patterns) by using the helper
function hPlotSpatialMIMOScene. Beam patterns in this figure resemble the power patterns in
linear scale.

hPlotSpatialMIMOScene(sceneParams,wT,wR);
axis tight;
view([74 29]);

 NR Downlink Transmit-End Beam Refinement Using CSI-RS

17-573

Beam Determination

After the OFDM demodulation, the UE measures the RSRP for all the CSI-RS resources transmitted in
different beams, given the current receive beam. Perform these measurements by using the helper
function hCSIRSMeasurements.

% Perform RSRP measurements
meas = hCSIRSMeasurements(carrier,csirs,rbfGrid);

% Display the measurement quantities for all CSI-RS resources in dBm
RSRPdBm = meas.RSRPdBm;
disp(['RSRP measurements of all CSI-RS resources (in dBm):' 13 num2str(RSRPdBm)]);

RSRP measurements of all CSI-RS resources (in dBm):
42.3147 33.237 29.1999 45.1102 37.0922 31.4861 39.9414 33.5053 24.5859 17.5821 12.9908 -1.9296

Identify the maximum RSRP value from the measurements and find the best corresponding beam.

% Get the transmit beam index with maximum RSRP value
[~,maxRSRPIdx] = max(RSRPdBm(logical(csirsTransmitted)));

% Get the CSI-RS resource index with maximum RSRP value
[~,maxRSRPResIdx] = max(RSRPdBm);

Calculate the beamwidth which corresponds to the refined transmit beam.

% Get the steering weights corresponding to refined transmit beam
if numBeams == 0

17 Featured Examples

17-574

 disp('Refinement has not happened, as NZP-CSI-RS is not transmitted')
else
 refBeamWts = wT(:,maxRSRPIdx);
 csirsAzBeamWidth = beamwidth(txArray,fc,'PropagationSpeed',c,'Weights',refBeamWts,'CutAngle',csirsBeamAng(2,maxRSRPIdx));
 csirsElBeamWidth = beamwidth(txArray,fc,'PropagationSpeed',c,'Weights',refBeamWts,'Cut','Elevation','CutAngle',csirsBeamAng(1,maxRSRPIdx));
 disp(['From initial beam acquisition:' 13 ' Beamwidth of initial SSB beam in azimuth plane is: '...
 num2str(azTxBeamWidth) ' degrees' 13 ...
 ' Beamwidth of initial SSB beam in elevation plane is: '...
 num2str(elTxBeamWidth) ' degrees' 13 13 ...
 'With transmit-end beam refinement:' 13 ' Refined transmit beam ('...
 num2str(maxRSRPIdx) ') corresponds to CSI-RS resource '...
 num2str(maxRSRPResIdx) ' is selected in the direction ['...
 num2str(csirsBeamAng(1,maxRSRPIdx)) ';' num2str(csirsBeamAng(2,maxRSRPIdx))...
 ']' 13 ' Beamwidth of refined transmit beam in azimuth plane is: '...
 num2str(csirsAzBeamWidth) ' degrees' 13 ...
 ' Beamwidth of refined transmit beam in elevation plane is: '...
 num2str(csirsElBeamWidth) ' degrees']);
end

From initial beam acquisition:
 Beamwidth of initial SSB beam in azimuth plane is: 30 degrees
 Beamwidth of initial SSB beam in elevation plane is: 30 degrees

With transmit-end beam refinement:
 Refined transmit beam (4) corresponds to CSI-RS resource 4 is selected in the direction [10;15]
 Beamwidth of refined transmit beam in azimuth plane is: 13.46 degrees
 Beamwidth of refined transmit beam in elevation plane is: 13.24 degrees

Summary and Further Exploration

This example highlights the beam refinement procedure (P-2) using NZP-CSI-RS. The procedure
identifies a transmit beam that is finer than the beam from the initial acquisition.

You can configure multiple CSI-RS resources, transmit and receive antenna array configurations, and
multiple scatterers to see the variations in the selection of the refined beam. You can also configure
the azimuth and elevation angle pairs for the signal transmission and reception.

References

1 3GPP TR 38.802. "Study on New Radio access technology physical layer aspects." 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network.

2 3GPP TS 38.215. "NR; Physical layer measurements." 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network.

3 3GPP TS 38.214. "NR; Physical layer procedures for data." 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network.

Local Functions

function validateCSIRSPorts(csirs)
% validateCSIRSPorts validates the CSI-RS antenna ports, given the
% CSI-RS configuration object CSIRS.

 numPorts = csirs.NumCSIRSPorts;
 if any(numPorts > 1)
 error('nr5g:PortsGreaterThan1','CSI-RS resources must be configured for single-port for RSRP measurements.');
 end
end

 NR Downlink Transmit-End Beam Refinement Using CSI-RS

17-575

function csirsTransmitted = getActiveCSIRSRes(carrier,csirs)
% getActiveCSIRSRes returns a binary vector indicating the presence of
% all CSI-RS resources in a specified slot, given the carrier
% configuration object CARRIER and CSI-RS configuration object CSIRS.

 % Extract the following properties of carrier
 NSlotA = carrier.NSlot; % Absolute slot number
 NFrameA = carrier.NFrame; % Absolute frame number
 SlotsPerFrame = carrier.SlotsPerFrame; % Number of slots per frame

 % Calculate the appropriate frame number (0...1023) based on the
 % absolute slot number
 NFrameR = mod(NFrameA + fix(NSlotA/SlotsPerFrame),1024);
 % Relative slot number (0...slotsPerFrame-1)
 NSlotR = mod(NSlotA,SlotsPerFrame);

 % Loop over the number of CSI-RS resources
 numCSIRSRes = numel(csirs.CSIRSType);
 csirsTransmitted = zeros(1,numCSIRSRes);
 csirs_struct = validateConfig(csirs);
 for resIdx = 1:numCSIRSRes
 % Extract the CSI-RS slot periodicity and offset
 if isnumeric(csirs_struct.CSIRSPeriod{resIdx})
 Tcsi_rs = csirs_struct.CSIRSPeriod{resIdx}(1);
 Toffset = csirs_struct.CSIRSPeriod{resIdx}(2);
 else
 if strcmpi(csirs_struct.CSIRSPeriod{resIdx},'on')
 Tcsi_rs = 1;
 else
 Tcsi_rs = 0;
 end
 Toffset = 0;
 end

 % Check for the presence of CSI-RS, based on slot periodicity and offset
 if (Tcsi_rs ~= 0) && (mod(SlotsPerFrame*NFrameR + NSlotR - Toffset, Tcsi_rs) == 0)
 csirsTransmitted(resIdx) = 1;
 end
 end
end

function freqRange = validateFc(fc)
% validateFc validates the carrier frequency FC and returns the frequency
% range as either 'FR1' or 'FR2'.

 if fc >= 410e6 && fc <= 7.125e9
 freqRange = 'FR1';
 elseif fc >= 24.25e9 && fc <= 52.6e9
 freqRange = 'FR2';
 else
 error('nr5g:invalidFreq',['Selected carrier frequency is outside '...
 'FR1 (410 MHz to 7.125 GHz) and FR2 (24.25 GHz to 52.6 GHz).']);
 end
end

function beamDir = getInitialBeamDir(scatAng,azBeamWidth,elBeamWidth)
% getInitialBeamDir returns the initial beam direction BEAMDIR, given the

17 Featured Examples

17-576

% angle of scatterer position with respect to transmit or receive antenna
% array SCATANG, beamwidth of transmit or receive beam in azimuth plane
% AZBEAMWIDTH, and beamwidth of transmit or receive beam in elevation
% plane ELBEAMWIDTH.

 % Azimuth angle boundaries of all transmit/receive beams
 azSSBSweep = -180:azBeamWidth:180;
 % Elevation angle boundaries of all transmit/receive beams
 elSSBSweep = -90:elBeamWidth:90;

 % Get the azimuth angle of transmit/receive beam
 azIdx1 = find(azSSBSweep <= scatAng(1),1,'last');
 azIdx2 = find(azSSBSweep >= scatAng(1),1,'first');
 azAng = (azSSBSweep(azIdx1) + azSSBSweep(azIdx2))/2;

 % Get the elevation angle of transmit/receive beam
 elIdx1 = find(elSSBSweep <= scatAng(2),1,'last');
 elIdx2 = find(elSSBSweep >= scatAng(2),1,'first');
 elAng = (elSSBSweep(elIdx1) + elSSBSweep(elIdx2))/2;

 % Form the azimuth and elevation angle pair (in the form of [az;el])
 % for transmit/receive beam
 beamDir = [azAng;elAng];
end

 NR Downlink Transmit-End Beam Refinement Using CSI-RS

17-577

CDL Channel Model Customization with Ray Tracing
This example shows how to customize the CDL channel model parameters by using the output of a
ray tracing analysis. The example shows how to:

• Specify the location of a transmitter and a receiver in a 3D environment.
• Use ray tracing to calculate the geometric aspects of the channel: number of rays, angles, delays

and attenuations.
• Configure the CDL channel model with the result of ray tracing analysis.
• Specify the channel antenna arrays using Phased Array System Toolbox™.
• Visualize the transmit and receive array radiation patterns based on singular value decomposition

of a perfect channel estimate.

Base Station and UE Configuration

The example assumes that both the base station and the UE use rectangular arrays. The array
orientations are specified as a pair of values representing azimuth and elevation. Both angles are in
degrees.

fc = 6e9; % carrier frequency (Hz)
bsPosition = [22.287495, 114.140706]; % lat, lon
bsAntSize = [8 8]; % number of rows and columns in rectangular array (base station)
bsArrayOrientation = [-30 0].'; % azimuth (0 deg is East, 90 deg is North) and elevation (positive points upwards) in deg
uePosition = [22.287323,114.140859]; % lat, lon
ueAntSize = [2 2]; % number of rows and columns in rectangular array (UE).
ueArrayOrientation = [180 45].'; % azimuth (0 deg is East, 90 deg is North) and elevation (positive points upwards) in deg
reflectionsOrder = 1; % number of reflections for ray tracing analysis (0 for LOS)

% Bandwidth configuration, required to set the channel sampling rate and for perfect channel estimation
SCS = 15; % subcarrier spacing
NRB = 52; % number of resource blocks, 10 MHz bandwidth

Import and Visualize 3-D Environment with Buildings for Ray Tracing

Launch Site Viewer with buildings in Hong Kong. For more information about the osm file, see [1] on
page 17-0 .

if exist('viewer','var') && isvalid(viewer) % viewer handle exists and viewer window is open
 viewer.clearMap();
else
 viewer = siteviewer("Basemap","openstreetmap","Buildings","hongkong.osm");
end

17 Featured Examples

17-578

Create Base Station and UE

Locate the base station and the UE on the map.

bsSite = txsite("Name","Base station", ...
 "Latitude",bsPosition(1),"Longitude",bsPosition(2),...
 "AntennaAngle",bsArrayOrientation(1:2),...
 "AntennaHeight",4,... % in m
 "TransmitterFrequency",fc);

ueSite = rxsite("Name","UE", ...
 "Latitude",uePosition(1),"Longitude",uePosition(2),...
 "AntennaHeight",1,... % in m
 "AntennaAngle",ueArrayOrientation(1:2));

Visualize the location of the base station and the UE. The base station is on top of a building.

bsSite.show();
ueSite.show();

 CDL Channel Model Customization with Ray Tracing

17-579

Ray Tracing Analysis

Perform ray tracing analysis using the shooting and bouncing rays (SBR) method. The SBR method
includes effects from surface reflections and diffractions but does not include effects from refraction
or scattering.

pm = propagationModel("raytracing","Method","sbr","MaxNumReflections",reflectionsOrder);
rays = raytrace(bsSite,ueSite,pm,"Type","pathloss");

Display the rays in Site Viewer.

plot(rays{1})

17 Featured Examples

17-580

From the obtained rays, get the times of arrival, the average path gains, and the angles of departure
and arrival. For simplicity, normalize the propagation delay so that the first path occurs at time 0 sec,
corresponding to no delay. Use the path loss to obtain the average path gains.

pathToAs = [rays{1}.PropagationDelay]-min([rays{1}.PropagationDelay]); % Time of arrival of each ray (normalized to 0 sec)
avgPathGains = -[rays{1}.PathLoss]; % Average path gains of each ray
pathAoDs = [rays{1}.AngleOfDeparture]; % AoD of each ray
pathAoAs = [rays{1}.AngleOfArrival]; % AoA of each ray
isLOS = any([rays{1}.LineOfSight]); % Line of sight flag

Set Up CDL Channel Model

Configure the CDL channel model with the information generated by the ray tracing analysis. Set the
DelayProfile property to 'Custom' to specify the path delays, the average path gains and the
angles of arrival and departure (both in azimuth and zenith).

When configuring the channel model, take into account that:

 CDL Channel Model Customization with Ray Tracing

17-581

• The ray tracer finds individual rays between the base station and the UE, while the CDL channel
models clusters of rays whose properties are determined by the cluster average path gain
(AveragePathGains), average angles of arrival and departure (AnglesAoA, AnglesZoA,
AnglesAoD, and AnglesZoD), and the spread of the rays in the cluster (AngleSpreads). The
information retrieved from the ray tracing analysis for individual rays configures the cluster
average values of the CDL channel.

• The ray tracer performs a static analysis, while the CDL channel models UE movement. Therefore,
the CDL channel introduces small-scale fading.

• The path gains obtained from ray tracing are considered as average path gains. Therefore,
because of fading, instantaneous channel path gains will differ from the average values, but over
long simulations their mean value will match the specified average path gains when using
isotropic antennas.

• The CDL channel uses zenith angles, while the ray tracing analysis returns elevation angles,
therefore you must convert between the two.

• If any of the calculated rays is a line of sight (LOS) ray (no reflection), set the HasLOSCluster
CDL channel property to true. For LOS cases, the CDL model splits the first path into two
components, one being LOS and the other having a Rayleigh fading characteristic. This results in
a combined Ricean fading characteristic. Therefore, in LOS cases, when you specify N rays, the
CDL channel models N+1 paths internally.

channel = nrCDLChannel;
channel.DelayProfile = 'Custom';
channel.PathDelays = pathToAs;
channel.AveragePathGains = avgPathGains;
channel.AnglesAoD = pathAoDs(1,:); % azimuth of departure
channel.AnglesZoD = 90-pathAoDs(2,:); % channel uses zenith angle, rays use elevation
channel.AnglesAoA = pathAoAs(1,:); % azimuth of arrival
channel.AnglesZoA = 90-pathAoAs(2,:); % channel uses zenith angle, rays use elevation
channel.HasLOSCluster = isLOS;
channel.CarrierFrequency = fc;
channel.NormalizeChannelOutputs = false; % do not normalize by the number of receive antennas, this would change the receive power
channel.NormalizePathGains = false; % set to false to retain the path gains

Specify the channel antenna arrays by using Phased Array System Toolbox array objects. The array
orientation properties of the CDL channel model use azimuth and downtilt while the
ueArrayOrientation and bsArrayOrientation objects use azimuth and elevation. Therefore,
convert the elevation to downtilt by changing the sign.

c = physconst('LightSpeed');
lambda = c/fc;

% UE array (single panel)
ueArray = phased.NRRectangularPanelArray('Size',[ueAntSize(1:2) 1 1],'Spacing', [0.5*lambda*[1 1] 1 1]);
ueArray.ElementSet = {phased.IsotropicAntennaElement}; % isotropic antenna element
channel.ReceiveAntennaArray = ueArray;
channel.ReceiveArrayOrientation = [ueArrayOrientation(1); (-1)*ueArrayOrientation(2); 0]; % the (-1) converts elevation to downtilt

% Base station array (single panel)
bsArray = phased.NRRectangularPanelArray('Size',[bsAntSize(1:2) 1 1],'Spacing', [0.5*lambda*[1 1] 1 1]);
bsArray.ElementSet = {phased.NRAntennaElement('PolarizationAngle',-45) phased.NRAntennaElement('PolarizationAngle',45)}; % cross polarized elements
channel.TransmitAntennaArray = bsArray;
channel.TransmitArrayOrientation = [bsArrayOrientation(1); (-1)*bsArrayOrientation(2); 0]; % the (-1) converts elevation to downtilt

17 Featured Examples

17-582

Set Channel Sampling Rate

The signal going through the channel determines the channel sampling rate. Consider a signal with
subcarrier spacing of 15 kHz and 52 resource blocks (RBs), equivalent to a bandwidth of 10 MHz. To
obtain the sampling rate, call the nrOFDMInfo function.

ofdmInfo = nrOFDMInfo(NRB,SCS);

channel.SampleRate = ofdmInfo.SampleRate;

Channel Estimation

For simplicity, this example assumes perfect channel estimation. Setting the ChannelFiltering
property to false allows you to get the channel path gains without sending a signal through the
channel.

channel.ChannelFiltering = false;
[pathGains,sampleTimes] = channel();

Plot the path gains returned by the channel. Compare the results with the specified average path
gains obtained from the ray attenuation values.

• For LOS cases, because the first two paths correspond to the first ray, the first two paths must be
added together.

• The CDL channel model is a statistical channel model and considers UE motion. Therefore, the
returned path gains are the instantaneous gains. The path gains from the ray tracing analysis are
interpreted as average path gains by the channel model.

• The instantaneous path gains returned by the channel model include the gain of the antenna
element in the direction of each ray. The custom path gains obtained from the ray tracing analysis
do not include the antenna element gain. Therefore, in the mean, the channel path gains match
the average gains only for isotropic antenna elements.

pg=permute(pathGains,[2 1 3 4]); % first dimension is the number of paths
if isLOS
 % in LOS cases sum the first to paths, they correspond to the LOS ray
 pg = [sum(pg(1:2,:,:,:)); pg(3:end,:,:,:)];
end
pg = abs(pg).^2;
plot(pow2db(pg(:,1,1,1)),'o-.');hold on
plot(avgPathGains,'x-.');hold off
legend("Instantaneous (1^{st} tx - 1^{st} rx antenna)","Average (from ray tracing)")
xlabel("Path number"); ylabel("Gain (dB)")
title('Path gains')

 CDL Channel Model Customization with Ray Tracing

17-583

Obtain a perfect channel estimate for slot 0.

pathFilters = getPathFilters(channel);
nSlot = 0;
[offset,~] = nrPerfectTimingEstimate(pathGains,pathFilters);
hest = nrPerfectChannelEstimate(pathGains,pathFilters,NRB,SCS,nSlot,offset,sampleTimes);

Plot the channel response in time and frequency between the first transmit and the first receive
antenna. This plot shows how the channel behaves in time and frequency. For low Doppler shifts, the
channel doesn't change much during the observation period of one slot.

surf(pow2db(abs(hest(:,:,1,1)).^2));
shading('flat');
xlabel('OFDM Symbols');ylabel('Subcarriers');zlabel('Magnitude Squared (dB)');
title('Channel Magnitude Response (1^{st} tx - 1^{st} rx antenna)');

17 Featured Examples

17-584

Get Beamforming Weights

Calculate the beamforming weights using singular value decomposition (SVD). Assume 1 layer. The
getBeamformingWeights function averages the channel conditions over a number of resource
blocks, starting at an offset from the edge of the band (first subcarrier), enabling subband
beamforming.

nLayers = 1;
scOffset = 0; % no offset
noRBs = 1; % average channel conditions over 1 RB to calculate beamforming weights
[wbs,wue,~] = getBeamformingWeights(hest,nLayers,scOffset,noRBs);

Plot Radiation Patterns

Plot the radiation patterns obtained for the UE and the base station.

% Plot UE radiation pattern
ueSite.Antenna = clone(channel.ReceiveAntennaArray); % need a clone, otherwise setting the Taper weights would affect the channel array
ueSite.Antenna.Taper = wue;
pattern(ueSite,fc,"Size",4);

% Plot BS radiation pattern
bsSite.Antenna = clone(channel.TransmitAntennaArray); % need a clone, otherwise setting the Taper weights would affect the channel array
bsSite.Antenna.Taper = wbs;
pattern(bsSite,fc,"Size",5);

 CDL Channel Model Customization with Ray Tracing

17-585

References

[1] The osm file is downloaded from https://www.openstreetmap.org, which provides access to crowd-
sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Local Functions

function [wtx,wrx,D] = getBeamformingWeights(hEst,nLayers,scOffset,noRBs)
% Get beamforming weights given a channel matrix hEst and the number of
% layers nLayers. One set of weights is provided for the whole bandwidth.
% The beamforming weights are calculated using singular value (SVD)
% decomposition.
%
% Only part of the channel estimate is used to get the weights, this is
% indicated by an offset SCOFFSET (offset from the first subcarrier) and a
% width in RBs (NORBS).

% Average channel estimate

17 Featured Examples

17-586

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl

[~,~,R,P] = size(hEst);
%H = permute(mean(reshape(hEst,[],R,P)),[2 3 1]);

scNo = scOffset+1;
hEst = hEst(scNo:scNo+(12*noRBs-1),:,:,:);
H = permute(mean(reshape(hEst,[],R,P)),[2 3 1]);

% SVD decomposition
[U,D,V] = svd(H);
wtx = V(:,1:nLayers).';
wrx = U(:,1:nLayers)';
end

 CDL Channel Model Customization with Ray Tracing

17-587

NR SSB Beam Sweeping
This example shows how to employ beam sweeping at both the transmitter (gNB) and receiver (UE)
ends of a 5G NR system. Using synchronization signal blocks (SSB), this example illustrates some of
the beam management procedures used during initial access. To accomplish beam sweeping, the
example uses several components from Phased Array System Toolbox™.

Introduction

The support of millimeter wave (mmWave) frequencies requires directional links, which led to the
specification of beam management procedures for initial access in NR. Beam management is a set of
Layer 1 (physical) and Layer 2 (medium access control) procedures to acquire and maintain a set of
beam pair links (a beam used at gNB paired with a beam used at UE). Beam management procedures
are applied for both downlink and uplink transmission and reception [1], [2]. These procedures
include:

• Beam sweeping
• Beam measurement
• Beam determination
• Beam reporting
• Beam recovery

This example focuses on initial access procedures for idle users when a connection is established
between the user equipment (UE) and access network node (gNB). At the physical layer, using
synchronization signal blocks (SSB) transmitted as a burst in the downlink direction (gNB to UE), the
example highlights both transmit/receive point (TRP) beam sweeping and UE beam sweeping to
establish a beam pair link. Amongst the multiple beam management procedures, TR 38.802 defines
this dual-end sweep as procedure P-1 [1].

Once connected, the same beam pair link can be used for subsequent transmissions. If necessary, the
beams are further refined using CSI-RS (for downlink) and SRS (for uplink). In case of beam failure,
these pair links can be reestablished. For an example of beam pair refinement, see “NR Downlink
Transmit-End Beam Refinement Using CSI-RS” (5G Toolbox).

This example generates an NR synchronization signal burst, beamforms each of the SSBs within the
burst to sweep over both azimuth and elevation directions, transmits this beamformed signal over a
spatial scattering channel, and processes this received signal over the multiple receive-end beams.
The example measures the reference signal received power (RSRP) for each of the transmit-receive
beam pairs (in a dual loop) and determines the beam pair link with the maximum RSRP. This beam
pair link thus signifies the best beam-pair at transmit and receive ends for the simulated spatial
scenario. This figure shows the main processing steps with the beam management ones highlighted in
color.

rng(211); % Set RNG state for repeatability

Simulation Parameters

Define system parameters for the example. Modify these parameters to explore their impact on the
system.

17 Featured Examples

17-588

prm.NCellID = 1; % Cell ID
prm.FreqRange = 'FR1'; % Frequency range: 'FR1' or 'FR2'
prm.CenterFreq = 3.5e9; % Hz
prm.SSBlockPattern = 'Case B'; % Case A/B/C/D/E
prm.SSBTransmitted = [ones(1,8) zeros(1,0)]; % 4/8 or 64 in length

prm.TxArraySize = [8 8]; % Transmit array size, [rows cols]
prm.TxAZlim = [-60 60]; % Transmit azimuthal sweep limits
prm.TxELlim = [-90 0]; % Transmit elevation sweep limits

prm.RxArraySize = [2 2]; % Receive array size, [rows cols]
prm.RxAZlim = [-180 180]; % Receive azimuthal sweep limits
prm.RxELlim = [0 90]; % Receive elevation sweep limits

prm.ElevationSweep = false; % Enable/disable elevation sweep
prm.SNRdB = 30; % SNR, dB
prm.RSRPMode = 'SSSwDMRS'; % {'SSSwDMRS', 'SSSonly'}

The example uses these parameters:

• Cell ID for a single-cell scenario with a single BS and UE
• Frequency range, as a string to designate FR1 or FR2 operation
• Center frequency, in Hz, dependent on the frequency range
• Synchronization signal block pattern as one of Case A/B/C for FR1 and Case D/E for FR2. This also

selects the subcarrier spacing.
• Transmitted SSBs in the pattern, as a binary vector of length 4 or 8 for FR1 and length 64 for FR2.

The number of SSBs transmitted sets the number of beams at both transmit and receive ends.
• Transmit array size, as a two-element row vector specifying the number of antenna elements in

the rows and columns of the transmit array, respectively. A uniform rectangular array (URA) is
used when both values are greater than one.

• Transmit azimuthal sweep limits in degrees to specify the starting and ending azimuth angles for
the sweep

• Transmit elevation sweep limits in degrees to specify the starting and ending elevation angles for
the sweep

• Receive array size, as a two-element row vector specifying the number of antenna elements in the
rows and columns of the receive array, respectively. A uniform rectangular array (URA) is used
when both values are greater than one.

• Receive azimuthal sweep limits in degrees to specify the starting and ending azimuth angles for
the sweep

• Receive elevation sweep limits in degrees to specify the starting and ending elevation angles for
the sweep

• Enable or disable elevation sweep for both transmit and receive ends. Enable elevation sweep for
FR2 and/or URAs

• Signal-to-noise ratio in dB
• Measurement mode for SSB to specify the use of only secondary synchronization signals

('SSSonly') or use of PBCH DM-RS along with secondary synchronization signals ('SSSwDMRS')

prm = validateParams(prm);

 NR SSB Beam Sweeping

17-589

Synchronization Signal Burst Configuration

Set up the synchronization signal burst parameters by using the specified system parameters. For
initial access, set the SSB periodicity to 20 ms.

txBurst.BlockPattern = prm.SSBlockPattern;
txBurst.SSBTransmitted = prm.SSBTransmitted;
txBurst.NCellID = prm.NCellID;
txBurst.SSBPeriodicity = 20;
txBurst.NFrame = 0;
txBurst.Windowing = 0;
txBurst.DisplayBurst = true;

% Assume same subcarrier spacing for carrier as the burst
carrier = nrCarrierConfig('NCellID',prm.NCellID,'NFrame',txBurst.NFrame);
carrier.SubcarrierSpacing = prm.SCS;
carrierInfo = nrOFDMInfo(carrier);
txBurst.SampleRate = carrierInfo.SampleRate;

Refer to the tutorial “Synchronization Signal Blocks and Bursts” (5G Toolbox) for more details on
synchronization signal blocks and bursts.

Channel Configuration

Configure a spatial scattering MIMO channel channel. This channel model applies free space path
loss and, optionally, other atmospheric attenuations to the input. Specify the locations for the BS and
UE as [x,y,z] coordinates in a Cartesian system. Depending on the array sizes specified, employ
either uniform linear arrays (ULA) or uniform rectangular arrays (URA). Use isotropic antenna
elements for the arrays.

c = physconst('LightSpeed'); % Propagation speed
lambda = c/prm.CenterFreq; % Wavelength

prm.posTx = [0;0;0]; % Transmit array position, [x;y;z], meters
prm.posRx = [100;50;0]; % Receive array position, [x;y;z], meters

toRxRange = rangeangle(prm.posTx,prm.posRx);
spLoss = fspl(toRxRange,lambda); % Free space path loss

% Transmit array
if prm.IsTxURA
 % Uniform rectangular array
 arrayTx = phased.URA(prm.TxArraySize,0.5*lambda, ...
 'Element',phased.IsotropicAntennaElement('BackBaffled',true));
else
 % Uniform linear array
 arrayTx = phased.ULA(prm.NumTx, ...
 'ElementSpacing',0.5*lambda, ...
 'Element',phased.IsotropicAntennaElement('BackBaffled',true));
end

% Receive array
if prm.IsRxURA
 % Uniform rectangular array
 arrayRx = phased.URA(prm.RxArraySize,0.5*lambda, ...
 'Element',phased.IsotropicAntennaElement);
else
 % Uniform linear array

17 Featured Examples

17-590

 arrayRx = phased.ULA(prm.NumRx, ...
 'ElementSpacing',0.5*lambda, ...
 'Element',phased.IsotropicAntennaElement);
end

% Scatterer locations
prm.FixedScatMode = true;
if prm.FixedScatMode
 % Fixed single scatterer location
 prm.ScatPos = [50; 80; 0];
else
 % Generate scatterers at random positions
 Nscat = 10; % Number of scatterers
 azRange = -180:180;
 elRange = -90:90;
 randAzOrder = randperm(length(azRange));
 randElOrder = randperm(length(elRange));
 azAngInSph = azRange(randAzOrder(1:Nscat));
 elAngInSph = elRange(randElOrder(1:Nscat));
 r = 20; % radius
 [x,y,z] = sph2cart(deg2rad(azAngInSph),deg2rad(elAngInSph),r);
 prm.ScatPos = [x;y;z] + (prm.posTx + prm.posRx)/2;
end

% Configure channel
channel = phased.ScatteringMIMOChannel;
channel.PropagationSpeed = c;
channel.CarrierFrequency = prm.CenterFreq;
channel.SampleRate = txBurst.SampleRate;
channel.SimulateDirectPath = false;
channel.ChannelResponseOutputPort = true;
channel.Polarization = 'None';
channel.TransmitArray = arrayTx;
channel.TransmitArrayPosition = prm.posTx;
channel.ReceiveArray = arrayRx;
channel.ReceiveArrayPosition = prm.posRx;
channel.ScattererSpecificationSource = 'Property';
channel.ScattererPosition = prm.ScatPos;
channel.ScattererCoefficient = ones(1,size(prm.ScatPos,2));

% Get maximum channel delay
[~,~,tau] = channel(complex(randn(txBurst.SampleRate*1e-3,prm.NumTx), ...
 randn(txBurst.SampleRate*1e-3,prm.NumTx)));
maxChDelay = ceil(max(tau)*txBurst.SampleRate);

Burst Generation

Create the SS burst waveform [3] by calling the hSSBurst helper function. The generated
waveform is not yet beamformed.

% Create and display burst information
txBurstInfo = hSSBurstInfo(txBurst);
disp(txBurstInfo);

% Generate burst waveform and grid
[burstWaveform,txBurstGrid] = hSSBurst(txBurst);

 NR SSB Beam Sweeping

17-591

 SubcarrierSpacing: 30
 NCRB_SSB: -20
 k_SSB: 0
 FrequencyOffsetSSB: 0
 MIB: [24x1 double]
 L: 8
 SSBIndex: [0 1 2 3 4 5 6 7]
 i_SSB: [0 1 2 3 4 5 6 7]
 ibar_SSB: [0 1 2 3 4 5 6 7]
 SampleRate: 30720000
 Nfft: 1024
 NRB: 72
 CyclicPrefix: 'Normal'
 OccupiedSubcarriers: [240x1 double]
 OccupiedSymbols: [8x4 double]
 Windowing: 0

Transmit-End Beam Sweeping

To achieve TRP beam sweeping, beamform each of the SS blocks in the generated burst using analog
beamforming. Based on the number of SS blocks in the burst and the sweep ranges specified,
determine both the azimuth and elevation directions for the different beams. Then beamform the
individual blocks within the burst to each of these directions.

% Number of beams at both transmit and receive ends
numBeams = sum(txBurst.SSBTransmitted);

17 Featured Examples

17-592

% Transmit beam angles in azimuth and elevation, equi-spaced
azBW = beamwidth(arrayTx,prm.CenterFreq,'Cut','Azimuth');
elBW = beamwidth(arrayTx,prm.CenterFreq,'Cut','Elevation');
txBeamAng = hGetBeamSweepAngles(numBeams,prm.TxAZlim,prm.TxELlim, ...
 azBW,elBW,prm.ElevationSweep);

% For evaluating transmit-side steering weights
SteerVecTx = phased.SteeringVector('SensorArray',arrayTx, ...
 'PropagationSpeed',c);

% Apply steering per OFDM symbol for each SSB
carrier.NSizeGrid = txBurstInfo.NRB;
ofdmInfo = nrOFDMInfo(carrier);
gridSymLengths = repmat(ofdmInfo.SymbolLengths,1, ...
 size(txBurstGrid,2)/length(ofdmInfo.SymbolLengths));
% repeat burst over numTx to prepare for steering
strTxWaveform = repmat(burstWaveform,1,prm.NumTx)./sqrt(prm.NumTx);
for ssb = 1:length(txBurstInfo.SSBIndex)

 % Extract SSB waveform from burst
 blockSymbols = txBurstInfo.OccupiedSymbols(ssb,:);
 startSSBInd = sum(gridSymLengths(1:blockSymbols(1)-1))+1;
 endSSBInd = sum(gridSymLengths(1:blockSymbols(4)));
 ssbWaveform = strTxWaveform(startSSBInd:endSSBInd,1);

 % Generate weights for steered direction
 wT = SteerVecTx(prm.CenterFreq,txBeamAng(:,ssb));

 % Apply weights per transmit element to SSB
 strTxWaveform(startSSBInd:endSSBInd,:) = ssbWaveform.*(wT');

end

The beamformed burst waveform is then transmitted over the spatially-aware scattering channel.

Receive-End Beam Sweeping and Measurement

For receive-end beam sweeping, the transmitted beamformed burst waveform is received
successively over each receive beam. For N transmit beams and M receive beams in procedure P-1,
each of the N beams is transmitted M times from gNB so that each transmit beam is received over the
M receive beams.

The example assumes both N and M to be equal to the number of SSBs in the burst. For simplicity, the
example generates only one burst, but to mimic the burst reception over the air M times, the receiver
processes this single burst M times.

This figure shows a beam-based diagram for the sweeps at both gNB and UE for N = M = 4, in the
azimuthal plane. The diagram shows the time taken for the dual sweep, where each interval at gNB
corresponds to an SSB and each interval at the UE corresponds to the SS burst. For the depicted
scenario, beams S3 and U2 are highlighted as the selected beam-pair link notionally. The example
implements the dual-sweep over a time duration of N*M time instants.

 NR SSB Beam Sweeping

17-593

The receive processing of the transmitted burst includes

• Application of the spatially-aware fading channel
• Receive gain to compensate for the induced path loss and AWGN
• Receive-end beamforming
• Timing correction
• OFDM demodulation
• Extracting the known SSB grid
• Measuring the RSRP based on the specified measurement mode

The processing repeats these steps for each of the receive beams, then selects the best beam-pair
based on the complete set of measurements made.

To highlight beam sweeping, the example assumes known SSB information at the receiver. For more
details on recovery processing see “NR Cell Search and MIB and SIB1 Recovery” (5G Toolbox).

For the idle mode SS-RSRP measurement, use either only the secondary synchronization signals
(SSS) or the physical broadcast channel (PBCH) demodulation reference signals (DM-RS) in addition
to the SSS (Section 5.1.1. of [4]). Specify this by the RSRPMode parameter of the example. For FR2,
the RSRP measurement is based on the combined signal from antenna elements, while the
measurement is per antenna element for FR1.

% Receive beam angles in azimuth and elevation, equi-spaced
azBW = beamwidth(arrayRx,prm.CenterFreq,'Cut','Azimuth');
elBW = beamwidth(arrayRx,prm.CenterFreq,'Cut','Elevation');
rxBeamAng = hGetBeamSweepAngles(numBeams,prm.RxAZlim,prm.RxELlim, ...
 azBW,elBW,prm.ElevationSweep);

% For evaluating receive-side steering weights
SteerVecRx = phased.SteeringVector('SensorArray',arrayRx, ...
 'PropagationSpeed',c);

% AWGN level
SNR = 10^(prm.SNRdB/20); % Convert to linear gain
N0 = 1/(sqrt(2.0*prm.NumRx*double(ofdmInfo.Nfft))*SNR); % Noise Std. Dev.

% Receive gain in linear terms, to compensate for the path loss
rxGain = 10^(spLoss/20);

% Generate a reference grid for timing correction

17 Featured Examples

17-594

% assumes an SSB in first slot
pssRef = nrPSS(carrier.NCellID);
pssInd = nrPSSIndices;
pbchdmrsRef = nrPBCHDMRS(carrier.NCellID,txBurstInfo.ibar_SSB(1));
pbchDMRSInd = nrPBCHDMRSIndices(carrier.NCellID);
pssGrid = zeros([240 4]);
pssGrid(pssInd) = pssRef;
pssGrid(pbchDMRSInd) = pbchdmrsRef;
refGrid = zeros([12*carrier.NSizeGrid ofdmInfo.SymbolsPerSlot]);
refGrid(txBurstInfo.OccupiedSubcarriers, ...
 txBurstInfo.OccupiedSymbols(1,:)) = pssGrid;

% Loop over all receive beams
rsrp = zeros(numBeams,numBeams);
for rIdx = 1:numBeams

 % Fading channel, with path loss
 txWave = [strTxWaveform; zeros(maxChDelay,size(strTxWaveform,2))];
 fadWave = channel(txWave);

 % Receive gain, to compensate for the path loss
 fadWaveG = fadWave*rxGain;

 % Add WGN
 noise = N0*complex(randn(size(fadWaveG)),randn(size(fadWaveG)));
 rxWaveform = fadWaveG + noise;

 % Generate weights for steered direction
 wR = SteerVecRx(prm.CenterFreq,rxBeamAng(:,rIdx));

 % Apply weights per receive element
 if strcmp(prm.FreqRange, 'FR1')
 strRxWaveform = rxWaveform.*(wR');
 else % for FR2, combine signal from antenna elements
 strRxWaveform = rxWaveform*conj(wR);
 end

 % Correct timing
 offset = nrTimingEstimate(carrier, ...
 strRxWaveform(1:ofdmInfo.SampleRate*1e-3,:),refGrid*wR(1)');
 if offset > maxChDelay
 offset = 0;
 end
 strRxWaveformS = strRxWaveform(1+offset:end,:);

 % OFDM Demodulate
 rxGrid = nrOFDMDemodulate(carrier,strRxWaveformS);

 % Loop over all SSBs in rxGrid (transmit end)
 for tIdx = 1:numBeams
 % Get each SSB grid
 rxSSBGrid = rxGrid(txBurstInfo.OccupiedSubcarriers, ...
 txBurstInfo.OccupiedSymbols(tIdx,:),:);

 % Make measurements, store per receive, transmit beam
 rsrp(rIdx,tIdx) = measureSSB(rxSSBGrid,prm.RSRPMode,txBurst.NCellID);
 end
end

 NR SSB Beam Sweeping

17-595

Beam Determination

After the dual-end sweep and measurements are complete, determine the best beam-pair link based
on the RSRP measurement.

[m,i] = max(rsrp,[],'all','linear'); % First occurrence is output
% i is column-down first (for receive), then across columns (for transmit)
[rxBeamID,txBeamID] = ind2sub([numBeams numBeams],i(1));

% Display the selected beam pair
disp(['Selected Beam pair with RSRP: ' num2str(10*log10(rsrp(rxBeamID, ...
 txBeamID))+30) ' dBm', 13 ' Transmit #' num2str(txBeamID) ...
 ' (Azimuth: ' num2str(txBeamAng(1,txBeamID)) ', Elevation: ' ...
 num2str(txBeamAng(2,txBeamID)) ')' 13 ' Receive #' num2str(rxBeamID) ...
 ' (Azimuth: ' num2str(rxBeamAng(1,rxBeamID)) ', Elevation: ' ...
 num2str(rxBeamAng(2,rxBeamID)) ')']);

% Display final beam pair patterns
h = figure('Position',figposition([32 55 32 40]),'MenuBar','none');
h.Name = 'Selected Transmit Array Response Pattern';
wT = SteerVecTx(prm.CenterFreq,txBeamAng(:,txBeamID));
pattern(arrayTx,prm.CenterFreq,'PropagationSpeed',c,'Weights',wT);

h = figure('Position',figposition([32 55 32 40]),'MenuBar','none');
h.Name = 'Selected Receive Array Response Pattern';
wR = SteerVecRx(prm.CenterFreq,rxBeamAng(:,rxBeamID));
pattern(arrayRx,prm.CenterFreq,'PropagationSpeed',c,'Weights',wR);

% Plot MIMO scenario with tx, rx, scatterers, and determined beams. Beam
% patterns in this figure resemble the power patterns in linear scale.
prmScene = struct();
prmScene.TxArray = arrayTx;
prmScene.RxArray = arrayRx;
prmScene.TxArrayPos = prm.posTx;
prmScene.RxArrayPos = prm.posRx;
prmScene.ScatterersPos = prm.ScatPos;
prmScene.Lambda = lambda;
prmScene.ArrayScaling = 1; % To enlarge antenna arrays in the plot
prmScene.MaxTxBeamLength = 45; % Maximum length of transmit beams in the plot
prmScene.MaxRxBeamLength = 25; % Maximum length of receive beam in the plot
hPlotSpatialMIMOScene(prmScene,wT,wR);
if ~prm.ElevationSweep
 view(2);
end

Selected Beam pair with RSRP: 45.1516 dBm Transmit #8 (Azimuth: 60, Elevation: 0) Receive #6 (Azimuth: 90, Elevation: 0)

17 Featured Examples

17-596

 NR SSB Beam Sweeping

17-597

17 Featured Examples

17-598

These plots highlight the transmit directivity pattern, receive directivity pattern, and the spatial
scene, respectively. The results are dependent on the individual beam directions used for the sweeps.
The spatial scene offers a combined view of the transmit and receive arrays and the respective
determined beams, along with the scatterers.

Summary and Further Exploration

This example highlights the P-1 beam management procedure by using synchronization signal blocks
for transmit-end and receive-end beam sweeping. By measuring the reference signal received power
for SSBs, you can identify the best beam pair link for a selected spatial environment.

The example allows variation on frequency range, SSB block pattern, number of SSBs, transmit and
receive array sizes, transmit and receive sweep ranges, and the measuring mode. To see the impact
of parameters on the beam selection, experiment with different values. The receive processing is
simplified to highlight the beamforming aspects for the example.

For an example of the P-2 procedures of transmit-end beam sweeping using CSI-RS signals for the
downlink, see “NR Downlink Transmit-End Beam Refinement Using CSI-RS” (5G Toolbox). You can
use these procedures for beam refinement and adjustment in the connected mode, once the initial
beam pair links are established [5], [6].

References

1 3GPP TR 38.802. "Study on New Radio access technology physical layer aspects." 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network.

 NR SSB Beam Sweeping

17-599

2 Giordani, M., M. Polese, A. Roy, D. Castor, and M. Zorzi. "A tutorial on beam management for
3GPP NR at mmWave frequencies." IEEE Comm. Surveys & Tutorials, vol. 21, No. 1, Q1 2019.

3 3GPP TS 38.211. "NR; Physical channels and modulation." 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network.

4 3GPP TS 38.215. "NR; Physical layer measurements." 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network.

5 Giordani, M., M. Polese, A. Roy, D. Castor, and M. Zorzi. "Standalone and non-standalone beam
management for 3GPP NR at mmWaves." IEEE Comm. Mag., April 2019, pp. 123-129.

6 Onggosanusi, E., S. Md. Rahman, et al. "Modular and high-resolution channel state information
and beam management for 5G NR." IEEE Comm. Mag., March 2018, pp. 48-55.

Local Functions
function prm = validateParams(prm)
% Validate user specified parameters and return updated parameters
%
% Only cross-dependent checks are made for parameter consistency.

 if strcmpi(prm.FreqRange,'FR1')
 if prm.CenterFreq > 7.125e9 || prm.CenterFreq < 410e6
 error(['Specified center frequency is outside the FR1 ', ...
 'frequency range (410 MHz - 7.125 GHz).']);
 end
 if strcmpi(prm.SSBlockPattern,'Case D') || ...
 strcmpi(prm.SSBlockPattern,'Case E')
 error(['Invalid SSBlockPattern for selected FR1 frequency ' ...
 'range. SSBlockPattern must be one of ''Case A'' or ' ...
 '''Case B'' or ''Case C'' for FR1.']);
 end
 if ~((length(prm.SSBTransmitted)==4) || ...
 (length(prm.SSBTransmitted)==8))
 error(['SSBTransmitted must be a vector of length 4 or 8', ...
 'for FR1 frequency range.']);
 end
 if (prm.CenterFreq <= 3e9) && (length(prm.SSBTransmitted)~=4)
 error(['SSBTransmitted must be a vector of length 4 for ' ...
 'center frequency less than or equal to 3GHz.']);
 end
 if (prm.CenterFreq > 3e9) && (length(prm.SSBTransmitted)~=8)
 error(['SSBTransmitted must be a vector of length 8 for ', ...
 'center frequency greater than 3GHz and less than ', ...
 'or equal to 7.125GHz.']);
 end
 else % 'FR2'
 if prm.CenterFreq > 52.6e9 || prm.CenterFreq < 24.25e9
 error(['Specified center frequency is outside the FR2 ', ...
 'frequency range (24.25 GHz - 52.6 GHz).']);
 end
 if ~(strcmpi(prm.SSBlockPattern,'Case D') || ...
 strcmpi(prm.SSBlockPattern,'Case E'))
 error(['Invalid SSBlockPattern for selected FR2 frequency ' ...
 'range. SSBlockPattern must be either ''Case D'' or ' ...
 '''Case E'' for FR2.']);
 end
 if length(prm.SSBTransmitted)~=64
 error(['SSBTransmitted must be a vector of length 64 for ', ...

17 Featured Examples

17-600

 'FR2 frequency range.']);
 end
 end

 prm.NumTx = prod(prm.TxArraySize);
 prm.NumRx = prod(prm.RxArraySize);
 if prm.NumTx==1 || prm.NumRx==1
 error(['Number of transmit or receive antenna elements must be', ...
 ' greater than 1.']);
 end
 prm.IsTxURA = (prm.TxArraySize(1)>1) && (prm.TxArraySize(2)>1);
 prm.IsRxURA = (prm.RxArraySize(1)>1) && (prm.RxArraySize(2)>1);

 if ~(strcmpi(prm.RSRPMode,'SSSonly') || ...
 strcmpi(prm.RSRPMode,'SSSwDMRS'))
 error(['Invalid RSRP measuring mode. Specify either ', ...
 '''SSSonly'' or ''SSSwDMRS'' as the mode.']);
 end

 % Select SCS based on SSBlockPattern
 switch lower(prm.SSBlockPattern)
 case 'case a'
 scs = 15;
 case {'case b', 'case c'}
 scs = 30;
 case 'case d'
 scs = 120;
 case 'case e'
 scs = 240;
 end
 prm.SCS = scs;

end

function rsrp = measureSSB(rxSSBGrid,mode,NCellID)
% Compute the reference signal received power (RSRP) based on SSS, and if
% selected, also PBCH DM-RS.

 sssInd = nrSSSIndices; % SSS indices

 numRx = size(rxSSBGrid,3);
 rsrpSSS = zeros(numRx,1);
 for rxIdx = 1:numRx
 % Extract signals per rx element
 rxSSBGridperRx = rxSSBGrid(:,:,rxIdx);
 rxSSS = rxSSBGridperRx(sssInd);

 % Average power contributions over all REs for RS
 rsrpSSS(rxIdx) = mean(rxSSS.*conj(rxSSS));
 end

 if strcmpi(mode,'SSSwDMRS')
 pbchDMRSInd = nrPBCHDMRSIndices(NCellID); % PBCH DM-RS indices
 rsrpDMRS = zeros(numRx,1);
 for rxIdx = 1:numRx
 % Extract signals per rx element
 rxSSBGridperRx = rxSSBGrid(:,:,rxIdx);
 rxPBCHDMRS = rxSSBGridperRx(pbchDMRSInd);

 NR SSB Beam Sweeping

17-601

 % Average power contributions over all REs for RS
 rsrpDMRS(rxIdx) = mean(rxPBCHDMRS.*conj(rxPBCHDMRS));
 end
 end

 switch lower(mode)
 case 'sssonly' % Only SSS
 rsrp = max(rsrpSSS); % max over receive elements
 case 'ssswdmrs' % Both SSS and PBCH-DMRS, accounting for REs per RS
 rsrp = max((rsrpSSS*127+rsrpDMRS*144)/271); % max over receive elements
 end
end

17 Featured Examples

17-602

FPGA Based Cell-Averaging Constant False Alarm Rate (CA-
CFAR) Detector - Algorithm Design and HDL Code Generation

This example shows how to design a FPGA implementation ready CA-CFAR Detector. To verify the
implementation model is functionally correct, we compare the simulation output of the
implementation model with the output of a CFAR based behavioral model using Phased Array System
Toolbox™. The term deployment here implies designing a model that is suitable for implementation
on a FPGA. The model is implementation ready and this will be verified in the example. The HDL
workflow is designed in fixed-point.

The Phased Array System Toolbox™ provides the floating point behavioral model for the CFAR
Detector through the phased.CFARDetector System object. This behavioral model is used to verify the
results of the implementation model and the automatically generated HDL code as well.

Fixed-Point Designer™ provides data types and tools for developing fixed-point and single precision
algorithms to optimize performance on an embedded hardware. Bit true simulations can be
performed to observe the impact of limited range and precision without implementing the design in
hardware.

This example uses HDL Coder™ to generate HDL Code from the developed Simulink® model and
verifies the HDL Code using the HDL Verifier™. HDL Verifier™ is used to generate a co-simulation
test bench model to verify the behavior of the automatically generated HDL Code. The test bench
uses ModelSim® for Co-simulation to verify the generated HDL code.

Algorithm Design

In a radar system, target detection is achieved by comparing the received signal power to a global
threshold. If the received power is greater than the threshold, it marks the presence of a target else a
target is said to be absent. This makes the choice of threshold a critical characteristic. The
appropriate threshold value depends on maximizing the detection and minimizing the false alarm.

The threshold is chosen based on apriori knowledge (estimate) of the interferer power. The interferer
power is affected by many external factors, hence, the variance will be a large value when measured
globally. When the threshold is constant, the increase in interferer power can lead to an increase in
false detections and at the same time, if the interferer power drops significantly, the target might not
be detected.

The CFAR detector, as the name suggests maintains the specified false alarm rate by means of an
Adaptive Thresholding, wherein the threshold is calculated based on the locality of the Cell Under
Test (CUT) and this defines the cell for which detection is required. The interference power of the
neighboring cells is used to calculate the threshold for a CUT. The detection threshold is calculated as

where, is the Probability of False Alarm, is the Threshold Factor, is the Interference power
level.

Cell-Averaging(CA) CFAR Detector In a CA CFAR, the lead and lag cells are used to calculate the
interferer estimate. The number of lead cells are the same as that of the number of lag cells. CA-
CFAR assumes that, the neighboring cells to the CUT contains the same interference statistic -
Homogenous Interference and the target is present in only one CUT. To reinforce the second
assumption, guard cells are placed immediately after the CUT.

 FPGA Based Cell-Averaging Constant False Alarm Rate (CA-CFAR) Detector - Algorithm Design and HDL Code Generation

17-603

For a CA-CFAR with an independent and identically distributed (i.i.d) Gaussian interference (standard
normal), the average noise power is just the mean of output of square law detector of all the training
cells, which is

Here is the signal from the i-th training cell. For a given Probability of False Alarm, the threshold
factor can be calculated as,

The training cell and guard cell along with the CUT is called as the CFAR Window The following
figure shows a representation of a CFAR Window

Implementation Model

The implementation model is designed using the HDL Coder™ compatible blocks from the Simulink®
HDL Coder™ library. For this example, we have chosen the following values for the parameters,

• No. of Training Cells = 50
• No. of Guard Cells = 2
• Probability of False Alarm = 0.005
• Total No. of Cells = 1000

The following command is used to open the Simulink model.

modelname = 'SimulinkCFARHDLWorkflowExample';
open_system(modelname);
%
% Ensure model is visible and not obstructed by scopes
open_system(modelname);
set(allchild(0),'Visible','off');

17 Featured Examples

17-604

The Simulink model consists of two branches from the input block. The top branch is the behavioral
model with floating point operations of the phased.CFARdetector System object. The bottom branch is
the functional equivalent implementation model with fixed-point version.

The input to the behavioral model is a (NCell x 1) 1000x1 matrix. The input is passed through the
Square-Law sub-system which performs the square-law operation which is then forwarded into the
CFAR Detector behavioral model.

The input to the implementation model is provided via buffer which converts a multi-dimensional
signal into single dimensional data stream for a deployable model. The input data type is then
converted to fixed-point using the Quantize block. The fixed-point has a word-length of 24 bits and a
fraction length of 12 bits. The tradeoff between different fixed-point setting with resource utilization
and accuracy is discussed later in this example. The input is then passed on to the CFAR
implementation model sub-system which performs the CFAR Detection.

The output of the CFAR Detector behavioral model is passed through a delay of 125 cycles to
compensate the delay for the output of the implementation model.

The scope block plots the threshold and detection outputs of the behavioral model and
implementation model. In addition, the error between the threshold of implementation model and
behavioral model, and the error between the detection of implementation model and behavioral
model is also calculated and plotted.

The implementation model contains the following sub-systems:

1 Square-Law HDL
2 Alpha HDL
3 CFAR Core HDL
4 Validate

Square-Law HDL

The following command is used to open the Square-Law HDL subsystem model

open_system([modelname '/CFAR Implementation Model/Square Law HDL']);

 FPGA Based Cell-Averaging Constant False Alarm Rate (CA-CFAR) Detector - Algorithm Design and HDL Code Generation

17-605

The model computes the square-law envelope of the complex input signal.

For the implementation model the square-law is designed as a deployable model, with additional
pipelining registers. This model is implemented using adders and multipliers which account for a
latency of 6 cycles.

Alpha HDL

The following command is used to open the Alpha HDL subsystem model

open_system([modelname '/CFAR Implementation Model/Alpha HDL']);

The Alpha HDL block utilizes the No. of Training Cells and Probability of False Alarm value to
calculate the threshold factor ().

This subsystem uses Math HDL blocks and works in single precision for the native floating-point
division operation which is then converted to fixed-point at the output. This block accounts for a
pipeline latency of 7 Cycles.

CFAR Core HDL

%The following command is used to open the CFAR Core subsystem model
open_system([modelname '/CFAR Implementation Model/CFAR Core']);

17 Featured Examples

17-606

This subsystem extracts the training cells from the input stream and calculates the noise power. The
noise power is then multiplied by alpha to generate the threshold which is later used in the detection
process. There are two outputs from this block, namely, threshold and detection.

The threshold is the direct output of the product block whereas the detection output is provided
through a comparator block which compares the threshold and signal value of CUT and returns true
if the CUT signal is greater than the threshold.

This subsystem accounts for an input streaming delay of 102 (2*NumberTrainingCells +
NoGuardCells) clock cycles with an additional pipelining latency of another 23 cycles. The total HDL
latency is 125 cycles.

This block contains the following subsystems:

1 Training HDL
2 CUT HDL

Training HDL

The following command is used to open the Training HDL subsystem model.

open_system([modelname '/CFAR Implementation Model/CFAR Core/Training HDL']);

 FPGA Based Cell-Averaging Constant False Alarm Rate (CA-CFAR) Detector - Algorithm Design and HDL Code Generation

17-607

The lead training HDL subsystem extracts the lead cells of the CUT and performs a running sum. At
the same time the lag training HDL subsystem pulls out the lag cells of the CUT and performs a
running sum with a latency of 8 cycles each. The implementation of the lead training HDL and lag
training HDL is very much analogous to a moving average filter the difference is that instead of the
average we use the sum of window elements.

The CA noise power HDL subsystem sums up the lead power value and the lag power value and
estimates the average noise power by dividing the sum by 100 (2*NoTrainingCells). This blocks
accounts for a delay of 3 clock cycles.

The output of the training HDL subsystem is the noise power which is used to calculate the threshold.

CUT HDL

The following command is used to open the CUT HDL subsystem model

open_system([modelname '/CFAR Implementation Model/CFAR Core/CUT HDL']);

This subsystem uses a single delay block with a delay of 102 (2*NumberTrainingCells +
NoGuardCells) cycles to time-align the CUT with the generated threshold value from the training
HDL block. The above delay is the minimum delay required before which the CFAR Detector can
detect the target at the first cell.

Validate

The following command is used to open the validate subsystem model

open_system([modelname '/CFAR Implementation Model/Validate']);

The valid input along with the latency is used to check the validity of the output. When the output is
not valid this subsystem sends zero to the output.

17 Featured Examples

17-608

Comparing the Results of Implementation Model to the Behavioral Model

The model can be simulated by clicking the Play button or using the sim command as shown below,

sim(modelname);

 FPGA Based Cell-Averaging Constant False Alarm Rate (CA-CFAR) Detector - Algorithm Design and HDL Code Generation

17-609

The Scope blocks are used to compare the output of implementation and behavioral model. The scope
displays the detection and threshold from both the behavioral and implementation model and an
additional scope displays the calculated the error.

The implementation model has a data streaming latency of 102 cycles and pipelining latency of 23
cycles. This in total accounts for an overall latency of 125 cycles. To time align the behavioral model
with the implementation model we use an additional delay of 125 to the output of behavioral model.

With the 24 bit fixed-point of fraction length 12 bits, we have an error bounded by approximately
0.006 between the behavioral model and the implementation model threshold. Since the detection is
boolean we have no significant error in the detection output.

Code Generation and Verification

This section covers the procedure to perform HDL codegeneration for the implementation model. It
also covers the verification that the generated code is functionally correct. The behavioral model
provides the reference values to validate the output from HDL model.

If you start with a new model, you can run hdlsetup (HDL Coder™) to configure the Simulink model
for HDL code generation. To configure the Simulink model for test bench creation, open Simulink's
Model Settings , select Test Bench under HDL Code Generation in the left panel, and check HDL
test bench and Co-simulation model in the Test Bench Generation Output properties group.

Model Settings

After the fixed-point implementation is verified and the implementation model produces the same
results as your floating-point, behavioral model, you can generate HDL code and test bench. For code
generation and test bench, set the HDL Code Generation parameters in the Configuration
Parameters dialog. The following parameters in Model Settings are set under HDL Code Generation:

17 Featured Examples

17-610

• Target: Xilinx Vivado synthesis tool; Virtex7 family; Device xc7vx485t; package ffg1761, speed -1;
and target frequency of 300 MHz.

• Optimization: Uncheck all optimizations
• Global Settings: Set the Reset type to Asynchronous
• Test Bench: Select HDL test bench, Co-simulation model and System Verilog DPI test bench

HDL Code Verification via Co-Simulation

After the model is set up, HDL Workflow advisor can be invoked to generate the HDL code using
the HDL Coder™ also use the HDL Verifier™ to generate a System Verilog DPI Test Bench to test the
model. To invoke HDL Workflow advisor right-click on the CFAR Implementation model subsystem
and navigate to HDL Code and left-click HDL Workflow advisor. Instead of using HDL Workflow
advisor the following lines of code can also be used to generate HDL code and System Verilog Test
Bench.

% Uncomment the following two lines to generate HDL code and test bench.
% makehdl([modelname '/CFAR Implementation Model']); % Generate HDL code
% makehdltb([modelname '/CFAR Implementation Model ']); % Generate Cosimulation test bench

Since all the optimizations are unchecked we do not have to add extra delays to the behavioral output
other than the HDL latency previously added. (This is because all the critical paths are manually
pipelined in the implementation model).

After generating HDL code and test bench a new Simulink model named gm_<modelname>_mq
containing a ModelSim® Simulator block is created in your working directory, which looks like this:

% To open the test bench model, uncomment the following lines of code
% modelname = ['gm_',modelname,'_mq'];
% open_system(modelname);

 FPGA Based Cell-Averaging Constant False Alarm Rate (CA-CFAR) Detector - Algorithm Design and HDL Code Generation

17-611

Launch ModelSim® and run the co-simulation model to display the simulation results. You can click
on the Play button on the top of Simulink canvas to run the test bench or you can do it via command
window from the code below

% Uncomment the following line, to run the test bench.
% sim(modelname);

The Simulink® test bench model will populate the QuestaSim® with the HDL model's signal and
Time Scopes in Simulink®.

The Simulink® scope shows detection output and threshold output for both the co-simulation and
Design Under Test (DUT) as well as the error between them. The scopes comparing the results of the
co-simulation can be found in test bench model inside the Compare subsystem, which is at the output
of the CFAR_HDL_mq subsystem.

17 Featured Examples

17-612

Fixed-Point Word Length and Fraction Length Tradeoffs

For this example a Fixed-Point word length of 24 bit and a fraction length of 12 bit is used for
simulation, and implementation. The following figures show the trade-off with choosing a longer
fraction length which would increase the precision (reduces the Error) but also increases the
resource utilization.

The following plot shows fraction length associated with chosen word length

 FPGA Based Cell-Averaging Constant False Alarm Rate (CA-CFAR) Detector - Algorithm Design and HDL Code Generation

17-613

The following plot shows the Precision with respect to chosen word length

The following plot shows the Error with respect to chosen word length (Precision)

17 Featured Examples

17-614

The following plots show the LUT/Registers/DSP Utilization with respect to chosen Word Length

 FPGA Based Cell-Averaging Constant False Alarm Rate (CA-CFAR) Detector - Algorithm Design and HDL Code Generation

17-615

Summary

This example demonstrated how to design a Simulink model for a Cell Averaging Constant False
Alarm Rate(CA CFAR) Detector, verify the results with an equivalent behavioral setup from the
Phased Array System Toolbox™. This example demonstrates how to automatically generate HDL code
for a fixed-point equivalent algorithm and verify the generated code in Simulink®. The generated
HDL code as well as a co-simulation test bench for the Simulink subsystem was created with blocks
that support HDL code generation. This example showed how to setup and launch ModelSim to
cosimulate the HDL code and compare its output to the output generated by the HDL implementation
model. The cosimulation is performed via ModelSim® for the HDL code and compare results to the
output generated by the HDL model.

17 Featured Examples

17-616

FPGA Based Monopulse Technique Workflow: Part 1 - Algorithm
Design

This example is the first part of a two-part series to help you develop a Monopulse Technique where
the signal is down converted via digital down conversion(DDC). The model designed here is suitable
for implementation on FPGA. This example focuses on the design of monopulse technique to estimate
the azimuth and elevation of an object. The second part of the example FPGA Based Monopulse
Technique Workflow: Part 2 - Code Generation shows how to generate HDL code from the
implementation model and verify that the generated HDL code produces the correct results
compared to the behavioral model. The model is implementation ready and this will be verified in the
example. The entire workflow is designed in fixed-point.

The example shows how to design an FPGA implementation-ready monopulse technique to match a
corresponding behavioral model in Simulink® using the Phased Array System Toolbox™, DSP System
Toolbox™, and Fixed-Point Designer™. To verify the implementation model, it compares the
simulation output of the implementation model with the output of the behavioral model.

The Phased Array System Toolbox provides the floating-point behavioral model for the monopulse
technique via a phased.MonopulseFeed System object. DSP System Toolbox provides the FIR filter
essential for the down conversion filtering.

Fixed-Point Designer provides data types and tools for developing fixed-point and single-precision
algorithms to optimize performance on embedded hardware. Bit-true simulations can be performed to
observe the impact of limited range and precision without implementing the design on hardware.

Monopulse is a technique where the received echoes from different elements of an antenna are used
to estimate the direction of arrival (DOA) of a signal. This in turn helps estimate the location of an
object. The example uses DSP System Toolbox and Fixed-Point Designer to design the module. This
technique utilizes four beams which help measure the angular position of the target. All the four
beams are generated simultaneously and the difference of azimuth and elevation is achieved in a
single pulse hence, the name monopulse.

Designing the Subsystem

The algorithm is implemented by utilizing Simulink® blocks that are HDL compatible. The model
shown below assumes that the signal is received from the 4-element uniform rectangular array
(URA). Hence the starting point for the model shows 4 sinusoids as inputs. Assuming a 4-element
URA, the model is comprised of 4 receive channels from each of the elements of the URA. Once the
signals are converted to the digital domain, DDC blocks will ensure that the frequency of the received
signal is lowered therefore reducing the sample rate for processing. The block diagram below shows
the subsystem which consists of the following modules.

1 Multi-Channel Input Signal
2 Digital Down-Conversion
3 Monopulse Sum and Difference Channels

Below is the command to open the Simulink model

modelname = 'SimulinkDDCMonopulseHDLWorkflowExample';
open_system(modelname);

% Ensure model is visible and not obstructed by scopes.

 FPGA Based Monopulse Technique Workflow: Part 1 - Algorithm Design

17-617

open_system(modelname);
set(allchild(0),'Visible','off');

The Simulink model has two branches. The top branch is the behavioral, floating-point model of the
monopulse technique and digital down conversion chain algorithm and the bottom branch is the
functionally equivalent fixed-point version using blocks that support HDL code generation. Apart from
plotting the output of both branches to compare the two, the difference, or error, between sum
channel of both the outputs has also been calculated and plotted.

Notice that there's a delay () at the output of the behavioral model. This is necessary because
the implementation algorithm uses 220 delays to enable pipelining which creates latency that needs
to be accounted for. This latency is necessary to time-align the output between the behavioral model
and the implementation model.

Digital Down-Conversion (DDC)

The subsystem below shows how the received signal at sampled at 80 MHz and nearly 15 MHz
carrier frequency is down-converted to baseband via the DDC and then passed on to the monopulse
sum and difference subsystem. A DDC module is a combination of a numerically controlled oscillator
(NCO) and a set of low-pass filters. NCO provides the signal to mix and demodulate the incoming
signal. Open the subsystem that performs the down-conversion

open_system([modelname '/DDC and Monopulse HDL']);

17 Featured Examples

17-618

Notice that a delay of 215 ms has been added to the sum and difference output of the steering vectors
in the implementation subsystem to compensate for the delay that arises out of the down conversion
chain.

A DDC also contains a set of low-pass filters as shown in the figure. Once mixed, the low-pass filtering
of the mixed signal is required to eliminate the high frequency components. In this example, we use a
cascaded filter chain to achieve the low-pass filtering. The NCO is used to generate the high accuracy
sinusoid for the mixer. A latency of 6 is provided to the HDL-optimized NCO block. This signal is
mixed with the incoming signal and is converted from a higher frequency to a relatively lower
frequency as it progresses through the various stages.

open_system([modelname '/DDC and Monopulse HDL/HDL_DDC']);

In this example, the incoming signal has a carrier frequency of 15 MHz and is sampled at 80 MHz .
The down-conversion process brings the sampled signal down to a few kHz. The coefficients for
relevant low-pass FIR filters are designed using filterBuilder, one of which is as described below. The
values must be chosen to satisfy the required pass-band criteria.

 FPGA Based Monopulse Technique Workflow: Part 1 - Algorithm Design

17-619

Once generated, the coefficients can be exported to the HDL optimized FIR Filter block.

Monopulse Sum and Difference Channels

Apart from generating down-converted signal, another aspect for consideration for monopulse is the
steering vector for different elements. The steering vectors have been generated for an incident angle
of azimuth 30 degrees and elevation 20 degrees. The steering vectors are passed on to the digital
comparator to provide the desired sum and difference channel outputs. The down-converted signal is
then multiplied by the conjugate of these vectors as shown in the figure below. By processing the sum
and difference channels, the DOA of the received signal can be found. The digital comparator that
compares the steering vectors for the different elements of the antenna array can be seen by:

open_system([modelname '/DDC and Monopulse HDL/DIGITAL COMPARATOR']);

17 Featured Examples

17-620

In the figure above, the digital comparator takes the steering vectors and computes the sum and
difference of the different steering vectors sVA, sVB, sVC and sVD respectively. You can also calculate
the steering vectors by using the phased.SteeringVector System object or you can generate them
using method similar to the one shown in the “FPGA Based Beamforming in Simulink: Part 1 -
Algorithm Design” on page 17-541. Once the sum and difference of various steering vectors
corresponding to each element of the array has been done, the calculation of sum and difference
channels for corresponding azimuth and elevation angles are performed. From the Sum and
Difference Monopulse subsystem, 3 signals are obtained, namely the sum, the azimuth difference, and
the elevation difference. The entire arithmetic is performed in fixed point. The monopulse sum and
difference channel subsystem can be opened by using the command below

open_system([modelname '/DDC and Monopulse HDL/Monopulse Sum and Difference Channel']);

 FPGA Based Monopulse Technique Workflow: Part 1 - Algorithm Design

17-621

Comparing Results of Implementation Model to Behavioral Model

To compare results of the implementation model to the behavioral model, run the model created to
display the results. You can run the Simulink model by clicking the Play button or calling the sim
command on the MATLAB command line as shown below. Use Scope blocks to compare the output
frames.

sim(modelname);

17 Featured Examples

17-622

 FPGA Based Monopulse Technique Workflow: Part 1 - Algorithm Design

17-623

17 Featured Examples

17-624

 FPGA Based Monopulse Technique Workflow: Part 1 - Algorithm Design

17-625

The plots show the output from sum and difference channels. These channels can be fed to an
estimator to indicate the angle/direction of the object.

Summary

This example demonstrates how to design an FPGA implementation-ready algorithm, automatically
generate HDL code, and verify the HDL code in Simulink. The example illustrates the design of a
Simulink model for a DDC and monopulse feed system, verify the results with an equivalent
behavioral setup from the Phased Array System Toolbox that provides the golden reference. Apart
from the behavioral model, the example demonstrates how to create a subsystem for implementation
using Simulink blocks that support HDL code generation. It also compared the output of the
implementation model to the output of the corresponding behavioral model to verify that the two
algorithms are functionally equivalent.

Once the implementation algorithm is functionally verified to be equivalent to golden reference, HDL
Coder can be used for Simulink to HDL code generation and HDL Verifier™ to “Generate a
Cosimulation Model” (HDL Coder) test bench.

17 Featured Examples

17-626

The second part of this two-part series shows how to generate HDL code from the implementation
model and verify that the generated HDL code produces the same results as the floating-point
behavioral model as well as the fixed-point implementation model.

 FPGA Based Monopulse Technique Workflow: Part 1 - Algorithm Design

17-627

FPGA Based Monopulse Technique Workflow: Part 2 - Code
Generation

This example is the second of a two-part series that will help you through the steps to generate HDL
code for a monopulse technique and verify that the generated code is functionally correct. The first
part of the series shows how to develop an algorithm in Simulink suitable for implementation on
hardware, such as a Field Programmable Gate Array (FPGA), and how to compare the output of the
fixed-point, implementation model to that of the corresponding floating-point, behavioral model.

This example uses HDL Coder™ to generate HDL code from the Simulink® model developed in part
one and verifies the HDL code using the HDL Verifier™. HDL Verifier™ is used to generate a
cosimulation test bench model to verify the behavior of the automatically generated HDL code. The
test bench uses ModelSim® for cosimulation to verify the automatically generated HDL code.

The Phased Array System Toolbox™ Simulink blocks model operations on floating-point data and
provides the behavioral reference model. This behavioral model is used to verify the results of the
implementation model and the automatically generated HDL code as well.

HDL Coder™ generates portable, synthesizable Verilog® and VHDL® code for Simulink blocks that
support HDL code generation.

HDL Verifier™ lets you test and verify Verilog® and VHDL® designs for FPGAs, ASICs, and SoCs.
We'll verify RTL generated from our Simulink model against a test bench running in Simulink® using
cosimulation with an HDL simulator.

Implementation Model

This example assumes that you have a properly setup Simulink model that contains a subsystem with
a monopulse technique designed using Simulink blocks that use fixed-point arithmetic and supports
HDL code generation. FPGA Based Monopulse Technique Workflow: Part 1 - Algorithm Design shows
how to create such a model.

To start with a new model, run hdlsetup to configure the Simulink model for HDL code generation.
Open Simulink's Model Settings to configure the Simulink model for test bench creation needed for
verification. Select Test Bench under HDL Code Generation in the left panel, and check HDL test
bench and Cosimulation model in the Test Bench Generation Output properties group.

Comparing Results of Implementation Model to Behavioral Model

Run the model created in the FPGA Based Monopulse Technique Workflow: Part 1 - Algorithm Design
to display the results. You can run the Simulink model by clicking the Play button or calling the sim
command on the MATLAB command line as shown below. Use the Time Scope blocks to compare the
output frames visually.

modelname = 'SimulinkDDCMonopulseHDLWorkflowExample';
open_system(modelname);

% Ensure model is visible and not obstructed by scopes.
set(allchild(0),'Visible','off');

sim(modelname);

17 Featured Examples

17-628

 FPGA Based Monopulse Technique Workflow: Part 2 - Code Generation

17-629

17 Featured Examples

17-630

 FPGA Based Monopulse Technique Workflow: Part 2 - Code Generation

17-631

17 Featured Examples

17-632

Code Generation and Verification

This section covers the procedure to generate HDL code for a DDC and monopulse technique and
verify that the generated code is functionally correct. The behavioral model provides the reference
values to ensure that the output from HDL is within tolerance limits. Based on the Simulink model
setup as described above, the monopulse technique designed using fixed-point arithmetic and
supports HDL code generation. Alternatively, if you start with a new model, you can run hdlsetup
(HDL Coder) to configure the Simulink model for HDL code generation.

To configure the Simulink model for test bench creation, open Simulink's Model Settings, select Test
Bench under HDL Code Generation in the left panel, and check HDL test bench and Cosimulation
model in the Test Bench Generation Output properties group.

Model Settings

After the fixed-point implementation is verified and the implementation model produces the same
results as your floating-point, behavioral model, you can generate HDL code and test bench. For code
generation and test bench, set the HDL Code Generation parameters in the Configuration Parameters
dialog. The following parameters in Model Settings are set under HDL Code Generation:

 FPGA Based Monopulse Technique Workflow: Part 2 - Code Generation

17-633

• Target: Xilinx Vivado synthesis tool; Virtex7 family; Device xc7vx485t; package ffg1761, speed -1;
and target frequency of 300 MHz.

• Optimization: Uncheck all optimizations
• Global Settings: Set the Reset type to Asynchronous
• Test Bench: Select HDL test bench, Cosimulation model and SystemVerilog DPI test bench

HDL Code Generation and Test Bench Creation

After Simulink Model Settings have been updated, you can use HDL Coder to generate HDL Code
from Simulink® to generate HDL code for the HDL Algorithm subsystem. Use HDL Verifier to
generate test bench model.

% Uncomment the following two lines to generate HDL code and test bench.
% makehdl([modelname '/DDC and Monopulse HDL']); % Generate HDL code
% makehdltb([modelname '/DDC and Monopulse HDL ']); % Generate Cosimulation test bench

Since the model has accounted for pipelining in the multiplications, and we have unchecked all
optimizations, there are no extra delays added to the model. We need to compensate these delays for
the floating-point, behavioral model output. This will align the output of the behavioral model with the
implementation model as well as the cosimulation. A delay of () is added to the output of the
digital comparator. This delay is added to compensate for the latency in the DDC chain. Also, out of
the 220 units delay, 215 unit delays compensates for the latency in the DDC chain and 5 units in the
monopulse sum and difference subsystem.

After generating HDL code and test bench a new Simulink model named gm_<modelname>_mq
containing a ModelSim Simulator block is created in your working directory, which looks like this:

17 Featured Examples

17-634

% To open the test bench model, uncomment the following lines of code
% modelname = ['gm_',modelname,'_mq'];
% open_system(modelname);

Launch ModelSim and run the cosimulation model to display the simulation results. You can click on
the Play button on the top of Simulink canvas to run the test bench or you can do it via command
window from the code below

% Uncomment the following line, to run the test bench.
% sim(modelname);

The Simulink® test bench model will populate the Questa Sim with the HDL model's signal and Time
Scopes in Simulink. Below are examples of the results in Questa Sim and Simulink scopes.

The Simulink scope below shows real and imaginary parts for both the cosimulation and Design
Under Test(DUT) as well as the error between them

The Simulink scopes comparing the results of the cosimulation can be found in test bench model
inside the Compare subsystem, which is at the output of the DDC and Monopulse HDL_mq
subsystem.

% Uncomment the following line to open the subsystem with the scopes.
% open_system([modelname,'/Compare/Assert_Sum Channel HDL'])

 FPGA Based Monopulse Technique Workflow: Part 2 - Code Generation

17-635

Summary

The generated HDL code as well as a cosimulation test bench for the Simulink subsystem were
created with blocks that support HDL code generation. It showed how to setup and launch ModelSim
to cosimulate the HDL code. The cosimulation is performed via ModelSim for the HDL code and
comparison of results to the output generated by the HDL model. The example helped in
automatically generating HDL code for a fixed-point, monopulse technique and verify the generated
code in Simulink®.

17 Featured Examples

17-636

Introduction to Differential Beamforming
This example shows the basic concept of differential beamforming and how to use that technology to
form a linear differential microphone array.

Additive vs. Differential Microphone Arrays

Microphone arrays have been deployed in many audio applications. Depending on the layout,
microphone arrays can be divided into two main categories: additive microphone arrays and
differential microphone arrays. The additive microphone arrays are similar to the arrays used in other
applications, like wireless communications. For an additive microphone array, the goal is to
coherently combine the signals from each channel so we can form a narrow beam towards the source
and improve the signal to noise ratio. Several such beamforming algorithms are covered in the
“Acoustic Beamforming Using a Microphone Array” on page 17-174 example.

Although additive microphone arrays are very useful, they suffer from several limitations. For
illustration purpose, let us define a 2-element array with a 5 cm spacing and look at its pattern
between 1-4 kHz. Note that although the audio frequency band spans from 20 Hz to 20 kHz, the 1-4
kHz bands are particularly important for speech intelligibility. The 5 cm spacing in the array is
approximately half wavelength at 4 kHz.

c = 343;
f = (1:4)*1e3;
fmax = f(end);
lambda = c/fmax;

d = 0.05;
N = 2;
micarraya = phased.ULA(N,d);

pattern(micarraya,f,-180:180,0,'PropagationSpeed',c)

 Introduction to Differential Beamforming

17-637

The first thing we can observe from the plots is probably how much the pattern changed across this
frequency range. Although the array exhibits a clear directional response at 4 kHz, at 1 kHz, its
pattern is essentially omnidirectional. As a result, at lower frequencies, the array cannot achieve
much spatial filtering. This, in turn, reduces the directivity of the array. The directivity along the
broadside across the frequency range is captured below.

Da = directivity(micarraya,f,[0;0],'PropagationSpeed',c);
clf;
plot(f/1e3,Da,'-o');
xlabel('Frequency (kHz)');
ylabel('Directivity (dBi)');
title('Additive Microphone Array Directivity');

17 Featured Examples

17-638

Note that the signal of interest for a microphone array, such as speech and music, is always
wideband. Therefore, the pattern difference across the frequency range also causes distortions on the
beamformed signal.

Many array geometries have been explored to get around these limitations. A nested array is one
such example. In a nested array, small arrays are embedded in a large array. You can then activate
different elements across different frequency bands to produce similar patterns across the band.
Consider the following 4-element array

Nn = 4;
nestedpos = [zeros(1,Nn);[0 1 2 4]*d;zeros(1,Nn)];
micarrayn = phased.ConformalArray('ElementPosition',nestedpos);
viewArray(micarrayn);
set(gcf,'Color','w');

 Introduction to Differential Beamforming

17-639

If you use the first and the second elements for bands around 4 kHz; the first and the third elements
for bands between 2 and 3 kHz; and the first and the fourth elements for bands around 1 kHz, the
resulting beam patterns look like

wn = [1 1 1 1;0 0 0 1;0 1 1 0;1 0 0 0];
pattern(micarrayn,f,-180:180,0,'PropagationSpeed',c,'Weights',wn);

17 Featured Examples

17-640

In the plot the patterns from 1, 2, and 4 kHz are essentially identical to each other, but the 3kHz
pattern is still different. In addition, the number of elements are doubled in this design. In reality, to
get a nested array that can have a frequency invariant pattern across a large band, you will need a
large number of microphone elements, so this approach is not very practical.

Differential microphone array (DMA) technology is another possible solution. Because DMAs can form
frequency invariant patterns, they become valuable tools for audio applications.

First Order Linear DMA

Unlike an additive microphone array, a DMA is more sensitive to the spatial derivative of the acoustic
field around the array, thus the name "differential". Since it is impossible to compute the true
derivative between microphone elements, the difference between the measurements at each
microphone element is used to approximate the derivative. Because a pair of closely located elements
can measure derivative more accurately, the element spacing in a DMA is in general much smaller
than the wavelength. The following code constructs a 2-element linear array with a spacing of 1/10
wavelength.

micarrayd = phased.ULA(N,lambda/10);
viewArray(micarrayd)
set(gcf,'Color','w');

 Introduction to Differential Beamforming

17-641

One benefit comes with a close spacing is that the entire array aperture is fairly small. As a result,
such linear DMAs are popular choices for hearing aids.

Because differential beamforming measures the field derivatives, its mainlobe points toward the
endfire direction. The endfire direction is along the axis of the linear array. This is understandable
because for an additive array, the mainlobe is at the broadside, which is the direction perpendicular
to the array axis, and the derivative at that direction is 0. Therefore, the design of a DMA is often
about null placement. For a two-element linear DMA, when the mainlobe is at endfire, you can only
control one null location. This is referred to as a first order DMA. However, even though there is only
one null location, varying the location can result in several interesting patterns.

First, put the null at the broadside of the array. This means that we need to compute a weight vector,
when combined with the steering vectors for endfire and broadside directions, to generate unit
response and null response, respectively. Such a weight vector can be derived using a least square
approach.

stvd = phased.SteeringVector('SensorArray',micarrayd,'PropagationSpeed',c);
ang_d = 90; % endfire
ang_n = 0; % broadside
C = stvd(f,[ang_d ang_n]);
r = [1;0];
w = complex(zeros(N,numel(f)));
for m = 1:numel(f)
 w(:,m) = C(:,:,m)'\r;
end

17 Featured Examples

17-642

clf;
pattern(micarrayd,f,-180:180,0,'PropagationSpeed',c,'Weights',w);

The resulting pattern has the shape of a dipole. Note that the patterns from all frequencies are
overlap so they are invariant across the entire frequency band. The directivities are now a constant
over the frequency, as shown in the following figure.

Dd = directivity(micarrayd,f,ang_d,'PropagationSpeed',c,'Weights',w);
clf;
plot(f/1e3,Dd,'-o');
ylim([0 5]);
xlabel('Frequency (kHz)');
ylabel('Directivity (dBi)');
title('2-element Linear DMA Dipole Directivity');

 Introduction to Differential Beamforming

17-643

Another important performance charactersitic associated with a microphone array is its signal to
noise ratio (SNR) gain over white noise.

agd = phased.ArrayGain('SensorArray',micarrayd,'PropagationSpeed',c,'WeightsInputPort',true);
wngd = agd(f,ang_d,w);
clf;
plot(f/1e3,wngd,'-*');
xlabel('Frequency (kHz)');
ylabel('White Noise Gain (dB)');
title('2-element Linear DMA Dipole SNR Gain');

17 Featured Examples

17-644

As can be seen from the plot, the SNR gain of this DMA is below 0 dB across the entire frequency
range, this means that the noise gets amplified significantly, especially in low frequency regions.
Compared to additive arrays, this is probably the biggest issue associated with DMAs. Therefore,
engineers may need to make a tradeoff between a more focused beam, which helps dealing with
reverberation in a crowded environment, and a higher received signal SNR.

What if the null is located at the other end of the endfire direction?

ang_n = -90; % endfire
C = stvd(f,[ang_d ang_n]);
r = [1;0];
for m = 1:numel(f)
 w(:,m) = C(:,:,m)'\r;
end

pattern(micarrayd,f,-180:180,0,'PropagationSpeed',c,'Weights',w);

 Introduction to Differential Beamforming

17-645

Now the resulting pattern is a cardioid. You can also put the null at -45 degrees to get a supercardioid
shape.

ang_n = -45; % endfire
C = stvd(f,[ang_d ang_n]);
r = [1;0];
for m = 1:numel(f)
 w(:,m) = C(:,:,m)'\r;
end

pattern(micarrayd,f,-180:180,0,'PropagationSpeed',c,'Weights',w);

17 Featured Examples

17-646

wngd = agd(f,ang_d,w);
clf;
plot(f/1e3,wngd,'-*');
xlabel('Frequency (kHz)');
ylabel('White Noise Gain (dB)');
title('2-element Linear DMA Supercardioid SNR Gain');

 Introduction to Differential Beamforming

17-647

Note that supercardioid shape provides better SNR gain than the dipole shape.

Higher Order Linear DMA

You probably have noticed that for a first order linear DMAs, you can assign 1 null direction. In
general, an N-element linear array can form an (N-1)-th order DMA, with the capability of allocating
N-1 nulls. For example, for a four-microphone, third order DMA, you can put 3 nulls for the
supercardioid beam pattern.

N = 4;
micarrayd3 = phased.ULA(N,lambda/10);
stvd3 = phased.SteeringVector('SensorArray',micarrayd3,'PropagationSpeed',c);
ang_d = 90; % endfire
ang_n = [0 -30 -90]; % nulls
C = stvd3(f,[ang_d ang_n]);
r = [1;zeros(numel(ang_n),1)];
w = complex(zeros(N,numel(f)));
for m = 1:numel(f)
 w(:,m) = C(:,:,m)'\r;
end

pattern(micarrayd3,f,-180:180,0,'PropagationSpeed',c,'Weights',w);

17 Featured Examples

17-648

The SNR gain of higher oder DMAs still bears the same trend as a first order DMA.

agd = phased.ArrayGain('SensorArray',micarrayd3,'PropagationSpeed',c,'WeightsInputPort',true);
wngd = agd(f,ang_d,w);
clf;
plot(f/1e3,wngd,'-*');
xlabel('Frequency (kHz)');
ylabel('White Noise Gain (dB)');
title('4-element Linear DMA Supercardioid SNR Gain');

 Introduction to Differential Beamforming

17-649

It is possible to assign nulls with multiplicity too. Here is an example where you set the null at -90
degrees to a multiplicity of 2.

ang_d = 90; % endfire
ang_n = [0 -90 -90]; % nulls
C = stvd3(f,[ang_d ang_n]);
r = [1;zeros(numel(ang_n),1)];
w = complex(zeros(N,numel(f)));
for m = 1:numel(f)
 Cmn = C(:,:,m);
 Cmn(:,3) = diag(0:N-1)*Cmn(:,3);
 w(:,m) = Cmn'\r;
end

pattern(micarrayd3,f,-180:180,0,'PropagationSpeed',c,'Weights',w);

17 Featured Examples

17-650

Although the endfire mainlobe of a default DMA works well for hearing aid applications, it is not ideal
for other applications such as a sound bar. In those applications, you probably would expect the main
beam to be more or less steered toward the broadside of the array. However, although a linear DMA
can be steered, it has several unique characteristics compared to an additive array:

1 The steering sacrifices degree of freedoms from the array. For an L-th order linear DMA, you can
at most specify L-1 nulls, the remaining null is picked by algorithm based on the specified null
locations. Therefore, a first order linear DMA is not steerable.

2 Unlike an additive array, the beam shape of a linear DMA is not preserved when steered.

The following snippet shows how to steer a linear DMA. In this case, the main beam is steered
towards the broadside. In addition, a null is placed at 70 degrees off the broadside. The remaining
null is derived by the steering weights algorithm.

ang_d = 0; % broadside
ang_n = 70; % nulls
xnlast = mod(-1/sum(1./sind(ang_n))+1,2)-1;
ang_n(end+1) = asind(xnlast);

The rest of the process is similar to the default DMA design.

C = stvd3(f,[ang_d ang_n]);
r = [1;zeros(numel(ang_n),1)];
w = complex(zeros(N,numel(f)));
for m = 1:numel(f)
 Cmn = C(:,:,m);

 Introduction to Differential Beamforming

17-651

 w(:,m) = Cmn'\r;
end

pattern(micarrayd3,f,-180:180,0,'PropagationSpeed',c,'Weights',w);

Note that the mainlobe is now toward the broadside direction. Due to the symmetry of the linear
array, the resulting pattern also has an equivalent backlobe. In some designs, this can be mitigated by
adopting a microphone element with small backlobes.

Summary

This example introduced the basic concept of differential microphone arrays. The example showed
how to compute the differential beamforming weights to form many classic DMA beam shapes and
compared the performance of a linear DMA with a linear additive microphone array. The array beam
pattern clearly illustrated that the DMA can provide a frequency invariant pattern. The example ends
with a discussion on how to steer a higher order linear DMA.

References

[1] Jingdong Chen, Jacob Benesty, and Chao Pan, On the design and Implementation of Linear
Differential Microphone Arrays, The Journal of the Acoustical Society of America, Vol. 136, No. 6,
2014

[2] Jacob Benesty, Jingdong Chen, and Chao Pan, Fundamentals of Differential Beamforming,
Springer, 2016.

17 Featured Examples

17-652

[3] Jilu Jin et al., Steering Study of Linear Differential Microphone Arrays, IEEE/ACM Transactions on
Audio Speech, and Language Processing, Vol. 29, 2021

 Introduction to Differential Beamforming

17-653

Examine the Response of a Focused Phased Array
Introduction

This example introduces the concept of a focused beam, and shows how to use
phased.FocusedSteeringVector to generate the required element weights for a phased array. It
also shows how to use phased.SphericalWavefrontArrayResponse to compute the array
response of an array at a given angle and range. First you will look at the response when a single
beam is formed and examine characteristics of the focal region, then emulate a collection strategy
commonly used in ultrasound imaging to see how a focused beam appears in an image.

Focused Beamforming

Spherical Wavefront Delay-and-Sum

Beamforming under the typical far-field assumption enables modeling the signal wavefront as a plane
which is propagating along its normal direction. When the signal is incident on an array, the
wavefront intersects individual elements with a relative time delay that is proportional to the distance
of the element along the wave's propagation direction. Under this model, a delay (or phase shift, in
the narrowband case) can be applied to each element such that the outputs across elements (whether
on transmit or receive) have constructive phase when coherently summed.

Without the far-field assumption, the wavefront emanating from a point source is modeled as a
spherical surface centered at that soure. This wavefront intersects the elements of the phased array
with relative time delay dictated by the hyperbolic range across colinear elements. While this model
would simply add unneccessary computation cost to the generation of a far-field pattern, the
spherical wavefront model is necessary to understand near-field beamforming and focusing.

The function helperPlotULAWavefronts is provided to demonstrate the difference in element
delays and wavefront shape between a steered beam with and without focusing. Element delays are
relative to the array center.

figure
helperPlotULAWavefronts(14,1e6,1540,20,inf)
title('Steered Wavefront')

17 Featured Examples

17-654

figure
helperPlotULAWavefronts(14,1e6,1540,20,0.01)
title('Steered and Focused Wavefront')

 Examine the Response of a Focused Phased Array

17-655

The Focal Region and Near/Far Boundary

In the far field, a steered array has a well-defined pattern in angle space, which is not dependent on
range. In the near field, a steered (but unfocused) array has no discernabe lobe structure at all.
Thanks to the nonlinear phase relationship between elements, a response that has equal magnitude
at all ranges in a given direction is not possible. Instead, by focusing a beam one can obtain a small
region, bounded in both angle and range, in which the response resembles a far-field response,
known as the focal region. The angular position of the focal region may be controlled as easily as with
a far-field beam. The position of the focal region in range is determined by the focal range, and the
depth of field (DoF), which is the range extent of the region.

The figures below shows the progression of beam shape with range for focused uniform and
rectangular arrays. The function helperPlotResponseSlices is provided to demonstrate how to
generate this type of figure.

17 Featured Examples

17-656

 Examine the Response of a Focused Phased Array

17-657

At the focal range, our beam in angle space closely resembles that of a far-field pattern.

The near/far boundary, similar in concept to other near-field/far-field boundaries, is the boundary
past which focusing is not possible. Conversely, a steered but unfocused beam is not possible on the
near side of the boundary. The figure below demonstrates this fact. Notice that the steered beam only
begins to take shape on the far side, and the focused beam is only focused on the near side.

The range where this boundary can be found is well-documented in the medical imaging literature as
Larray

2 /4λ, where Larray is the length of the array. For a simple uniform linear array with N critically-
spaced elements, this can be expressed as N2λ/16.

Generating the Response for a Single Beam

This sections shows how to generate and plot a single beam. Start by setting up the phased array and
other System objects. Common medical imaging ultrasound systems operate between 2 and 20 MHz,
and the commonly-accepted average propagation speed of sound in soft tissue is 1540 m/s.

rng('default')
freq = 4e6;
c = 1540;
lambda = c/freq;

Ultrasound transducers come in a wide variety of topologies suited for specific activities. This
example simply uses a uniform linear array with critical element spacing.

numElems = 256;
elemSpacing = lambda/2;
array = phased.ULA(numElems,elemSpacing);

The System objects phased.FocusedSteeringVector and
phased.SphericalWavefrontArrayResponse are used in tandem to generate steered and
focused element weights, and to compute the response over some domain. Pass the array and
propagation speed specification from above to the constructors. For the array response, also turn on
the weights input port.

SV = phased.FocusedSteeringVector('SensorArray',array,'PropagationSpeed',c);
AR = phased.SphericalWavefrontArrayResponse('SensorArray',array,'PropagationSpeed',c,'WeightsInputPort',true);

17 Featured Examples

17-658

Now you have the minimal setup required to form and inspect a focused beam. Use a 10 degree steer
in azimuth and a focal range of 40 mm.

azSteer = 10;
focalRange = 0.04;

Use a domain that starts in front of the array and extends out to twice the focal range, and covers the
length of the array in the lateral direction. The array elements lie along the Y axis, and the array
normal direction is +X.

arrayLength = numElems*elemSpacing;
x = linspace(1e-3,2*focalRange,200);
y = linspace(-arrayLength/2,arrayLength/2,200);

Convert to spherical coordinates for input to the steering vector and response computation.

[az,el,rng] = cart2sph(x,y',0);
ang = rad2deg([az(:) el(:)]');
rng = rng(:)';

Now compute the response of the focused array over the specified domain.

weights = SV(freq,[azSteer;0],focalRange);
beam = AR(freq,ang,rng,weights);

Reshape, normalize, and use log-scale.

beam = reshape(beam,numel(y),numel(x));
beam = beam/max(abs(beam(:)));
beam = mag2db(abs(beam));

Use the provided function helperPlotResponse to plot the result. The positions of the array
elements are indicated by red markers.

figure
helperPlotResponse(beam,x,y,array)
title('Single Steered and Focused Beam')

 Examine the Response of a Focused Phased Array

17-659

The focal region is clearly visible at the specified range and angle. As with the far-field response
(pattern), the magnitude of the spherical wavefront response takes into account the varying phase
across elements but, unlike the far-field response, the spherical wavefront response also includes the
effect of varying free-space propagation loss across elements. This is essentially a slight amplitude
modulation across elements, the effect of which is visible in the beam's sidelobes. A flat gain equal to
the focal range is applied to each element, so that the overall amplitude weighting on an element is
the ratio of the distance between the response point and the array center to the distance from the
response point to the individual element: Rresp/Relem. For example, the contribution to the sum beam
from an element located at the origin would have unit magnitude.

Focal Region

For a focal region to be bounded in range, the focal range must be small enough that the entire
region (with extent determined by the DoF) must be closer than the near/far boundary. DoF can be
expressed as a function of a related quantity, commonly seen in optics, known as the F-number, which
is the ratio of the focal range to the length of the array: F = Rfoc/Larray. From this quantity, a good
estimate of the DoF is dF = 7 . 1λ F2. For a fixed array and frequency, the DoF increases with the
square of the focal range.

This section takes a look at how the DoF changes with focal range. Generate the response over an
interval of focal ranges, and examine the changing DoF. The function helperPlotBeamMarkers will
display an indication of the DoF for each focal range. The focal region is roughly elliptical, and is not
centered on the focal range. Another rule of thumb can be used to find the offset from the focal range
to the center of the region: dF/4.

17 Featured Examples

17-660

nearField = arrayLength^2/(4*lambda); % Near/far boundary range

x = linspace(1e-3,nearField*1.2,100);
y = linspace(-0.01,0.01,100);

coeff = 0.1:0.1:0.9; % Proportion of near/far boundary
focalRanges = coeff*nearField;

fnum = focalRanges/arrayLength;
dof = 7.1*lambda*fnum.^2;
focalRegionCenter = focalRanges + dof/4;

figure
for ind = 1:numel(focalRanges)
 beam = helperMakeSingleBeam(SV,AR,freq,0,focalRanges(ind),x,y);
 helperPlotResponse(beam,x,y)
 caxis([-6 0]) % only view the greatest 6 dB of the beam
 helperPlotBeamMarkers(focalRanges(ind),focalRegionCenter(ind),nearField,dof(ind),0.001)
 title(sprintf('Focal Range = %d%% of Near/Far Boundary',round(coeff(ind)*100)))
 drawnow
end

By the time the focal range has increased to 60% of the near/far boundary, the eccentricity of the
focal region has become quite large. By 80%, the focal region has intersected the near/far boundary
and has essentially become an unfocused beam.

 Examine the Response of a Focused Phased Array

17-661

Beamwidth in the focal region, as with a far-field response, may still be roughly computed with the
usual λ /Larray, the ratio of wavelength to array length. Thus the width (in the lateral direction) of the
focal region can be approximated with Rfocλ/Larray.

Single-Line Acquisition with Linear Subarray Shifting

A-scans and Image Formation

Unlike radar systems, where direction of arrival can be estimated efficiently through beamforming of
far-field signals, the near-field beamforming and latency requirements of ultrasound systems often
necessitate a simpler strategy to locate the source of returned energy. A common class of collection
strategy involves multiple A-scans, reflectivity profiles along a given line segment. The placement of
these lines within the formed image is determined simply by the known position of the beam.

To form a rectangular image, as is done in this example, lineary subarray shifting can be used. With
this method a subset of the array elements (a subarray) is used for each pulse, with no steering, to
get a range profile originating at the center of the subarray and extending in the axial direction.
Successive lines are formed by shifting the subarray selection to a different set of elements.

The choice of focal range can be considered separately from beam pointing. Some systems may keep
a fixed focal range, or use dynamic focusing on receive along with apodization or windowing to
generate a broad image that covers much of the near-field region. In this example focal range is kept
fixed while the lateral position of the subarray is varied.

The helper class helperSubarray is provided to emulate subarray selection and simplify the
simulation loop. This class keeps track of which elements belong to the current subarray and handles
the necessary transforms between the global and subarray frames.

Image Formation

In order to demonstrate the effects of focused beamforming, this example uses a simple image
formation strategy that constructs each range profile by quantizing and accumulating the response at
each pulse, then inserting that profile into the completed image based on the location of the subarray.
This simulates an ideal delta pulse in free space, which allows for a comparison of lateral resolution
inside and outside the focal region. This method disregards the effects of waveform choice and
multipath reflections, and treats scatterers as perfect point isotropic reflectors.

Simulation

The same system parameters will be used as in the previous section. Each subarray will consist of 64
elements. The subarray starts at the end of the array and is shifted by one element on each pulse.

numSubElems = 64;
subarray = helperSubarray(array,numSubElems);

If subarray is shifted by one element on each pulse and all contiguous subarrays are covered, the
total number of pulses will be

numPulses = numElems - numSubElems + 1

numPulses = 193

Following the analysis in the previous section, check the focal region parameters for this subarray.
Get the subarray length, near/far boundary, DoF, and lateral width of the focal region.

subarrayLength = numSubElems*elemSpacing;
nearFieldSub = subarrayLength^2/(4*lambda); % Near/far boundary for the subarray

17 Featured Examples

17-662

fnumSub = focalRange/subarrayLength;
dofSub = 7.1*lambda*fnumSub.^2

dofSub = 0.0288

widthSub = lambda/subarrayLength*focalRange

widthSub = 0.0013

The subarray beam has a DoF of about 28.8 mm, and the lateral width of the focal region is about 1.3
mm. Check that the focal region is well within the near/far boundary

boundedFocalRegion = focalRange + dofSub < nearFieldSub

boundedFocalRegion = logical
 1

To demonstrate the primary usefulness of a focused beam, decreased beamwidth in the focal region,
use multiple parallel lines of scatterers along the axial direction (depth lines). Specify the desired
max depth of scatterers, and use the provided helper function, helperGetResponsePoints, to get
the scatterer positions. Let all scatterers have reflectivity with unit amplitude. The scatterer positions
are perturbed to avoid artifacting due to symmetry.

For the lateral spacing of the lines, use 4 times the calculated focal region width. Because the
subarray is simply shifted by one element at a time, which is a shorter distance than our beam width
in the focal region, return from each line of scatterers shows up in more than one row of the image,
making them appear to have greater width.

maxDepth = nearFieldSub;
lineSpacing = 4*widthSub;
[sx,sy] = helperGetResponsePoints(maxDepth,arrayLength,lambda,lineSpacing);

To visualize the scene, plot the scatterer positions along with the array elements.

figure
plot(subarray)
hold on
plot(sx,sy,'.')
hold off
legend('Array Elements','Initial Subarray','Scatterers')
xlabel('Axial Distance')
ylabel('Lateral Position')

 Examine the Response of a Focused Phased Array

17-663

To form a range profile and capture the effects of interference from sidelobe return, range sampling
parameters must be defined. Modern ultrasound systems use a relatively high sampling frequency, on
the same order as the center frequency of the transmitted waveform. Use a range bin size of 1 mm,
corresponding to a sampling rate of about 1.5 MHz. The provided helper function
helperFormRangeProfile is used to form the range profile from the array response data.

rangeBinSize = 1e-3;
Fs = c/rangeBinSize;
rangeBins = 0:rangeBinSize:maxDepth;
numRangeSamples = numel(rangeBins);

Get the scatterer positions in spherical coordinates (angles in degrees) for input to
SphericalWavefrontArrayResponse.

[respAng,~,respRng] = cart2sph(sx,sy,0);
respAng = rad2deg(respAng(:)');
respRng = respRng(:)';

Each loop of the simulation involves computing weights for the current subarray, computing the
response, forming a range profile, and forming the image line by line. We'll also apply range-
dependent gain for uniform brightness (see helperFormRangeProfile).

im = zeros(numPulses,numRangeSamples);
center = zeros(3,numPulses);

for pulse = 1:numPulses

17 Featured Examples

17-664

 center(:,pulse) = subarray.center; % Center position of our current subarray
 [focAzGlobal,~,focRngGlobal] = subarray.localToGlobalSph(0,0,focalRange); % Angle and range to current focal point

 weights = SV(freq,[focAzGlobal;0],focRngGlobal);
 weights(~subarray.selection) = 0; % Zero-out weights for unused elements

 resp = AR(freq,respAng,respRng,weights);
 resp = resp./respRng(:); % Undo normalization to use actual propagation loss

 im(pulse,:) = helperFormRangeProfile(resp,sx,sy,center(:,pulse),rangeBins); % Add line to image

 if pulse < numPulses
 subarray.shift(1) % Shift subarray if there are pulses remaining
 end

end

Normalize and plot the image, along with an overlay of the scatterer positions.

im = im/max(abs(im(:)));
figure
subplot(1,2,1)
helperPlotResponse(mag2db(abs(im)),rangeBins,center(2,:))
title('Linear Subarray Shift Image')
subplot(1,2,2)
helperPlotResponse(mag2db(abs(im)),rangeBins,center(2,:))
hold on
plot(sx,sy,'.r','markersize',1)
hold off
title('Scatterer Overlay')
set(gcf,'Position',get(gcf,'Position')+[0 0 560 0]);

The depth lines are resolvable about the focal range, over a range interval roughly equal to the
computed DoF for the subarray beam. Away from the focal point, the parallel lines of scatterers
quickly become indistinguishable thanks to the wide angular spread of the beam outside the focal
region.

 Examine the Response of a Focused Phased Array

17-665

Note that, though all the scatterers were used to compute energy return, not all lines are visible due
to the clipping between the full array size and the extent of subarray center positions. A wider total
field of view would be obtainable with a shorter subarray, at the cost of reduced lateral resolution.

Conclusion

This example introduced two System objects for computing focused weights and for computing the
non-far-field response of an array with spherical wavefronts. It showed how to examine some basic
characteristics of a focused beam, and how to generate a basic image to visualize the effect of a
focused beam on lateral resolution with a linear subarray shift collection method.

References

[1] Demi, Libertario. “Practical Guide to Ultrasound Beam Forming: Beam Pattern and Image
Reconstruction Analysis.” Applied Sciences 8, no. 9 (September 3, 2018): 1544. https://doi.org/
10.3390/app8091544

[2] Ramm, O. T. Von, and S. W. Smith. “Beam Steering with Linear Arrays.” IEEE Transactions on
Biomedical Engineering BME-30, no. 8 (August 1983): 438–52.

Helper Functions

helperMakeSingleBeam
function [beam,x,y] = helperMakeSingleBeam(SV,AR,freq,azSteer,focalRange,x,y)
% Get the element weighting for a single beam and compute the response

weights = SV(freq,[azSteer;0],focalRange);

% Domain of response
if nargin < 6
 x = linspace(1e-3,2*focalRange,200);
end
if nargin < 7
 pos = SV.SensorArray.getElementPosition;
 halfy = max(pos(2,:))*1.2;
 y = linspace(-halfy,halfy,200);
end
[az,el,rng] = cart2sph(x,y',0);
ang = rad2deg([az(:) el(:)]');
rng = rng(:)';

% Generate response
beam = AR(freq,ang,rng,weights);
beam = reshape(beam,numel(y),numel(x));

% Normalize and use log scale
beam = beam/max(abs(beam(:)));
beam = mag2db(abs(beam));

end

helperPlotResponse
function helperPlotResponse(R,x,y,array)
% Plot the response, R, on the domain defined by x and y.

imagesc(x,y,R)

17 Featured Examples

17-666

https://doi.org/10.3390/app8091544
https://doi.org/10.3390/app8091544

set(gca,'ydir','normal')
caxis([-32 0])
xlabel('Axial Distance')
ylabel('Lateral Position')

if nargin > 3
 pos = getElementPosition(array);
 hold on
 h = plot(pos(1,:),pos(2,:),'.r');
 hold off
 xl = xlim;
 xlim([min(pos(1,:)) xl(2)])
 legend(h,'Array Elements','Location','southeast','AutoUpdate','off')
end

end

helperPlotBeamMarkers
function helperPlotBeamMarkers(focalRange,center,nearField,dof,offset)
% Put informative markers on a beam plot

line([center-dof/2 center+dof/2],[offset offset],'color','white')
line([center-dof/2 center-dof/2],[0 offset],'color','white')
line([center+dof/2 center+dof/2],[0 offset],'color','white')

line([focalRange focalRange],ylim,'color','red')
line([nearField nearField],ylim,'color','cyan')

end

helperGetResponsePoints
function [sx,sy] = helperGetResponsePoints(maxDepth,arrayLength,lambda,dy)
% Make parallel lines of scatterers along X

sx = linspace(0.001,maxDepth,400);
sy = -arrayLength/2:dy:arrayLength/2;

[sx,sy] = meshgrid(sx,sy);
sx = sx(:);
sy = sy(:);

sx = sx + (rand(size(sx))-1/2)*lambda;
sy = sy + (rand(size(sy))-1/2)*lambda;

end

helperFormRangeProfile
function rangeProf = helperFormRangeProfile(resp,sx,sy,center,rangeBins)
% This helper function quantizes a response in range, coherently
% accumulates the return in each bin, and applies amplitude weighting per
% range bin

rangeBinSize = rangeBins(2) - rangeBins(1);
numRangeSamples = numel(rangeBins);

% Range of scatterers relative to subarray center

 Examine the Response of a Focused Phased Array

17-667

scatRngRel = sqrt((center(1)-sx).^2 + (center(2)-sy).^2);

% Quantize scatterer ranges into fast-time sampling vector
scatRidx = 1 + floor(scatRngRel/rangeBinSize);

% Only keep samples below max depth
I = scatRidx <= numRangeSamples;
scatRidx = scatRidx(I);
resp = resp(I);

% Accumulate return into fast-time sampling grid
rangeProf = accumarray(scatRidx,resp,[numRangeSamples 1]);
rangeProf = rangeProf';

% Apply range-dependent gain
rangeProf = rangeProf.*rangeBins;

end

helperPlotULAWavefronts

function helperPlotULAWavefronts(numElems,f,c,az,r)
% Plot the wavefronts for the given ULA with ArrayAxis 'y', for the given
% azimuth angle and focal range.
%
% For the far-field wavefront, use inf for focal range

lambda = c/f;
array = phased.ULA(numElems,lambda/2);
pos = getElementPosition(array);
arrayLength = max(pos(2,:)) - min(pos(2,:));

% get relative path lengths
if isinf(r)
 L = phased.internal.elemdelay(pos,c,[az;0])*c;
else
 L = phased.internal.sphericalelemdelay(pos,c,[az;0],r)*c;
end

% plot element positions
plot(pos(1,:),pos(2,:),'oblue');
hold on;

% if near field, plot source
if ~isinf(r)
 [src(1,1),src(2,1),src(3,1)] = sph2cart(az*pi/180,0,r);
 plot(src(1),src(2),'*r','markersize',10);
end

% wavefront marker width
s = lambda/6;

% far field prop path
if isinf(r)
 [los(1,1),los(2,1),los(3,1)] = sph2cart(az*pi/180,0,1);
end

for ind = 1:size(pos,2) % for each element

17 Featured Examples

17-668

 p = pos(:,ind);

 if isinf(r)
 src = p + los*arrayLength;
 end

 path = src - p;
 path = path/norm(path);

 wp = p + path*L(ind); % position of wavefront

 % prop path
 line([wp(1) src(1)],[wp(2) src(2)],'color','black','linestyle','--');

 % wavefront marker
 u = cross([0;0;1],path)*s;
 line([wp(1)-u(1) wp(1)+u(1)],[wp(2)-u(2) wp(2)+u(2)],'color','magenta');

end

hold off;
grid on;
axis equal;

if isinf(r)
 legend('Elements','Prop Path','Wavefronts','Location','SouthEast');
else
 legend('Elements','Focal Point','Prop Path','Wavefronts','Location','SouthEast');
end

end

helperPlotResponseSlices

function helperPlotResponseSlices
% Demonstrates how to visualize range slices of a spherical wavefront response

f = 2e6;
c = 1540;
lambda = freq2wavelen(f,c);

array = phased.URA([32 32],lambda/2);
elemPos = array.getElementPosition;

focalRange = 0.03;
sampleRanges = .01:.01:.05;

% domain of each slice
azSteer = -20;
elSteer = 20;
az = azSteer + (-30:.1:30);
el = elSteer + (-30:.1:30);
[az,el] = meshgrid(az,el);
ang = [az(:) el(:)]';
[x,y,z] = sph2cart(az*pi/180,el*pi/180,1);

SV = phased.FocusedSteeringVector('SensorArray',array,'PropagationSpeed',c);

 Examine the Response of a Focused Phased Array

17-669

AR = phased.SphericalWavefrontArrayResponse('SensorArray',array,'PropagationSpeed',c,'WeightsInputPort',true);

w = SV(f,[azSteer;elSteer],focalRange);

for ind = 1:numel(sampleRanges)
 resp = AR(f,ang,sampleRanges(ind),w);
 resp = resp / array.getNumElements;
 resp = reshape(resp,size(x));
 alpha = 1 - (abs(sampleRanges(ind) - focalRange)/(max(sampleRanges)-min(sampleRanges))); % transparency

 surf(x*sampleRanges(ind),y*sampleRanges(ind),z*sampleRanges(ind),mag2db(abs(resp)),'FaceAlpha',alpha)
 hold on
 shading flat
end

% plot element positions and boresight vector
caxis([-32 0])
plot3(elemPos(1,:),elemPos(2,:),elemPos(3,:),'.black','markersize',4);
[b(1),b(2),b(3)] = sph2cart(azSteer*pi/180,elSteer*pi/180,max(sampleRanges)*1.2);
quiver3(0,0,0,b(1),b(2),b(3),'black','autoscale','off')
axis equal
axis off
hold off
set(gca,'view',[-70 22])

end

17 Featured Examples

17-670

FPGA Based Range-Doppler Processing - Algorithm Design and
HDL Code Generation

This example shows how to design an FPGA (Field Programmable Gate Array) implementation ready
range-Doppler response to match a corresponding behavioral model in Simulink® using the Phased
Array System Toolbox™. To verify the functional correctness of the implementation model, we
compare the simulation output of the implementation model with that of the behavioral model. The
term deployment here implies designing a model that is suitable for implementation on an FPGA. The
model is implementation ready and this will be verified in the example. The HDL workflow is designed
in fixed-point.

The Phased Array System Toolbox™ provides the floating point behavioral model for the range-
Doppler response through the phased.RangeDopplerResponse System Object. This behavioral model
is used to verify the correctness of the implementation model.

Fixed-Point Designer™ provides data types and tools for developing fixed-point and single precision
algorithms to optimize performance on an embedded hardware. Bit-true simulations can be
performed to observe the impact of limited range and precision without implementing the design in
hardware.

This example uses HDL Coder™ to generate HDL Code from the developed Simulink model and
verifies the HDL Code using the HDL Verifier™. HDL Verifier™ is used to generate a co-simulation
testbench model to verify the behaviour of the automatically generated HDL Code. The testbench
uses ModelSim® for Co-simulation to verify the generated HDL Code.

Range-Doppler Response Algorithm

The phased.RangeDopplerResponse system object generates the range-Doppler Response using the
following algorithm:

1 Fast-Time dimension : filters the signal with a matched filter to generate the range response
2 Slow-Time dimension : compute the FFT to generate the Doppler response The matched filter is a

FIR Filter with the co-efficients as the time-reverse replica of the transmitted signal.

When we assume the input data to be a matrix of M x N, where M is the number of cells and N is the
number of pulses, to calculate the range response we use an FIR Filter across the rows (fast-Time)
and compute the FFT across the columns (slow-Time).

The Implementation Model

We use the example data from the phased.RangeDopplerResponse documentation for the input signal
and block parameters The example is availalble at phased.RangeDopplerResponse example

We serialize and deserialize the signal using the Serializer1D/Deserializer1D blocks
respectively.These blocks have an input and output constraints for code generation, so we set an FFT
Length as 64 and use a subset of the input data cube.

A word length of 32 bits and a fraction length of 31 bits is used for the implementation model

The following command is used to open the Simulink Model.

modelname = 'SimulinkRangeDopplerProcessingHDLWorkflowExample';
open_system(modelname);
%Ensure model is visible and not obstructed by scopes

 FPGA Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

17-671

https://www.mathworks.com/help/phased/ref/phased.rangedopplerresponse-system-object.html#btkm6zy

open_system(modelname);
set(allchild(0),'Visible','off');

The Simulink model consists of two branches from the Input block. The top branch is the behavioral
model with floating point operations of the phased.RangeDopplerResponse System Object. The
bottom branch is the functionally equivalent implementation model in fixed-point, designed with
blocks that support HDL Code Generation from Simulink® HDL Coder™ Library.

The Input and Coefficients are generated from the range-Doppler example data. The input is a MxN
matrix, where M is the number of range cells (fast-time dimension) and N is the number of pulses
(slow-time dimension). The output of the phased.RangeDopplerResponse is a MxL matrix, where M is
the number of range cells and L is the FFT Length. Since the input and output of the Implementation
model have to be data streams, the input is serialized and quantized in the 'Serialize and Quantize'
subsystem and the output is deserialized to form a range-Doppler matrix map at the output in the
'Deserialize and Dequantize' subsystem.

Pre-processing and Post-processing data

The following command opens the 'Serialize and Quantize' subsystem

open_system([modelname '/Serialize and Quantize'])

17 Featured Examples

17-672

The input data is zero padded for FIR filter latency (from HDL Optimized) using matrix concatenate
block. The data is then serialized by a Serializer1D block used in cascade with the reshape and data-
type convert (quantize to fixed-point) block.

The following command opens the 'Deserialize and Dequantize' subsystem

open_system([modelname '/Deserialize and Dequantize'])

This block uses a Deserialiser1D block which uses a data-type convert and reshape blocks to convert
the output stream to a range-Doppler map

Matched Filtering - Range Processing Subsystem

The following command is used to open the 'Matched Filtering - Range Processing' subsystem

open_system([modelname '/RangeDopplerResponseHDL/Matched Filtering - Range Processing'])

The input stream is processed with a Disctete FIR Filter HDL Optimized block, with the matching
coefficients, across the fast-time (row) dimension to get the range response. The block used is HDL
optimized with latency of 7 Cycles. This registers in the FIR filter have to be reset to an initial value
of 0 after every row. This is performed by using a boolean square wave - implemented using a
Counter and a Compare to constant block.

Buffer & Transpose - Column

The following command is used to open the 'Buffer & Transpose - Column' subsystem

open_system([modelname '/RangeDopplerResponseHDL/Buffer & Transpose - Column'])

 FPGA Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

17-673

The range processed data is deserialized using cascaded Deserializer1D blocks and is converted to
matrix format with a reshape block. This data is now zero-padded and transposed for computing the
FFT across the slow-time (column) dimension. The range processed and transposed data is now
serialised again for FFT computation (Doppler processing)

FFT-Doppler Processing

%The following command is used to open the 'FFT - Doppler Processing' subsystem
open_system([modelname '/RangeDopplerResponseHDL/FFT - Doppler Processing'])

The FFT of the streamed (across column) data is calculated using FFT HDL Optimized block which
has a latency of 173 cycles. A streaming Radix 2^2 architecture is used with an FFT Length of 64.

Buffer - FFT Shift

The following command is used to open the 'Buffer - FFT Shift' subsystem

open_system([modelname '/RangeDopplerResponseHDL/Buffer - FFT Shift'])

17 Featured Examples

17-674

The Doppler processed serial data is deserialized using Deserialized1D blocks and transposed. The
FFT processed data needs to be rearranged to have a zero-centric spectrum data which is emulated
by using a combination of selector blocks and matrix concatenate.

Serialize Output

The following command is used to open the 'Serialize Output' subsystem

open_system([modelname '/RangeDopplerResponseHDL/Serialize Output'])

The range-Doppler map data after processing is in the form of a matrix, which is then serialised using
a reshape and a Serializer1D block for output stream.

Comparing the results of Implementation Model to the Behavioral Model

The model can be simulated by clicking the 'Play' button or using the sim command as shown below,

sim(modelname);

To verify the functional correctness of the Implementation model, we subtract the response matrix of
the behavioral model from the response matrix of the implementation model and check that the
difference(error) is close to zero (quantization in implementation model).

We export the response data from Simulink® to MATLAB® Workspace, using the To Workspace
block, in array format. We subtract the behavioral reponse vector from the implementation model
response, reshape the error matrix into 1-D array and plot the error with element index in the x-axis
and error in the y-axis. We use the imagesc function to display the range-Doppler map. The following
script can be used to plot the response and error.

%Uncomment the following lines of Code to visualize the response map
%
% %Behavioral Output
% behavioralResponse = out.RangeDopplerResponseBehavioral(:,:,1); % Response from To Workspace Block
% behavioralResponsedB = mag2db(abs(behavioralResponse)); % Convert to dB
% rangeGrid = out.RangeGrid(:,1,1); % Range Grid
% dopplerGrid = out.DopplerGrid(:,1,1); % Doppler Grid

 FPGA Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

17-675

%
% %The following block of code is used to visualize the range-Doppler (Behavioral) map
%
% f1 = figure(1); % Figure handle
% f1.Name = 'Behavioral'; % Figure Name
% fax1 = axes; % Axis Handle
% imagesc(fax1,dopplerGrid,rangeGrid,behavioralResponsedB)
%
% xlabel(fax1,'Doppler');
% ylabel(fax1,'Range')
% title(fax1,'Behavioral Response')
%
% %HDL Output
% idx = find(out.Valid); % Search for valid output
% HdlResponse = out.RangeDopplerResponseHdl(:,:,idx(1)); % Response from To Workspace Block
% HdlResponsedB = mag2db(abs(HdlResponse)); % Convert to dB
%
% %The following block of code is used to visualize the Range-Doppler (HDL) map
%
% f2 = figure(2); % Figure handle
% f2.Name = 'HDL'; % Figure Name
% fax2 = axes; % Axis handle
% imagesc(fax2,dopplerGrid,rangeGrid,HdlResponsedB); % Use behavioral output of range and doppler grid%
%
% xlabel(fax2,'Doppler')
% ylabel(fax2,'Range')
% title(fax2,'HDL Response')
%
% %Error
% %The following line subtracts Behavioral Response from HDL
% %response to calculate the error
% errorMatrix = abs(HdlResponse - behavioralResponse); % Matrix Subtract
%
% %The following line converts the error matrix into a row vector which can
% %be visualised on a 2D axis
%
% errorStream = reshape(errorMatrix,1,[]); % Convert error matrix to 1D, row wise
%
% %The follwing line finds the index and the value of maximum error between
% %HDL and behavioral model
%
% Ymax = max(errorStream); % Find Maximum Error
% Xmax = find(errorStream == Ymax); % Find index of maximum error
%
% %The following block of code plots the error on a 2D plot and also annotates the
% %maximum error between HDL and behavioral response
% f3 = figure(3); % Figure handle
% f3.Name = 'Error'; % Figure Name
% fax3 = axes; % Axis handle
% plot(fax3,errorStream) % Plot
%
% ylabel(fax3,'Error');
% xlabel(fax3,'Data Point Index')
% title(fax3,'Error between Behavioral and HDL Model');
%
% Annotate the Maximum error
% textstr = strcat(' ErrorMax = ',num2str(Ymax)); % Display Maximum error as a text

17 Featured Examples

17-676

% text(fax3,Xmax,Ymax,textstr);
%

The range Doppler map and the error between behavioral and implementation model is as shown
below

 FPGA Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

17-677

17 Featured Examples

17-678

Code Generation and Verification

This section covers the procedure to generate HDL code for range-Doppler Response implementation
model and verify the functionally correctness. The behavioral model provides the reference values to
ensure that the output from HDL is within tolerance limits. Based on the Simulink model setup as
described above, the implementation Model designed using fixed-point arithmetic blocks that support
HDL code generation. Alternatively, if you start with a new model, you can run hdlsetup (HDL
Coder™) to configure the Simulink model for HDL code generation. To configure the Simulink model
for test bench creation, open Simulink's Model Settings , select Test Bench under HDL Code
Generation in the left panel, and check HDL test bench and Co-simulation model in the Test
Bench Generation Output properties group.

Model Settings

After the fixed-point implementation is verified and the implementation model produces the same
results as your floating-point, behavioral model, you can generate HDL code and test bench. For code
generation and test bench, set the HDL Code Generation parameters in the Configuration
Parameters dialog. The following parameters in Model Settings are set under HDL Code Generation:

 FPGA Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

17-679

• Target: Xilinx Vivado synthesis tool; Virtex7 family; Device xc7vx485t; package ffg1761, speed -1;
and target frequency of 300 MHz.

• Optimization: Uncheck all optimizations
• Global Settings: Set the Reset type to Asynchronous
• Test Bench: Select HDL test bench, Co-simulation model and System Verilog DPI test bench

HDL Code Verification via Co-Simulation

After the Model is set up, HDL Workflow advisor can be invoked to generate the HDL code using
the HDL Coder™ also use the HDL Verifier™ to generate a System Verilog DPI Test Bench to test the
model. To invoke HDL Workflow advisor right-click on the RangeDopplerResponseHDL subsystem
and navigate to HDL Code and left-click HDL Workflow advisor. Instead of using HDL Workflow
adviser the following lines of code can also be used to generate HDL code and System Verilog Test
Bench

%Uncomment the following two lines to generate HDL code and test bench.
% makehdl([modelname '/RangeDopplerResponseHDL']); % Generate HDL code
% makehdltb([modelname '/RangeDopplerResponseHDL']); % Generate Cosimulation test bench

After generating HDL code and test bench a new Simulink model named gm_<modelname>_mq
containing a ModelSim® Simulator block is created in your working directory, which looks like this:

%To open the test bench model, uncomment the following lines of code
% modelname = ['gm_',modelname,'_mq'];
% open_system(modelname);

Launch ModelSim® and run the co-simulation model to display the simulation results. You can click
on the Play button on the top of Simulink canvas to run the test bench or you can do it via command
window from the code below

%Uncomment the following line, to run the test bench.
% sim(modelname);

17 Featured Examples

17-680

The Simulink® test bench model will populate the QuestaSim® with the HDL model's signal and
Time Scope in Simulink®.

The test bench scopes shows output of the complex-valued response vector from implementation
model and from co-simulation output as well as the error between them.

 FPGA Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

17-681

17 Featured Examples

17-682

Fixed-Point Word Length (Precision) and Resource Utilization Tradeoffs

For this example, a word length of 32 bits and a fraction length of 31 bits were used for design,
simulation and implemetation. There are tradeoffs associated with increasing the data precision with
respect to resource utilization.

The following figure shows the precision with respect to word length

 FPGA Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

17-683

The following figure shows the slice LUT utilization with respect to word length

17 Featured Examples

17-684

The following figure shows the slice Registers utilization with respect to word length

 FPGA Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

17-685

The following figure shows the DSP utilization with respect to word length

17 Featured Examples

17-686

The following figure shows the block RAM Tile utilization with respect to word length

 FPGA Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

17-687

Summary

This example demonstrates a workflow for designing a Simulink model for a HDL Coder™ compatible
range-Doppler response block, verify the results with an equivalent behavioral setup from the Phased
Array System Toolbox™ . Next the example also emphasizes on generation of HDL code for a fixed-
point implementation and verify the generated code in Simulink® for functional correctness. %This
example also demonstrated the process of setting up and launching ModelSim to co-simulate the HDL
code and compare its output to the output generated by the HDL implementation model. The co-
simulation uses ModelSim® for the HDL code simulation and compares results to the output
generated by the implementation model.

17 Featured Examples

17-688

	Phased Arrays
	Antenna and Microphone Elements
	Isotropic Antenna Element
	Support for Isotropic Antenna Elements
	Backbaffled Isotropic Antenna
	Response of Backbaffled Isotropic Antenna Element

	Cosine Antenna Element
	Support for Cosine Antenna Elements
	Concentrating Cosine Antenna Response
	Plot 3-D Response of Cosine Antenna Element

	Custom Antenna Element
	Support for Custom Antenna Elements
	Antenna with Custom Radiation Pattern

	Omnidirectional Microphone
	Support for Omnidirectional Microphones
	Backbaffled Omnidirectional Microphone

	Custom Microphone Element
	Support for Custom Microphone Elements
	Custom Cardioid Microphone Pattern

	Short-dipole Antenna Element
	Short-Dipole Polarization Components

	Crossed-dipole Antenna Element
	LHCP and RHCP Polarization Components

	Gaussian Antenna as Approximation for Spiral Antenna
	Using Antenna Toolbox with Phased Array Systems
	Sinc Antenna as Approximation for Array Response Pattern

	Array Geometries and Analysis
	Uniform Linear Array
	Support for Uniform Linear Arrays
	Positions of ULA Array Elements
	ULA Array Elements
	Array Element Responses
	Signal Delay Between Array Elements
	Steering Vector
	Array Response
	Reception of Plane Wave Across Array

	Microphone ULA Array
	Uniform Rectangular Array
	Support for Uniform Rectangular Arrays
	Uniform Rectangular Array of Isotropic Antenna Elements

	Conformal Array
	Support for Arrays with Custom Geometry
	Create Default Conformal Array
	Uniform Circular Array Created from Conformal Array
	Custom Antenna Array

	Subarrays Within Arrays
	Definition of Subarrays
	Benefits of Using Subarrays
	Support for Subarrays Within Arrays
	Rectangular Array Partitioned into Linear Subarrays
	Linear Subarray Replicated to Form Rectangular Array
	Linear Subarray Replicated in a Custom Grid

	Plot Array Directivity Using Sensor Array Analyzer App

	Signal Radiation and Collection
	Signal Radiation
	Support for Modeling Signal Radiation
	Radiate Signal with Uniform Linear Array

	Signal Collection
	Support for Modeling Signal Collection
	Narrowband Collector for Uniform Linear Array
	Narrowband Collector for a Single Antenna Element
	Wideband Signal Collection

	Waveforms, Transmitter, and Receiver
	Rectangular Pulse Waveforms
	Definition of Rectangular Pulse Waveform
	How to Create Rectangular Pulse Waveforms
	Rectangular Waveform Plot
	Pulses of Rectangular Waveform

	Linear Frequency Modulated Pulse Waveforms
	Benefits of Using Linear FM Pulse Waveform
	Definition of Linear FM Pulse Waveform
	How to Create Linear FM Pulse Waveforms
	Create Linear FM Pulse Waveform
	Linear FM Pulse Waveform Plot
	Ambiguity Function of Linear FM Waveform
	Compare Autocorrelation for Rectangular and Linear FM Waveforms

	Stepped FM Pulse Waveforms
	Create and Plot Stepped FM Pulse Waveform

	FMCW Waveforms
	Benefits of Using FMCW Waveform
	How to Create FMCW Waveforms
	Double Triangular Sweep

	Phase-Coded Waveforms
	When to Use Phase-Coded Waveforms
	How to Create Phase-Coded Waveforms

	Basic Radar Using Phase-Coded Waveform
	Waveforms with Staggered PRFs
	When to Use Staggered PRFs
	Linear FM Waveform with Staggered PRF

	Plot Spectrogram Using Pulse Waveform Analyzer App
	Transmitter
	Transmitter Object
	Phase Noise

	Receiver Preamp
	Operation of Receiver Preamp
	Configuring Receiver Preamp
	Model Receiver Effects on Sinusoidal Input

	Model Coherent-on-Receive Behavior
	Coherent-on-Receive for Rectangular Pulse

	Beamforming
	Beamforming Overview
	Conventional Beamforming
	Optimal and Adaptive Beamforming

	Conventional Beamforming
	Uses for Beamformers
	Support for Conventional Beamforming
	Narrowband Phase Shift Beamformer for a ULA

	Adaptive Beamforming
	Benefits of Adaptive Beamforming
	Support for Adaptive Beamforming
	Nulling with LCMV Beamformer

	Wideband Beamforming
	Support for Wideband Beamforming
	Time-Delay Beamforming of Microphone ULA Array
	Visualization of Wideband Beamformer Performance

	Time-Delay Beamforming of Microphone ULA Array
	Visualization of Wideband Beamformer Performance
	Fixed-Point HDL-Optimized Minimum-Variance Distortionless-Response (MVDR) Beamformer

	Direction-of-Arrival Estimation
	Beamscan Direction-of-Arrival Estimation
	Super-Resolution DOA Estimation
	MUSIC Super-Resolution DOA Estimation
	Signal Model
	Signal and Noise Subspaces
	Root-MUSIC
	Spatial Smoothing of Correlated Sources

	Target Tracking Using Sum-Difference Monopulse Radar

	Space-Time Adaptive Processing (STAP)
	Angle-Doppler Response
	Benefits of Visualizing Angle-Doppler Response
	Angle-Doppler Response of Stationary Array to Stationary Target
	Angle-Doppler Response to Stationary Target at Moving Array

	Displaced Phase Center Antenna Pulse Canceller
	When to Use the DPCA Pulse Canceller
	DPCA Pulse Canceller to Reject Clutter

	Adaptive Displaced Phase Center Antenna Pulse Canceller
	When to Use the Adaptive DPCA Pulse Canceller
	Adaptive DPCA Pulse Canceller To Reject Clutter and Interference

	Sample Matrix Inversion Beamformer
	When to Use the SMI Beamformer
	Sample Matrix Inversion Beamformer

	Detection
	Neyman-Pearson Hypothesis Testing
	Purpose of Hypothesis Testing
	Support for Neyman-Pearson Hypothesis Testing
	Threshold for Real-Valued Signal in White Gaussian Noise
	Threshold for Two Pulses of Real-Valued Signal in White Gaussian Noise
	Threshold for Complex-Valued Signals in Complex White Gaussian Noise

	Receiver Operating Characteristics
	Monte-Carlo ROC Simulation
	Matched Filtering
	Reasons for Using Matched Filtering
	Support for Matched Filtering
	Matched Filtering of Linear FM Waveform
	Matched Filtering to Improve SNR for Target Detection

	Stretch Processing
	Reasons for Using Stretch Processing
	Support for Stretch Processing
	Stretch Processing Procedure

	FMCW Range Estimation
	Range-Doppler Response
	Benefits of Producing Range-Doppler Response
	Support for Range-Doppler Processing
	Range-Speed Response Pattern of Target

	Constant False-Alarm Rate (CFAR) Detectors
	False Alarm Rate for CFAR Detectors
	Cell-Averaging CFAR Detector
	CFAR Detector Adaptation to Noisy Input Data
	Extensions of Cell-Averaging CFAR Detector
	Detection Probability for CFAR Detector

	Measure Intensity Levels Using the Intensity Scope
	RTI and DTI Displays in Full Radar Simulation

	Environment and Target Models
	Free Space Path Loss
	Support for Modeling Propagation in Free Space
	Free Space Path Loss in dB
	Propagate Linear FM Pulse Waveform to Target and Back
	One-Way and Two-Way Propagation
	Propagate Signal from Stationary Radar to Moving Target

	Two-Ray Multipath Propagation
	Free-Space Propagation of Wideband Signals
	Radar Target
	Radar Target Properties
	Gain for Nonfluctuating RCS Target
	Fluctuating RCS Targets
	Model Pulse Reflection from Nonfluctuating Target

	Swerling 1 Target Models
	Swerling Target Models
	Swerling 3 Target Models
	Swerling 4 Target Models

	Coordinate Systems and Motion Modeling
	Rectangular Coordinates
	Definitions of Coordinates
	Notation for Vectors and Points
	Orthogonal Basis and Euclidean Norm
	Orientation of Coordinate Axes
	Rotations and Rotation Matrices

	Spherical Coordinates
	Support for Spherical Coordinates
	Azimuth and Elevation Angles
	Phi and Theta Angles
	U and V Coordinates
	Conversion between Rectangular and Spherical Coordinates
	Broadside Angles
	Convert Between Broadside Angles and Azimuth and Elevation

	Global and Local Coordinate Systems
	Global Coordinate System
	Local Coordinate Systems
	Converting Between Global and Local Coordinate Systems
	Convert Local Spherical Coordinates to Global Rectangular Coordinates
	Convert Global Rectangular Coordinates to Local Spherical Coordinates

	Global and Local Coordinate Systems Radar Example
	Motion Modeling in Phased Array Systems
	Support for Motion Modeling
	Platform Motion with Constant Velocity
	Platform Motion with Changing Velocity
	Track Range and Angle Changes Between Platforms

	Model Motion of Circling Airplane
	Visualize Multiplatform Scenario
	Doppler Shift and Pulse-Doppler Processing
	Support for Pulse-Doppler Processing
	Convert Speed to Doppler Shift
	Convert Doppler Shift to Speed
	Pulse-Doppler Processing of Slow-Time Data
	Range and Speed Using Pulse-Doppler Processing

	Using Polarization
	Polarized Fields
	Introduction to Polarization
	Linear and Circular Polarization
	Elliptic Polarization
	Linear and Circular Polarization Bases
	Sources of Polarized Fields
	Scattering Cross-Section Matrix
	Polarization Loss Due to Field and Receiver Mismatch
	Model Radar Transmitting Polarized Radiation

	Antenna and Array Definitions
	Element and Array Radiation and Response Patterns
	Element Response and Radiation Patterns
	Array Response and Radiation Patterns

	Grating Lobe Diagram for Microphone URA

	Sonar System Models
	Sonar Equation
	Passive Sonar Equation
	Active Sonar Equation

	Doppler Effect for Sound

	Code Generation
	Code Generation
	Code Generation Use and Benefits
	Limitations Specific to Phased Array System Toolbox
	General Limitations
	Limitations for System Objects that Require Dynamic Memory Allocation

	Generate MEX Function to Estimate Directions of Arrival
	Generate MEX Function Containing Persistent System Objects

	Simulink Examples
	Convert Azimuth and Elevation to Broadside Angle
	Phase-Shift Beamforming of Plane Wave Signal

	RF Propagation
	Access TIREM Software

	Featured Examples
	Antenna Array Analysis with Custom Radiation Pattern
	Array Pattern Synthesis Part I: Nulling, Windowing, and Thinning
	Array Pattern Synthesis Part II: Optimization
	Modeling and Analyzing Polarization
	Modeling Mutual Coupling in Large Arrays Using Embedded Element Pattern
	Modeling Mutual Coupling in Large Arrays Using Infinite Array Analysis
	Modeling Perturbations and Element Failures in a Sensor Array
	Patch Antenna Array for FMCW Radar
	Phased Array Gallery
	Using Pilot Calibration to Compensate For Array Uncertainties
	Using Self Calibration to Accommodate Array Uncertainties
	Subarrays in Phased Array Antennas
	Tapering, Thinning and Arrays with Different Sensor Patterns
	Simultaneous Range and Speed Estimation Using MFSK Waveform
	Waveform Analysis Using the Ambiguity Function
	Waveform Design to Improve Range Performance of an Existing System
	Acoustic Beamforming Using a Microphone Array
	Beamforming for MIMO-OFDM Systems
	Conventional and Adaptive Beamformers
	Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC
	High Resolution Direction of Arrival Estimation
	Increasing Angular Resolution with Virtual Arrays
	Introduction to Space-Time Adaptive Processing
	Source Localization Using Generalized Cross Correlation
	Acoustic Beamforming Using Microphone Arrays
	Conventional and Adaptive Beamformers
	Direction of Arrival with Beamscan and MVDR
	Constant False Alarm Rate (CFAR) Detection
	Detector Performance Analysis Using ROC Curves
	Doppler Estimation
	Range Estimation Using Stretch Processing
	Signal Detection in White Gaussian Noise
	Signal Detection Using Multiple Samples
	Antenna Array Beam Scanning Visualization on a Map
	SINR Map for a 5G Urban Macro-Cell Test Environment
	Improve SNR and Capacity of Wireless Communication Using Antenna Arrays
	Introduction to Hybrid Beamforming
	MIMO-OFDM Precoding with Phased Arrays
	Simulating Test Signals for a Radar Receiver
	Electronic Scanning Using a Uniform Rectangular Array
	Simulating a Bistatic Polarimetric Radar
	Stream and Accelerate System Simulation
	Scene Visualization for Phased Array System Simulation
	Simulating Test Signals for a Radar Receiver in Simulink
	Modeling RF Front End in Radar System Simulation
	Simulating a Bistatic Radar with Two Targets
	Waveform Scheduling Based on Target Detection
	Underwater Target Detection with an Active Sonar System
	Locating an Acoustic Beacon with a Passive Sonar System
	Waveform Parameter Extraction from Received Pulse
	Massive MIMO Hybrid Beamforming
	Multicore Simulation of Test Signals for a Radar Receiver
	Multicore Simulation of Audio Beamforming System
	802.11ad Single Carrier Link with RF Beamforming in Simulink
	802.11ad Waveform Generation with Beamforming
	Radar and Communications Waveform Classification Using Deep Learning
	Hybrid MIMO Beamforming with QSHB and HBPS Algorithms
	Array Synthesis for Lidar Systems
	FPGA Based Beamforming in Simulink: Part 2 - Code Generation
	FPGA Based Beamforming in Simulink: Part 1 - Algorithm Design
	Estimate Range and Doppler Using Pulse Compression
	Compare Ambiguity Functions for Different Wave Modulation Schemes
	NR Downlink Transmit-End Beam Refinement Using CSI-RS
	CDL Channel Model Customization with Ray Tracing
	NR SSB Beam Sweeping
	FPGA Based Cell-Averaging Constant False Alarm Rate (CA-CFAR) Detector - Algorithm Design and HDL Code Generation
	FPGA Based Monopulse Technique Workflow: Part 1 - Algorithm Design
	FPGA Based Monopulse Technique Workflow: Part 2 - Code Generation
	Introduction to Differential Beamforming
	Examine the Response of a Focused Phased Array
	FPGA Based Range-Doppler Processing - Algorithm Design and HDL Code Generation

